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Abstract 
The invasive insect pest, red palm weevil (RPW), Rhynchophorus ferrugineus, 
poses a significant threat to date production, causing substantial economic 
damage. If uncontrolled, RPW leads the severely infested host tree to collapse 
and eventually die. The symbiotic associations with microorganisms and RPW 
in their gut may help their host insects’ establishment, development, nutrition 
assimilation, and survival. The objective of this research was the molecular 
characterization of the microbiome of RPW. In this study, the microbiome 
was compared among different tissues in females and males of RPW of three 
different morphs and larvae collected from date palm plantations in the King-
dom of Bahrain. A 251-bp segment of bacterial 16S rRNA was amplified by 
PCR, sequenced, and processed using the bioinformatics platform QIIME2. 
One ASV, corresponding to the obligate weevil symbiont Nardonella, pre-
dominated in adult female samples, constituting 56 ± 7% of total reads, but 
was less dominant in male samples (12 ± 3%) and larval samples (2.6 ± 1.9%). 
For females, samples that included reproductive tissues were almost entirely 
composed of Nardonella (88% - 99%). When Nardonella was excluded from 
analyses, there were no differences between adult females and adult males, but 
larval samples were more species-rich and differed in microbial composition 
from adults. There were no consistent differences in the microbiomes among 
morphs. Several specimens showed evidence of infection with host-specific 
strains of Spiroplasma-like members of the Entomoplasmatales, which are of-
ten pathogens or vertically transmitted symbionts. Such close microbial asso-
ciates deserve additional attention as potential routes to control this destruc-
tive date palm pest. 
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1. Introduction 

The Red palm weevil (RPW), Rhynchophorus ferrugineus (Coleoptera: Curcu-
lionidae), is a widespread and invasive pest that attacks 40 palm species of 18 
different palm genera across the globe [1] [2]. Date palm, Phoenix dactylifera L. 
(Arecales: Arecaceae), has experienced severe damage worldwide [3] [4]. The 
first report of RPW in 1906 vividly detailed its destructive impacts on the coco-
nut palm trees, Cocos nucifera, in India [5]. In the mid-eighties of the last cen-
tury, the RPW was discovered in the Arabian Gulf countries, posing a significant 
threat to the date palm trees in the region [6] [7]. Over time, the weevil has 
demonstrated a significant capacity for geographical expansion, establishing its 
presence in various Asian countries, the Middle East, North Africa, southern 
Europe, and the Caribbean Islands [8]. The significant spread of RPW in various 
regions is likely attributed to the international trade of palm trees coupled with 
the absence of reliable techniques for early detection of RPW infestation [3]. 
Moreover, clear visible symptoms of RPW infection in palm trees are typically 
absent until the advanced stages of infestation [5]. The damage of date palms by 
RPW is only visible when the trees are close to death by infestation [9] [10]. Red 
palm weevil larvae are the most destructive stage that feeds on the fibrous vas-
cular bundles of the palms, producing wet fermenting chewed waste inside the 
trunk and creating a hollow tunnel [11] [12]. The palm tissues are rich in car-
bohydrates and contain 80% cellulose, hemicelluloses, lignin, sucrose, and glu-
cose [13]. Therefore, palm tissue and tissue sap represent a non-easily digestible 
and nutrient-poor substrate for RPW [14]. Currently, it has been found that the 
RPW gut harbors a diverse bacterial community that helps in degrading poly-
saccharides and sucrose and significantly influences the nutrition metabolism 
of this pest [14]-[17]. 

In recent years, much evidence has accumulated to indicate that symbiotic mi-
crobiota has facilitated diverse metabolic activities, survival, and adaptive radia-
tion of insects [18]-[20]. Many damaging wood-boring insects, including the 
southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scoly-
tidae), the sirex wood wasp, Sirex noctilio Fabricius ((Hymenoptera: Siricidae), 
and the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Bupresti-
dae), have shown symbiotic associations with microorganisms that play important 
roles in host nutrition through degradation of cellulose and hemicelluloses [21] 
[22] [23]. Some endosymbionts are obligate and are essential to the survival of the 
host [24] [25], such as Buchnera in aphids [26], Wigglesworthia in tsetse flies 
(Diptera: Glossinidae) [27], Carsonella in psyllids (Homoptera: Psyllidae) [28], 
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Blochmannia in carpenter ants, Camponotus sp. (Hymenoptera: Formacidae) 
[29], Nardonella in weevils [30] [31] and others. Weevils comprise a species-rich 
group of around 70,000 species in the Curculionidae [32] [33]. Most weevil species 
are infected by Nardonella, an ancient endosymbiont lineage found in specialized 
symbiotic organs [34] co-speciated with the host weevil for over 125 million years 
[35] [36]. The presence of Nardenella in the West Indian sweet potato weevil in 
Euscepes postfasciatus (Fairmaire) (Coleoptera: Curculionidae) and several pest 
and non-pest weevils have been reported [36].  

The substantial environmental and economic injury caused by RPW may be 
partially attributable to its associated endosymbionts [37]-[39]. Several studies 
have indicated that intestinal tracts and guts of RPW infesting palm trees harbor 
rich communities of nonpathogenic microbial species. These microbial species 
play a critical role in regulating the biological processes such as nutrient metab-
olism, growth, development, and immune activity of RPW life stages, including 
adults and larvae [40]-[44]. The findings have significant implications for de-
veloping novel and effective methods to control RPW populations and mitigate 
the impact of this invasive pest. A general analysis of the 16S ribosomal RNA 
(rRNA) genes was used to identify bacterial species [16] [45]-[47], but nothing 
is known about the microbial communities of the gut and other tissues of the 
RPW larvae and adults of different morphs from infested date palm trees of the 
Kingdom of Bahrain, which represents a significant threat to date palm produc-
tion. We are therefore interested in identifying and characterizing the microbial 
communities in RPW adults of three morphs and larvae using high-throughput 
sequencing, which may help improve invasive pest bio-control management 
programs. 

2. Material and Methods 
2.1. Field Collection of Red Palm Weevil  

The adult and larval red palm weevils were hand-picked from infested date palm 
trees that were 7 to 10 years old in the Kingdom of Bahrain from September 
2017 to March 2018. The collections were made at three different locations: 
Hoarat A’ali, Maqabah, and Zallaq (Table S1). Both stages of the weevils were 
found to coexist within the same feeding sites in the middle of the palm trunks 
at a height of 0.8 - 1.5 m from the ground. Specimens of each developmental 
stage were placed in covered cylinder plastic containers (1500 ml) supplied with 
freshly cut palm petiole pieces and then transferred to the laboratory. In the 
laboratory, the adult weevils were categorized into three distinct color morphs 
based on their black pronotum markings, as shown in Figure 1. Furthermore, 
each morph’s female and male adult weevils were sexed based on their rostrum. 
Female weevils possess a longer, curved, hairless rostrum, while male weevils 
have a shorter rostrum with thick, erect setae at the apex. All specimens of both 
adults and larval weevils were preserved then in 95% ethanol for endosymbiont 
analysis. 
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Figure 1. Three distinct red palm weevil morphs distinguished by their pronotal markings 
were collected from the Kingdom of Bahrain. 

2.2. Red Palm Weevil Sample Preparation, Dissection, and  
Isolation of Microbiome 

Individual RPW specimens were surface sterilized using a series of washes: first 
with PCR water, followed by 0.5% bleach, and finished with PCR water. Speci-
mens were then dissected with sterile instruments. Due to specimen preservation, 
the abdominal contents were friable and not easily dissected from one another. 
For several specimens, reproductive organs and the hindgut were separated for 
individual analysis, but for most adult specimens and all larval specimens, gener-
alized abdominal contents were homogenized for subsequent analysis. Dissected 
tissues were rewashed using PCR water and 0.5% bleach before homogenization 
and DNA extraction.  

2.3. DNA Isolation, PCR, and Sequencing  

DNA was extracted from RPW specimens (i.e., one or more subsamples) using a 
DNA extraction kit (Qiagen DNEasy Extraction Kit, Germantown, MD) accord-
ing to manufacturer’s instructions. The microbiomes of the RPW tissue samples 
were profiled using metabarcoding and high-throughput sequencing of the bacte-
rial community. Each sample was individually labeled with a unique combination 
of indexed forward and reverse primers that amplified the V4 region of bacterial 
16S rRNA [48]. A subsample of each reaction was electrophoresed on a 1% aga-
rose gel stained with GelRed (Biotium); samples that resulted in strong amplifica-
tion of bacterial products were included in the library. For samples with weak or 
no amplification, a second PCR was attempted, and if the second PCR result was 
also weak, the sample was excluded. Included samples were multiplexed into one 
library that was purified using a GenCatch PCR Cleanup Kit (Epoch Life Sciences, 
Missouri City, TX). Several non-weevil samples were also included in the library 
as positive controls to evaluate within library cross-sample contamination. These 
samples (an Aphis craccivora aphid and a Mermessus fradeorum spider) are domi-
nated by a few highly specialized endosymbionts [49] [50] that could be readily fil-
tered out from the final result. The combined sample quality was assessed at the B-
CELL sequencing facility (Bluegrass Community & Technical College, Lexington 
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Kentucky) before being sequenced on an Illumina MiSeq 2500 instrument using 
Miseq Reagent Kit v2 250PE chemistry.  

2.4. Sequence Analysis  

Sequences were demultiplexed, trimmed and quality filtered in BaseSpace (Illu-
mina, https://basespace.illumina.com/), then they were imported into QIIME2 
(v2017.11, https://qiime2.org) using a manifest [51]. Additional quality control 
was conducted using deblur [52], implemented in QIIME2 using default parame-
ters and a trim length of 251 bases. This procedure allowed distinction among 
Amplicon Sequence Variants (ASVs) that differed by even one base pair over the 
sequenced length [53]. Resulting sequences were taxonomically classified using a 
naïve Bayes classifier that was trained on the 515F/806R V4 region of the 
Greengenes 13_8 99% OTUs reference database [54]. Additionally, high-preva-
lence sequences were queried against the NCBI nucleotide database using the 
Megablast algorithm to identify symbiotic taxa. 

2.5. Functional Profiling of Bacterial Community 

To analyze the bacterial community, ASVs corresponding to mitochondria, chlo-
roplasts, and characteristic symbionts for other specimens included in the library 
(e.g., Buchnera for aphids) were filtered out, along with any ASVs with less than 
10 reads across all samples in the run. Individual weevil samples that totaled less 
than 1000 reads were also removed (N = 2 samples). The community characteristics 
across different tissue samples (ovary, gut, general abdominal) in female specimens 
(N = 29 samples) were first compared. The rarified sampling depth was set to 1160 
reads (corresponding to the sample with the lowest read number in the set), then 
QIIME2’s core Phylogenetics package was used to calculate bacterial community 
richness using Shannon’s Index and observed ASVs for samples, comparing val-
ues among tissues using nonparametric Kruskal-Wallis tests. Bacterial commu-
nity composition among tissue samples was then compared via PERMANOVA of 
both weighted and unweighted UniFrac values, with 999 permutations per test. 
The process was repeated to compare among life stages (larva, male, female), using 
only general abdominal samples (N = 39), as that was the most consistent sample 
type across all life stages. For this contrast, samples were rarified to 2100 reads per 
sample. Due to the dominance of a single ASV corresponding to Nardonella, par-
ticularly within female specimens, this ASV was filtered out, and the analyses were 
repeated, with rarification set to 940 reads per sample. Finally, to determine 
whether there were differences among morphs of the RPW, we further restricted 
the dataset to just male abdominal specimens (N = 28) and repeated the bacterial 
community analyses, again using a rarification of 940 reads per sample. 

3. Results  

The microbiomes of the RPW specimens collected from infested trunks of P. dac-
tylifera in the Kingdom of Bahrain differed among tissues in adult female 
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specimens due to the prevalence of a single ASV corresponding to the obligate 
weevil symbiont Nardonella (Identical to NCBI accession #LC014984.1; Figure 
2A, Table S2). Nardonella constituted 98% or more of all reads from ovaries and 
88% or more of reads from generalized abdominal contents of adult females. Sam-
ples that were restricted to the hindgut had a lower but variable Nardonella pres-
ence, allowing some resolution of the remaining bacterial community. Driven by 
Nardonella, the observed ASVs in rarified subsamples yielded a median of only 4 
ASVs for ovary samples, 7 for general abdominal samples, and 44 for gut samples 
(Kruskal Wallis H = 18.2, P = 0.0001). The Shannon index of diversity was also 
different (Kruskal Wallis H = 18.4, P < 0.0001), as were both weighted UniFrac 
(Pseudo F = 9.33 P = 0.002) and unweighted UniFrac (Pseudo F = 4.35 P < 0.001) 
measures for bacterial community similarity among tissues. In the gut samples 
where Nardonella presence was not so overwhelming, prevalent ASVs included a 
bacterial strain in the Entomoplasmatales, with 96% similar to strains of Spiro-
plasma (Figure 2B, Table S2). Other abundant ASVs included strains of Enterobac-
teriaceae (Erwinia), Lactobacillaceae (Lactobacillus, Lactococcus), Leuconostoca-
ceae (Leuconostoc), Enterococcaceae (Enterococcus), Comomonadaceae, Strepto-
coccaceae (Lactococcus), and other Entomoplasmataceae (Entomoplasma) (Figure 
2B, Table S2).  

Next, the microbial community was compared among life stages (larva, male, 
female), using only general abdominal samples (N = 39), as that was the only con-
sistent sample type across all life stages. In different samples rarified to 2100 reads, 
a median of only 12 ASVs was observed in adult female abdominal samples versus 
50 ASVs in male abdomens and 88 ASVs in larval abdomens (H = 17, P = 0.0002). 
This again corresponded to very different Shannon Indices (Kruskal Wallis H = 
14.8, = 0.0006), as well as weighted UniFrac (Pseudo F = 8.86 P = 0.001) and un-
weighted UniFrac (Pseudo F = 2.99 P = 0.001) measures. These differences among 
microbial communities for different life stages were driven by Nardonella, which 
had lower and variable prevalence in adult male samples, and much lower preva-
lence in larval samples than adult females (Figure 2A). When Nardonella was ex-
cluded from the microbial community analyses, the differences in bacterial com-
munities among life stages diminished, with differences only between larvae and 
adults. When rarified to 940 reads, 62 ASVs were observed in larval samples versus 
41 in adult females and 39 in adult males (H = 7.85, P = 0.019). The Shannon 
diversity index did not differ among life stages (H = 5.22, P = 0.07), but both 
weighted (Pseudo F = 1.87, P = 0.05) and unweighted UniFrac weighted (Pseudo 
F = 1.38, P = 0.042) measures differed significantly between larvae and adults, but 
not between males and females. The Spiroplasma-like ASV was observed in some 
individuals of each life stage and for some specimens composed the majority of 
reads (Figure 2B). 

When the microbial communities were compared among weevil morphs (re-
stricted only to male abdominal samples [N = 28] of three different morphs), no 
differences were observed in the median number of ASVs (H = 4.32, P = 0.12), or 
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community diversity as measured by the Shannon index (H = 1.55, P = 0.46) the 
weighted unifrac (Pseudo F = 0.77, P = 0.62) or unweighted unifrac (Pseudo F = 
1.22, P = 0.13; Figure 2B). 

 

 
Figure 2. Proportional microbiome composition of R. ferrugineus, including the obligate symbiont Nardonella (A) or ex-
cluding Nardonella (B). Samples originated from weevil ovaries (Ov), testes (t), gut (G), or generalized abdomen (Abd), 
which included reproductive and digestive systems. All bacterial sequence variants that exceeded 0.1% of total non-Nar-
donella reads or exceeded 5% of reads from any individual sample are depicted as different shades as indicated. Correspond-
ing sequences and read counts are available in Table S2. 

4. Discussion 

The comparison among different tissue samples in female RPWs showed that one 
ASV, corresponding to the obligate weevil endosymbiont Nardonella, was higher 
in ovaries than in gut and generalized abdominal samples. Nardonella is found in 
most, but not all clades of weevils, and has previously been reported from RPW 
[55]. This maternally inherited Gammaproteobacteria has an exceptionally long 
evolutionary history with weevils [55] and is responsible for the hardness of the 
cuticle due to its extreme metabolic capacity for tyrosine synthesis [31] [44]. Feed-
ing studies have shown that other weevils, including RPW, that were fed antibi-
otic–supplemented diet as larvae, frequently suffered morphological abnormalities 
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as Nardonella-suppressed adults [56]. In larvae, Nardonella is housed in a special-
ized bacteriome at the juncture of the foregut and midgut but must also be provi-
sioned to developing eggs for maternal transmission, thus explaining the very 
strong Nardonella signal from the ovaries, and the somewhat less strong signal 
from the generalized abdominal samples, which included reproductive tissues 
[55]. This strong Nardonella signal from the female reproductive tissues was 
largely responsible for differences in the microbial community among females, 
males, and larvae. Once Nardonella was excluded from the analyses, it became 
clear that the remaining differences among life stages occurred between larvae and 
adults: larvae had greater microbial species richness than adults, and community 
composition also shifted, tending to include greater representation by Alphapro-
teobacteria such as Ochrobacterium, Paracoccus, and Gluconbacter, and less rep-
resentation by Mollicutes and Bacilli, such as Leuconostoc and Lactococcus (Fig-
ure 2B).  

After Nardonella, the next most prevalent ASV was a Spiroplasma-like member 
of the Entomoplasmatales. Spiroplasmas are wall-less bacteria that are frequent 
associates of arthropods. They can be commensal, pathogenic, or mutualistic and 
are sometimes transmitted transovarially from mother to offspring [57]. Other 
studies have found strains of Spiroplasma to be present in some weevil species as 
endosymbiont lineages [58] [59]. In RPW, the Spiroplasma-like ASV was the pre-
dominant signal from several adult male and female specimens (Figure 2B). Still, 
it was not detected in ovary samples, suggesting it is not maternally transmitted. 
However, relatively few ovaries-only samples were examined, and the extraordi-
narily strong signal from Nardonella in the ovaries could have swamped out signal 
from any other bacteria; thus, the presence of Spiroplasma in reproductive tissue 
cannot be completely excluded. Spiroplasmas often manipulate the reproduction 
of host arthropods [57] but can also be pathogenic [60] or mutualistic for insect 
hosts [61] [62]. Spiroplasma and other endosymbionts can confer condition-de-
pendent fitness advantages to several insect hosts [61] [63] [64]. Whether this mi-
crobe is pathogenic or mutualistic in nature, it is worth additional investigation 
for potential utility for control of the RPW [65] [66]. 

The effect of a diverse array of endosymbiotic bacteria is a matter of concern in 
research interest and may have applied relevance [56] [67]. The abundant gut bac-
teria in RPW belong primarily to families in Enterobacteriaceae, Lactobacillaceae, 
and Entomoplasmataceae, which have previously been found to be members of 
the highly stable microbial community across different life stages in the guts of 
RPW [16] [47]. This complex gut microbiota of Proteobacteria, Bacteroidetes, and 
Firmicutes helps to degrade plant polysaccharides, ferment palm tissues, and 
modulate insect nutrition and metabolism [16] [47]. 

The microbiota in insect guts potentially provides many beneficial services to 
their hosts [68] [69]. The presence of Enterobacter and other Enterobacteriaceae, 
as in other insects, play a beneficial role in nutrition by degradation of many plant 
polymers, soluble plant polysaccharides, and fermentation of sap sugar [47] [70]. 
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Some members of Enterobacteriaceae were also identified as intracellular symbi-
onts of grain weevils, Sitophilus spp. (Coleoptera: Curculionidae) [71], and some 
of the isolates fix nitrogen in natural populations of the fruit fly, Ceratitis capitate 
(Diptera: Tephritidae) [72]. Entomoplasma, Lactobacillus, and Lactococcus were 
most frequently present in RPW gut and helped in cellulose degradation and glu-
cose fermentation [16]. Acidification caused by Lactococcus, Lactobacillus, and 
Leuconostoc promotes fermentation and confers advantages to insect host nutri-
tion [14] [15] [42]. Most of these bacteria were reported in the gut of RPW and 
other insects, which help in cellulose degradation, mixed acid fermentation, and 
nutrient assimilation in insect metabolism [14]-[16] [42] [73].  

In conclusion, culture-independent studies by PCR amplification of 16S rRNA 
have allowed microbial identification among different life stages and tissue samples 
of three different morphs of RPW, which were collected from the Kingdom of Bah-
rain. One ASV, corresponding to Nardonella, was particularly prevalent in adult 
female samples that included reproductive tissue. Males and larvae had much less 
Nardonella, which is not surprising for a bacterial symbiont that is maternally in-
herited. After Nardonella was excluded, the distribution of the other major bacterial 
taxa showed that the bacterial community in larvae was different than in adults but 
did not differ significantly among morphs. Overall bacterial communities resem-
bled those characterized in previous studies of RPW, but the present study identified 
a Spiroplasma-like ASV that was dominant in several specimens and should be fur-
ther investigated for phenotypic effects on the weevil host. 
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Appendix 
Table S1. Specimen metadata. 

 Location 
Collection 

date 
Morph 

RPW 
sex 

Host Collector Samples 

RPW 1 Hoarat A’ali 24-IV-2017 I M Phoenix dactylifera Khalid Alhudaib Abdomen 

RPW 2 Hoarat A’ali 24-IV-2017 II M P. dactylifera Khalid Alhudaib 
Gut,  

Testes 
RPW 3 Hoarat A’ali 24-IV-2017 II M P. dactylifera Khalid Alhudaib Gut 
RPW 5 Hoarat A’ali 24-IV-2017 II F P. dactylifera Khalid Alhudaib Gut 
RPW 6 Hoarat A’ali 24-IV-2017 II F P. dactylifera Khalid Alhudaib Gut 
RPW 7 Hoarat A’ali 24-IV-2017 II F P. dactylifera Khalid Alhudaib Gut 
RPW 8 Hoarat A’ali 24-IV-2017 III M P. dactylifera Khalid Alhudaib Abdomen 
RPW 9 Hoarat A’ali 24-IV-2017 III M P. dactylifera Khalid Alhudaib Abdomen 
RPW 10 Hoarat A’ali 14-II-2018 I M Whashingtonia spp. A.M.A. Mohamed Abdomen 
RPW 12 Hoarat A’ali 14-II-2018 I F Whashingtonia spp. A.M.A. Mohamed Gut 
RPW 14 Hoarat A’ali 14-II-2018 I F Whashingtonia spp. A.M.A. Mohamed Abdomen 
RPW 20 Hoarat A’ali 14-II-2018 III F Whashingtonia spp. A.M.A. Mohamed Abdomen 
RPW 21 Maqabah 18-IV-2017 I M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 22 Maqabah 18-IV-2017 IIa M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 23 Maqabah 18-IV-2017 IIa M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 24 Maqabah 18-IV-2017 IIa F P. dactylifera A.M.A. Mohamed Gut 
RPW 26 Maqabah 18-IV-2017 IIa F P. dactylifera A.M.A. Mohamed Gut 
RPW 28 Maqabah 18-IV-2017 II M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 29 Maqabah 18-IV-2017 II M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 30 Maqabah 18-IV-2017 II M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 31 Maqabah 18-IV-2017 II F P. dactylifera A.M.A. Mohamed Gut 
RPW 33 Maqabah 18-IV-2017 II F P. dactylifera A.M.A. Mohamed Gut 
RPW 36 Maqabah 18-IV-2017 III M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 38 Maqabah 18-IV-2017 III M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 39 Maqabah 18-IV-2017 III F P. dactylifera A.M.A. Mohamed Gut 
RPW 40 Maqabah 18-IV-2017 III F P. dactylifera A.M.A. Mohamed Gut 
RPW 41 Maqabah 18-IV-2017 III F P. dactylifera A.M.A. Mohamed Gut 
RPW 42 Maqabah 18-IV-2017 III F P. dactylifera A.M.A. Mohamed Gut 
RPW 43 Maqabah 18-IV-2017 III F P. dactylifera A.M.A. Mohamed Gut 
RPW 44 Maqabah 18-IV-2017 II M P. dactylifera A.M.A. Mohamed Abdomen 
RPW 45 Zallaq 23-XII-2017 I M P. dactylifera Sayed Hameed Abdomen 
RPW 46 Zallaq 23-XII-2017 I M P. dactylifera Sayed Hameed Abdomen 
RPW 47 Zallaq 23-XII-2017 I M P. dactylifera Sayed Hameed Abdomen 
RPW 48 Zallaq 23-XII-2017 I M P. dactylifera Sayed Hameed Abdomen 
RPW 49 Zallaq 23-XII-2017 I M P. dactylifera Sayed Hameed Abdomen 
RPW 50 Zallaq 23-XII-2017 I M P. dactylifera Sayed Hameed Abdomen 

RPW 51 Zallaq 23-XII-2017 I F P. dactylifera Sayed Hameed 
Gut,  

Ovaries 

RPW 52 Zallaq 23-XII-2017 I F P. dactylifera Sayed Hameed 
Gut,  

Ovaries 
RPW 53 Zallaq 23-XII-2017 I F P. dactylifera Sayed Hameed Abdomen 
RPW 54 Zallaq 23-XII-2017 I F P. dactylifera Sayed Hameed Abdomen 
RPW 55 Zallaq 23-XII-2017 II M P. dactylifera Sayed Hameed Abdomen 
RPW 56 Zallaq 23-XII-2017 II M P. dactylifera Sayed Hameed Abdomen 
RPW 57 Zallaq 23-XII-2017 II M P. dactylifera Sayed Hameed Abdomen 
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Continued 

RPW 58 Zallaq 23-XII-2017 II M P. dactylifera Sayed Hameed Abdomen 
RPW 59 Zallaq 23-XII-2017 II M P. dactylifera Sayed Hameed Abdomen 

RPW 60 Zallaq 23-XII-2017 II F P. dactylifera Sayed Hameed 
Gut,  

Ovaries 

RPW 61 Zallaq 23-XII-2017 II F P. dactylifera Sayed Hameed 
Gut,  

Ovaries 

RPW 62 Zallaq 23-XII-2017 II F P. dactylifera Sayed Hameed 
Gut,  

Ovaries 

RPW 63 Zallaq 23-XII-2017 II F P. dactylifera Sayed Hameed 
Gut,  

Ovaries 
RPW 64 Zallaq 23-XII-2017 III M P. dactylifera Sayed Hameed Abdomen 
RPW 66 Zallaq 23-XII-2017 III M P. dactylifera Sayed Hameed Abdomen 
RPW 67 Zallaq 23-XII-2017 III M P. dactylifera Sayed Hameed Abdomen 
RPW 68 Zallaq 23-XII-2017 III M P. dactylifera Sayed Hameed Abdomen 
RPWL4 Hoarat A’ali 28-XII-2017 N/A Larva P. dactylifera A.M.A. Mohamed Abdomen 
RPWL6 Hoarat A’ali 28-XII-2017 N/A Larva P. dactylifera A.M.A. Mohamed Abdomen 
RPWL9 Hoarat A’ali 28-XII-2017 N/A Larva P. dactylifera A.M.A. Mohamed Abdomen 

RPWL16 Hoarat A’ali 28-XII-2017 N/A Larva P. dactylifera A.M.A. Mohamed Abdomen 
RPWL17 Hoarat A’ali 28-XII-2017 N/A Larva P. dactylifera A.M.A. Mohamed Abdomen 
RPWL19 Hoarat A’ali 28-XII-2017 N/A Larva P. dactylifera A.M.A. Mohamed Abdomen 
RPWL24 Hoarat A’ali 28-XII-2017 N/A Larva P. dactylifera A.M.A. Mohamed Abdomen 

 
Table S2. ASV taxonomic identity, sequences, and frequency distribution across R. ferrugineus samples. 

https://docs.google.com/spreadsheets/d/19gx16ZOKixWNjyJU95PBJBlMkimNmAuppdzqTfeib_8/edit?usp=sharing  
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