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Abstract 
We present here an alternative definition of the P-value for statistical hypoth-
esis test of a real-valued parameter for a continuous random variable X. Our 
approach uses neither the notion of Type I error nor the assumption that null 
hypothesis is true. Instead, the new P-value involves the maximum likelihood 
estimator, which is usually available for a parameter such as the mean μ or 
standard deviation σ of a random variable X with a common distribution. 
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1. Introduction 

A principal goal of statistics is to obtain evidence from data for comparing alter-
native decisions. For example, statistical evidence may allow one to decide that a 
population mean µ  satisfies 0µ µ≤  as opposed to 0µ µ>  for some specified 

0µ . Unfortunately, evidence is an ambiguous concept in statistics, though [1]-[7] 
among others have attempted to define it. Currently, the P-value [8] [9] is perhaps 
the most frequently applied measure of evidence used to reject or fail to reject a 
hypothesis. In Section 2, we review the standard P-value and the notion of a max-
imum likelihood estimator (MLE). We then propose the new MLE P-value involv-
ing the MLE of some parameter of interest. The MLE P-value is not related to 
significance levels and not defined under the assumption that the null hypothesis 
is true. Both the standard and new MLE P-values may be considered measures of 
evidence, but the latter is more intuitive. In Section 3, we present four examples 
and compare the two approaches. 

2. The Standard and MLE P-Values 

The notion of P-value is a fundamental tool in statistical inference and has been 
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widely used for reporting outcomes of hypothesis tests. Yet in practice, the P-value 
is often misinterpreted, misused, or miscommunicated. Moreover, it does not un-
equivocally reflect the available evidence for the null hypothesis since H0 is as-
sumed to hold. In this section, we propose the new MLE P-value that may give 
different values in some cases than do existing definitions. The MLE P-value pro-
vides a simple and intuitive interpretation of P-value. Our definition appears ap-
plicable to a wide range of hypothesis testing problems and yields an interpreta-
tion of P-value as both a cardinal and ordinal measure of the evidence. We restrict 
our development to standard one-sided hypothesis testing, but Example 3 illus-
trates that the approach here can also be used for two-sided hypothesis testing. 

We first summarize the two standard ways of defining P-value for the general 
hypothesis test 0 0:H θ ∈Θ  vs 1 0:H θ ∉Θ  with a parameter space 0Θ . Let 
( )T X  be a test statistic for a random sample ( )1, , nX X=X   from a random 

variable X  with a single scalar parameter θ . Denote the observed data for X  
as ( )1, , nx x=x  . 

Definition 1 (Definitions of P-value from [10] and [11]). Under the assump-
tion that 0 0:H θ ∈Θ  is true, the P-value associated with the observed data x  is 
defined as either 

 ( ) ( ) ( ){ }
0

0PV1 | sup |P T T
θ

θ
∈Θ

Θ = ≥x X x  (1) 

or 

 ( ) ( ){ }0PV2 | inf : ,T RααΘ = ∈x x  (2) 

where Rα  is the rejection region for a level of significance α . 
Equation (1) is usually interpreted as follows. Under the assumption that H0 is 

true, P-value is the probability that ( )T X  is as least as extreme as its observed 
value ( )T x . This interpretation can lead to the common misunderstanding that 
this definition of P-value is the probability that H0 is true. On the other hand, 
under the assumption that H0 is true, Equation (2) is based on significance levels 
(Type I Error probabilities) and can lead to the misunderstanding that P-value is 
only a measure of Type I Error and not related to the likelihood that H0 is true. 

Both definitions lead to the question: how can the assumption that H0 is true 
produce evidence that H0 is true? The answer is that H0 is rejected when there is a 
probability less than or equal to 0.05 (for example) that H0 is true when it is as-
sumed true. In other words, a contradiction involving probability is reached. For 
other issues with these definitions, see [10]-[12], for example. To address such 
issues, we utilize the well-known maximum likelihood estimator (MLE) [13] [14] 
and define a P-value utilizing the maximum likelihood estimator for the parame-
ter under consideration. 

Definition 2 (Likelihood Function and MLE). Let ( )1, , nx x=x   be sample 
data from a random sample ( )1, , nX X=X   from a random variable X  with 
sample space S  and real-valued parameter θ . For the joint pdf ( )|f θx  of 
the random sample X . For any sample data x , the likelihood function of θ  is 
defined as 
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 ( ) ( )| | ,L fθ θ=x x  (3) 

where ( )|L θ x  in (3) is a function of the variable θ  for given data x . The 
MLE ( )θ̂ x  maximizes ( )|L θ x  for the data sample x ; i.e.,  
( ) ( )

   
arg maxˆ |x L

θ
θ θ= x  in terms of x . 

Definition 3 (MLE P-value). Let ( )1, , nx x=x 
 be observed random sample 

data for a random sample ( )1, , nX X=X 
 from a continuous random variable 

X  with a single real-valued parameter θ  and pdf ( )|Xf x θ . Let ( )ˆY θ= X  
denote the MLE for θ  with pdf ( )|Yf y θ . For the hypothesis test 0 0:H θ ∈Θ  
vs 1 0:H θ ∉Θ , the MLE P-value (MPV) at the sample data x  for the null hy-
pothesis 0 0:H θ ∈Θ  is defined as 

 ( ) ( )( )
0

0MPV | | ,ˆ dYf y yθ θ
Θ

Θ = =∫x x  (4) 

where the integration is over the scalar values 0y∈Θ  of ( )ˆY θ= X . 
In the integration of (4), θ  is estimated by the number MLE ( )θ̂ x  from the 

sample data x . Then the pdf ( )( )ˆ|Yf y θ θ= x  of the MLE ( )ˆY θ= X  is inte-

grated over the values θ  in the null hypothesis 0 0:H θ ∈Θ . For example, in the 
one-tailed hypothesis test 0 0:H θ θ≤  vs 1 0:H θ θ> , the set 0Θ  would be 
( ]0,θ−∞ . In this case (4), 0 0:H θ ∈Θ  approximates the frequentist probability 

that ( ) 0
ˆY θ= ∈ΘX , and so ( )0MPV |Θx  approximates the likelihood that is 

true. Any inaccuracies are due (i) to integrating over ( )ˆY θ= X  since θ  has no 

prior or posterior distribution and (ii) to setting ( )ˆθ θ= x . Both result from us-

ing the MLE ( )θ̂ x  as a surrogate for the unknown parameter θ . Doing so, how-
ever, utilizes the fact that distributions of MLEs for a parameter θ  are often 
known for a continuous random variable X  with a common distribution such 
as the normal or exponential. In such cases, (4) may be analytically integrable. If 
not, a numerical integration could possibly be employed. However, only analytical 
integration is considered here. 

3. Examples 

Four examples are now presented to illustrate the MLE P-value approach. The 
first two involve the normal random variable, and the third involves an expo-
nential random variable. The fourth demonstrates a possible limitation of the 
method. 

Example 1. For a random sample of size n , consider the hypothesis test 

0 0:H µ µ≤  vs 1 0:H µ µ>  for the parameter µ  of a normal random variable 

( )2~ ,X N µ σ . In this case, we rewrite ( )0MPV |Θx  as ( )0MPV | µx . We also 

show that (4) gives the standard P-value for θ µ= . 
Result 1. Let 1, , nX X  be a random sample from a random variable  

( )2~ ,X N µ σ  with unknown µ , and consider the one-sided hypothesis test  

0 0:H µ µ≤  vs 1 0:H µ µ> . Let x  be the sample mean for sample values  

1, , nx x . When 2σ  is known, 
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 ( ) 0
0MPV | ;

x
n

µ
µ φ

σ

 −
=   

 
x  (5) 

and when 2σ  is unknown, 

 ( ) 0
0 1MPV | ,n

x
F

s n
µ

µ −

 −
=   

 
x  (6) 

where ( )zφ  is the cdf for the standard normal distribution and ( )1nF t−  is the 
cdf for the student t distribution with n − 1 degrees of freedom. 

Proof. When 2σ  is known, to prove (5) we use the fact [9] that the MLE 
( )µ̂ X  for µ  is the sample mean ( )2~ ,X N nµ σ . The integral of (4) therefore 

becomes 

 0
0 .P X

n
µ µ

µ φ
σ

 −
 ≤ =     

 
 (7) 

Substituting x  for µ  in (7) gives (5). When 2σ  is unknown, Equation (6) 
follows from the definition of the student t distribution [9]. ■ 

Numerically, when 9n = , 0 12µ = , 2σ = , and 13x = , the MLE P-value of 

(5) for 0 0:H µ µ≤  vs 1 0:H µ µ>  is 12 13  0.067
2 3

φ
 −
 
 

  from the standard 

normal table [9]. If 25n =  instead, the MLE P-value of (5) is  
12 13  0.006

2 5
φ
 −
 
 

 , and it is much less likely that 0µ µ≤ . It should be noted 

that the right sides of (5) and (6) are the standard P-values for the hypothesis test 

0 0:H µ µ≤  vs 1 0:H µ µ>  using the definition of (2). In particular, the usual 

test statistic for this case is 0  x
z

n
µ

σ
−

=  with a critical region of z zα>  [9], 

where α is the level of significance, i.e., the probability of committing a Type I 
error. The P-value is then the lowest level of α for which the observed z is signifi-
cant. But this lowest level of α in standard hypothesis testing is simply  

0 0 
1

x x
n n
µ µ

φ φ
σ σ

   − −
− =      

   
, which is the right side of (5). 

Example 2. For a random sample of size n , consider the hypothesis test 
2 2

0 0:H σ σ≤  vs 2 2
1 0:H σ σ>  for the variance 2σ  of a normal random variable 

( )2~ ,X N µ σ . From [9], the MLE for the variance of a normal distribution is 

( ) ( )2

2 1ˆ
n

ii
X X
n

σ =
−

=
∑X , so 

( ) ( )
2

2
2

ˆ
~ 1

n
n

σ
χ

σ
−

X
, from which we have the fol-

lowing. 
Result 2. Let 1, , nX X  be a random sample from a random variable  

( )2~ ,X N µ σ  with unknown 2σ , and consider the one-sided hypothesis test 
2 2

0 0:H σ σ≤  vs 2 2
1 0:H σ σ> . Then the integral of (4) becomes 

 ( ) ( ) ( )2

2
2 0
0 21

NPV | .
ˆn

n
F

xχ

σ
σ

σ−

 
=   

 
x  (8) 
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Proof. From [9], the MLE ( )2σ̂ X  for 2σ  of a normal distribution is  

( ) ( )
2 2

1 1
n

ii
X X n S
n n

=
− −

=
∑

 and so 
( ) ( )

2
2

2

ˆ
~ 1

n
n

σ
χ

σ
−

X
. Hence 

 ( ) ( )
( )2

2 2 2
2 2 0 0

0 2 2 21
.

ˆ
ˆ

n

n n n
P P F

χ

σ σ σ
σ σ

σ σ σ−

   
 ≤ = ≤ =         

X
X  (9) 

Substituting ( )2ˆ  σ x  for 2σ  in ( )2

2
0

21n

n
F
χ

σ
σ−

 
 
 

 in (9) yields (8). ■ 

Numerically, when 10n = , 2
0 4σ = , and 2 9s = , the MLE P-value of (8) for 

2 2
0 0:H σ σ≤  vs 2 2

1 0:H σ σ>  becomes 
( ) ( )2 9

4.94 0.16F
χ

 . 

Example 3. In this example, we illustrate that the MLE approach is applicable 
in two-sided hypothesis testing. For a random sample of size n , consider the hy-
pothesis test 0 0:H µ µ=  vs 1 0:H µ µ≠  for the parameter µ  of  

( )2~ ,X N µ σ  with σ  known. To be more realistic, we modify this test to  

[ ]0 0 0: ,H µ µ δ µ δ∈ − +  vs [ ]1 0 0: ,H µ µ δ µ δ∉ − + , where δ  is an acceptable 
tolerance level, i.e., an acceptable deviation from 0µ . In this case, (4) becomes 

 ( ) 0 0
0MPV | .

x x
n n

µ δ µ δ
µ φ φ

σ σ

   + − − −
= −      

   
x  (10) 

Numerically, when 25n = , 0 12µ = , 2 16σ = , 12.3x = , and 0.5δ = , the 
MLE P-value of (10) becomes ( ) ( )0.25 1.00 0.4400φ φ− − 

. 
Example 4. Let the random variable X  have an exponential distribution with 

pdf ( )| e x
Xf x λλ λ −= , 0x > , with parameter 0λ > . For a random sample of 

size n , consider the hypothesis test 0 0:H λ λ≤  vs 1 0:H λ λ> . From [15], the 

MLE for λ  is 1Y X= . It can be shown [16] that X  for the exponential ran-
dom variable X  follows the gamma distribution ( ),n nλΓ . Hence Y  follows 
an inverse gamma distribution [16], so the right side of (4) becomes the regular-

ized gamma function 
0

, nQ n
Xλ

 
 
 

, which is available in various software pack-

ages such as MATLAB. 

Example 5. To illustrate the difficulty of finding the pdf ( )( )ˆ|Yf y θ θ= x  for 

MLE ( )ˆY θ= X  in the integral of (4), consider the random variable X  with pdf 

( ) ( )1|Xf x x θθ θ − +=  for 1x >  and the parameter 0θ > . Then it can be shown 

[9] that ( )
( )1

ˆ
lnn

ii

n
X

θ
=

=
∑

x , whose pdf is difficult to determine. 

4. Conclusions 

The MLE P-value defined here gives a value that estimates the probability that a 
one-sided null hypothesis on a single parameter is true. Two-sided hypotheses can 
be similarly treated using tolerance levels as in Example 3. In the approach of this 

https://doi.org/10.4236/ojs.2024.145024


H. W. Corley 
 

 

DOI: 10.4236/ojs.2024.145024 551 Open Journal of Statistics 
 

paper, the MLE ( )ˆY θ= X  may be thought of as a new type of test statistic that 
is integrated over 0Θ , while its numerical value ( )θ̂ x  from the data x  is used 
to estimate θ  in this integration. Obtaining such an approximation of the prob-
ability that the null hypothesis is true is, in fact, the ultimate goal of hypothesis 
testing. Certainty is not possible. But given the MLE P-value, a decision maker 
would need to decide if this value is sufficiently large to accept the null hypothesis. 
Different decision makers might judge a given MLE P-value probability differ-
ently, but a metric for the decision has now been provided. 

The principal limitation of the analytical approach here is that the pdf of the 
maximum likelihood estimator needs to be both known and reasonable to inte-
grate. Future work should be directed at the numerical integration of these inte-
grals. Tables could be developed for certain parameters of particular random var-
iables .X  Although MLEs have been used here as the surrogate for single pa-
rameters, other estimators could also be used. The advantage of MLEs is that they 
are well-studied and often immediately available. Finally, an approach similar to 
that of this paper could be applied to hypothesis testing for parameters of discrete 
random variables. 
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