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Abstract 
In this paper, the dynamical behaviors of a modified Leslie-Gower predator-
prey model incorporating fear effect and prey refuge are investigated. We 
delve into the construction of the model and its biological significance, with 
preliminary results encompassing positivity, boundedness, and persistence. 
The stability of the system’s boundary and positive equilibrium points is 
proven by calculating the real part of the eigenvalues of the Jacobian matrix. 
At the positive equilibrium point, we demonstrate that the system’s unique 
positive equilibrium is globally asymptotically stable by using the Dulac crite-
rion. Furthermore, at this equilibrium point, we employ the Implicit Function 
Theorem to discuss how fear effects and prey refuges influence the population 
densities of both prey and predators. Finally, numerical simulations are con-
ducted to validate the above-mentioned conclusions and explored the impact 
of Predator-taxis sensitivity α  on dynamics of the system. 
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1. Introduction 

In ecology, the study on the dynamic behavior of predator-prey models has always 
been a hot topic. The primary means to advance the theoretical work of predator-
prey models is to construct mathematical models that are more practically mean-
ingful, which represents a significant application of mathematics in ecology. In 
this field, Lotka [1] and Volterra [2] proposed the renowned Lotka-Volterra 
model. This model illustrates that under conditions of abundant food, the 
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population densities of predators and prey will grow exponentially. Considering 
the limited environmental resources, the number of species cannot grow indefi-
nitely. Leslie [3] and Gower [4] introduced the classic Leslie-Gower model, which 
emphasizes that both predators and prey have upper limits to their growth, and 
the carrying capacity of predators is proportional to the number of prey. However, 
in nature, many predators do not solely rely on a single food source; in the absence 
of their preferred food, predators will hunt other food sources for survival. Thus, 
the carrying capacity of predators cannot fully reflect this reality. In particular, 
Aziz-Alaoui and Okiye [5] proposed a improved Leslie-Gower predator-prey 
model. The modified model better reflects biological facts, as predators can sur-
vive due to the presence of substitute prey even if their primary prey becomes 
extinct. Recently, numerous scholars had investigated predator-prey models with 
Leslie-Gower functional response functions [6]-[8]. 

In the intricate dynamics of predator-prey interactions, two crucial factors sig-
nificantly influence the population size of prey species. Firstly, predators directly 
impact prey populations through predation. Secondly, the mere presence and in-
direct behaviors of predators also exert an influence on prey populations. In 1998, 
theoretical biologist Lima [9] argued that the presence of predators elicits fear in 
prey, leading to alterations in their behavioral and physiological traits, which sub-
sequently affects prey population sizes. This effect, under certain conditions, can 
far outweigh the direct consequences of predation. When confronted with the risk 
of predators, prey exhibit a series of behavioral changes, such as modifications in 
habitat selection and reductions in foraging and breeding activities [10]-[12]. No-
tably, Zanette et al. [12] demonstrated the profound impact of predator-induced 
fear on prey populations during the breeding season of song sparrows. By manip-
ulating predator sounds without direct predation, they observed a 40% decline in 
the fecundity of prey populations, thereby validating the significant influence of 
predator fear on prey populations. However, the implications of fear extend be-
yond these findings; at heightened levels, fear can significantly compromise the 
physical condition of juvenile prey and have detrimental effects on the survival of 
adult prey [13] [14]. 

To investigate the influence of fear effects, Wang et al. [15] initially proposed a 
predator-prey model incorporating fear effects, demonstrating that a high level of 
fear can stabilize the predator-prey system by excluding the existence of periodic 
solutions, whereas a relatively low level of fear can induce multiple limit cycles, 
leading to a bistable phenomenon. Furthermore, various models incorporating 
fear effects had been extensively studied [16]-[20]. In [16], Das et al. analyzed a 
predator-prey model with a Holling II functional response, which simultaneously 
considers the influence of fear effects on both the birth rate and mortality rate of 
the prey population. Waqas et al. [17] introduced a fear factor into a discrete-time 
predator-prey model to investigate its impact on the complexity and dynamic be-
havior of the system. This study primarily focused on assessing the local stability 
of the trivial and boundary equilibrium points, and exploring the criteria for 
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Neimark-Sacker and period-doubling bifurcations. Sarkar et al. [18] improved the 
expression of fear functions by incorporating a minimum fear cost. Based on [18], 
Dong et al. [19] proposed a fear function with saturated fear cost and studied a 
predator-prey model that incorporates both saturated fear cost and Predator-taxis 
sensitivity to prey attraction. Their model aimed to analyze how these factors 
jointly affect the dynamics and stability of the predator-prey interactions. 

In nature, not all prey are captured by predators, as prey seek refuges to evade 
predation [21] [22]. For prey, finding shelters constitutes a low-cost anti-preda-
tion behavior that directly reduces encounters with predators, thereby mitigating 
the risk of extinction and contributing to the stability of the system [23] [24]. Two 
common forms of refuge are proportional refuge and constant refuge. Research 
by J. Ghosh et al. [25] has demonstrated that a certain degree of refuge can facili-
tate the coexistence of all populations, while a refuge proportion exceeding a cer-
tain threshold may lead to the extinction of predators. Li et al. [26] have investi-
gated the dynamical behaviors of a discrete predator-prey system incorporating 
the fear effect and refuges. By employing the Center Manifold Theorem and bi-
furcation theory, they calculated the critical coefficients for Flip and Hopf bifur-
cations, as well as the properties of the bifurcating periodic solutions. To cope 
with the risk of predation, prey populations defend themselves against predators 
by seeking shelters. Nevertheless, prey’s energy for foraging and refuge-seeking is 
limited. Devoting more energy to finding shelters would inevitably lead to a re-
duction in reproduction due to such investment. Consequently, prey refuge en-
tails both costs and benefits. Here, the cost refers to the decrease in the prey pop-
ulation’s birth rate caused by seeking refuge, while the benefit stems from the re-
duced risk of being killed by predators. In most predator-prey models, the costs 
and benefits of refuges are treated as independent factors. However, given the 
finitude of time and energy, they might not be independent of each other [27]. 
Hence, we correlate these two factors by introducing a Predator-taxis sensitivity 
parameter α . As the Predator-taxis sensitivity increases, prey populations allo-
cate more energy to seeking shelters, resulting in a decreased predation success 
rate. Concurrently, with less time for foraging, the reproduction rate of the prey 
population also declines. 

Based on the aforementioned research backdrop, we incorporate the fear effect 
and proportional refuge into a modified Leslie-Gower predator-prey model, and 
intertwine these two independent factors through the Predator-taxis sensitivity 
parameter α . The subsequent sections of this paper are organized as follows: In 
Section 2, we meticulously construct the model and delve into its positivity, 
boundedness, and permanence. In Section 3, we present the existence and stability 
of various equilibrium points within the model. In Section 4, we investigate the 
influence of fear effect and prey refuge on population density. In Section 5, we 
leverage MATLAB software to conduct numerical simulations that validate our 
preceding analytical findings. These simulations provide a visual representation 
of the model’s dynamical behaviors, reinforcing the theoretical results. The 
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conclusion is given in Section 6. 

2. Formulation of Mathematical Model 

Leslie and Gower proposed the following Leslie-Gower [28] predator-prey model. 

 
( )2d ,

d
d 1 ,
d

x rx dx bx p x y
t
y ysy
t ax

 = − − −


  = −   

 (2.1) 

where ( )x t , ( )y t  represent the density of prey and predator at the time t , re-
spectively; The parameter r  represents the birth rate of the prey, d  denotes 
the death rate of the prey, b  is the intraspecific competition coefficient among 
prey individuals, and s  signifies the intrinsic growth rate of the predator popu-
lation. The predator preys upon the prey according to a functional response 
( )p x  and an environmental carrying capacity ax , where a  captures the effi-

ciency of converting prey food quality into predator births. All parameters 
, , , ,r d b s a  are assumed to be strictly positive constants. Additionally, we postu-

late that the intrinsic growth rate of the prey population is greater than zero, i.e., 
r d> , as this condition is necessary for the persistence of the prey population and 
to avoid its extinction. 

In the presence of predators, prey populations engage in anti-predator behav-
iors such as refuge-seeking to cope with the risk of predation. In this paper, we 
consider Holling I functional response with proportional refuges, given by 
( ) ( )1p x m xβ= − , where the parameter β  represents the capture rate of the 

predator, and ( )0,1m∈  indicating the refuge coefficient. The fear of predators 
can reduce the birth rate of prey populations and also affect their physical condi-
tions, yet it does not lead to the extinction of prey populations. Even if the fear 
level is sufficiently high, prey can survive under saturated fear costs [19]. Therefore,  

we incorporate the fear function ( ) 1,
1

f k y
ky
ηη −

= +
+

, where ( )0,1η∈  represents  

the saturated fear cost and k  denotes the fear level. We consider that the fear 
effect simultaneously impacts the birth rate and mortality rate of prey. In times of 
food scarcity, predators will turn to capturing other prey to survive. Thus, our 
model accounts for the predators having substitute prey. Consequently, we con-
sider the following model: 

 

( )

( )

2d 1 1 ,
d 1

d 1 ,
d 1

x rx dx m xy
t ky

y ysy
t a m x c

ηη β
  −

= + − − −  + 


  = −   − + 

 (2.2) 

where r  is the intrinsic growth rate of prey, d  represents death due to intra-
prey competion, and c  represents the number of other substitute prey. In the 
aforementioned system (2.2), the costs and benefits of the refuge are treated as 
mutually independent. However, as mentioned in the introduction, they may not 
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be independent of each other. This is because the prey’s energy allocated for seek-
ing refuge and reproduction is limited. If too much energy is invested in seeking 
refuge, reproduction may subsequently decrease. We introduce the Predator-taxis 
sensitivity α  to account for this relationship. Therefore, we modify the function  

( )p x  and ( ),f k y  in (2.2), as ( ) ( ) 1, , ,
1

f k y f k y
k y
ηα η
α

−
≡ = +

+
, and  

( ) ( ), 1
1

mp x p x xαα β
α

 ≡ = − + 
. Consequently, the form of the system consid-

ered in this paper is as following: 

 

( )

( )

2d 1 1 , ,
d 1 1

d 1 , .
d 1

1

x mrx dx xy F x y
t k y

y ysy G x y
mt a x c

η αη β
α α

α
α

  −  = + − − − =   + +  
      = − =   − +   +  

 (2.3) 

A description of the parameters is given in Table 1. 
 
Table 1. The model parameters and variables are described as follows. 

Parameter Description 

x  Density of prey population 

y  Density of predator population 

r  Growth rate of the prey population 

d  Intraspecific competition coefficient among prey population 

β  Rate of predation 

a  Food quality of prey for conversion into predator’s growth 

m  Refuge coefficient 

η  Saturated fear cost 

k  Level of fear 

c  Substitute prey of predator 

s  Growth rate of the predator population 

α  Predator-taxis sensitivity 

 

Here, the function ( ) 1, ,
1

f k y
k y
ηα η
α

−
= +

+
 and ( ), 1

1
mp x xαα β
α

 = − + 
 

have the following properties. 
1) ( )0, , 1f yα = , ( ),0, 1f k y = , ( ), ,0 1f k α = : implies that when prey are in-

sensitive to predators or predators are absent, the prey population will not exhibit 
any anti-predator behavior, and the fear function will have no impact on the birth 
rate of the prey. 

2) ( )lim , ,k f k yα η→∞ = , ( )lim , ,f k yα α η→∞ = , ( )lim , ,y f k yα η→∞ = : 
means that the fear effect will not lead to the extinction of the prey population. 
Even in high-fear environments and with abundant predator numbers, prey can 
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survive through various anti-predator behaviors, such as seeking refuge. At this 
point, the growth rate of the prey population tends to be rη . 

3) 
( ), ,

0
f k y

k
α∂

<
∂

, 
( ), ,

0
f k yα

α
∂

<
∂

, ( ), ,
0

f k y
y
α∂

<
∂

: means that the growth  

rate of the prey population decreases with increasing levels of fear, Predator-taxis 
sensitivity, and the number of predators. 

4) ( )0,p x xβ= : implies that when prey are insensitive to predators, predators 
consume prey at their maximum rate, which is denoted by the efficiency parame-
ter xβ . 

5) ( ) ( )lim , 1p x m xα α β→∞ = − : implies that when prey become highly sensi-
tive to predators, they maximize their efforts to seek refuge. Under such circum-
stances, the availability of refuge in the environment reaches its saturation point. 

6) 
( ),

0
p xα
α

∂
<

∂
: indicates that the predator’s capture rate decreases as the  

Predator-taxis sensitivity increases. 

Well-Posedness 

In this subsection, we delve deeper into the positivity, boundedness, and perma-
nence of the system (2.3). This analysis serves as the cornerstone for understand-
ing the fundamental dynamical properties of the system. 

Theorem 2.1. Every solution of system (2.3) with initial condition ( )0 0x > , 

( )0 0y >  is positive and ultimately bounded, and the bounded positive invariant set 

is ( ) ( )( ) 2, | 0 ,0rx t y t x y K
d+

 Ω = ∈ < < < < 
 

 , where 1
1

ra mK c
d

α
α

 = − + + 
. 

Proof. Since the right-hand side of system (2.3), ( ),F x y  and ( ),G x y  are 

completely continuous and locally Lipschitzian on 2
+ , the solution ( ) ( )( ),x t y t  

of system (2.3) with initial conition ( ) ( )( ) 20 , 0x y +∈  exists and is unique on 
2
+ . 

From system (2.3), we can easily obtain that:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

0

0

10 exp 1 d ,
1 1

0 exp 1 d .
1

1

t

t

mx t x r dx u y u u
k y u

y u
y t y s u

ma x u c

η αη β
α α

α
α

   −  = + − − −     + +      
   
      = − 

    − +   +     

∫

∫

 

This shows that all solutions of system (2.3) with positive initial values remain 
positive. 

Next, we will prove the boundedness of the system (2.3). 
From the first equation of (2.3) we can get  

2d .
d
x rx dx
t
≤ −  

https://doi.org/10.4236/ojmsi.2024.124011


K. Yuan 
 

 

DOI: 10.4236/ojmsi.2024.124011 190 Open Journal of Modelling and Simulation 
 

Applying Lemma 1 in [29] to the differential inequality, then 

( )limsup .
t

rx t
d→∞

≤  

Therefore, for any 0> , there exists 0T >  such that ( ) rx t
d

≤ +   for 

t T> . When t T> , From the second equation of system (2.3), for large 0t > , 
we have 

d 1 , .
d 1

1

y ysy t T
m rt a c

d
α
α

 
 
 ≤ − >

   − + +   +   


 

Then 

( )limsup 1 .
1t

ra my t c
d

α
α→∞

 ≤ − + + 
 

Thus, system (2.3) is bounded and the bounded set is  

( ) ( )( ) 2, | 0 ,0rx t y t x y K
d+

 Ω = ∈ < < < < 
 

 . 

The investigation of the system’s permanence holds significant importance, as 
it signifies the ability of both species to sustainably coexist and avoid extinction in 
their mutual interactions over time. 

System (2.3) is uniformly permanent is equivalent to there exists 0> , for 
every solution of system is non-negative such that ( )lim inft x t→∞ ≥  ,  

( )lim inft y t→∞ ≥  . 

Theorem 2.2. If (H1) ( ) ( )1 1 0r k K K k Kη α β α+ − + >  holds, then system 
(2.3) is permanent. 

Proof. From Theorem 2.1 we can get for sufficiently large 0t >  

2

2

2

d 1 1
d 1 1

1
1

1 ,
1

x mrx dx xy
t k y

rx dx xK
k K

r K x dx
k K

η αη β
α α

ηη β
α
ηη β
α

 −  = + − − −   + +  
− ≥ + − − + 

 −  + − −  +  
=

 

and 

d 1 1 .
d 1

1

y y ysy sy
mt ca x cα
α

 
    = − ≥ −     − +  +  

 

Applying Lemma 1 in [29] to the above differential inequality, combine with 
(H1) then 

( ) ( ) ( )
( ) ( )1 1

liminf , liminf .
1t t

r k K K k K
x t y t c

d k K
η α β α

α→∞ →∞

+ − +
≥ ≥

+
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Choose 
( ) ( )

( )
1 1

min ,
1

r k K K k K
c

d k K
η α β α

α
 + − + =  +  

 , combine with Theorem 

2.1, we have completed the proof of the permanence of system (2.3). 

3. Equilibria and Their Stability 

In this Section, we investigate the existence and stability of various equilibrium 
points within the system. This examination is pivotal in predicting the long-term 
behavior of the predator-prey interaction under different ecological scenarios. 

3.1. Existence Analysis of Equilibria 

It is easy to get that system (2.3) has the following three equilibrium points: 
i) The trivial equilibrium ( )0 0,0E . 

ii) The predator-free equilibrium 1 ,0 ,rE
d

 
 
 

 the prey-free equilibrium 

( )2 0,E c . 

Now, we analyze the existence of the positive equilibrium ( )* * *,E x y , where 

the expressions of *x  and *y  can be obtained by the following equation. 

 

1 1 0,
1 1

1 0.
1

1

mr dx y
k y

ys
ma x c

η αη β
α α

α
α

  −  + − − − =    + +  
      − =   − +   +  

 (3.1) 

From the second equation of Equation (3.1), it is easy to know  

* *1 .
1

my a x cα
α

 = − + + 
 

Substituting the expression of *y  into the first equation of Equation (3.1) 
yields the following equation. 

 2 0Ax Bx C+ + =  (3.2) 

where  

( )
( ) ( )
( ) ( )

2

2

0,

1 2 ,

1 1 .

A ka d a

B d kc a ka r c

C c kc r kc

αθ βθ

α βθ αθ η βθ

βθ α αη

= + >

 = + + − − 
= + − +

 

For the convenience of calculation, denote 1
1

mαθ
α

= −
+

, according to the ex-

pression of θ , it can be inferred that ( )0,1θ ∈ . 

Next, we can apply the Descartes’ rule of signs to determine the positive solu-
tion of Equation (3.2). If 0C > , we can get  

 
( )1

.
1

c kc
r

kc
βθ α

αη
+

<
+

 (3.3) 
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Note that ( )0,1η∈ , we can multiply both sides of Equation (3.3) by η  and 
then reduce 2cβθ , which results in 

( )

( ) 2

1
2 2

1
2

2 0
1

0.

c kc
r c c

kc
c k c

r c
kc

B

βθη α
η βθ βθ

αη
βθ η αβθη

η βθ
αη

+
− < −

+

− −
⇔ − < <

+
⇔ >

 

In this case, Equation (3.2) has no positive roots. To have a root for Equation 
(3.2), assume that 0C < , we can get the Equation (3.2) has a unique non-negative 
root  

2
* 4 .

2
B B ACx

A
− + −

=  

Theorem 3.1. If 0C <  holds, the system (2.3) has a unique coexistence equi-
librium ( )* * *,E x y . 

3.2. Stability Analysis 

The stability of the equilibrium point is determined by the real parts of eigenvalues 
of the Jacobian matrix. The Jacobian matrix of system (2.3) is given by  

x y
E

x y

F F
J

G G
 

=  
 

, where 

1 2 1 ,
1 1x

mF r dx y
k y
η αη β
α α

 −  = + − − −   + +  
 

( )
( )2

1
1 ,

11
y

kr x mF x
k y

α η αβ
αα

− −  = − − + +
 

2

2

1
1 ,

1
1

x

masy
G

ma x c

α
α

α
α

 − + =
  − +  +  

 

2 .
1

1

y
syG s
ma x cα
α

= −
 − + + 

 

Theorem 3.2. The trivial equilibrium ( )0 0,0E  is an unstable node,  

1 ,0rE
d

 
 
 

 is a saddle point, ( )2 0,E c  is also a saddle point if  

1 1 0,
1 1

mr c
kc
η αη β
α α

−   + − − >   + +   
 otherwise, 2E  is a stable node. 

Proof. The Jacobian matrix of system (2.3) at points ( )0 0,0E , 1 ,0rE
d

 
 
 

, 

( )2 0,E c  are respectively  
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( ) ( )
( )

10

1 10
, ,1

0
0

E

r mr krr
J E J d

s
s

αα η β
α

 −   − − + −     = = +         

 

( )2

1 1 0
1 1

.
1

1

E

mr c
kc

J
mas s

η αη β
α α

α
α

 −    + − −    + +    =
  − −  +  

 

It is obvious that ( )0 0,0E  is an unstable node, 1 ,0rE
d

 
 
 

 is a saddle point. 

The eigenvalues of ( )2 0,E c  are 1 1
1 1

mr c
kc
η αη β
α α

−   + − −   + +   
 and s− , 

when 1 1 0
1 1

mr c
kc
η αη β
α α

−   + − − >   + +   
, ( )2 0,E c  is a saddle point, otherwise, 

( )2 0,E c  is stable node. 

Similarly, the Jacobian matrix at the coexistence equilibrium point ( )* * *,E x y  
as follow: 

( )

( )
( )

*
* *

2*
*

1
1

11 .

1
1

kr x mdx x
k yJ E

mas s

α η αβ
αα

α
α

 − −  − − −  + + =  
  − −  +  

 

The characteristic equation is  

( ) ( )* *
2 0,

E E
Tr J D Jλ λ− + =  

where 

( )*
* 0,

E
Tr J dx s= − − <  

( ) ( )
( )

*
* *

2*

1
1 1 0.

1 11E

krm mD J dsx as x
k y

α ηα αβ
α αα

 −    = + − + − >    + +    + 

 

Hence, the coexistence equilibrium *E  is local asymptotic stable. 
Next, to demonstrate the global asymptotic stability of *E ,it is important to 

prove the absence of periodic orbits in the region Ω for system (2.3) by Bendison-
Dulac criteria [30]. 

We assume Dulac function ( ) 1, , 0, 0B x y x y
xy

= > > , then 

( ) ( )( ) ( ) ( )( )1 1, , , ,
Δ

1 .
1

1

B x y F x y B x y G x y
x y

d s
my x a x cα
α

∂ ∂
= +

∂ ∂

= − −
 − + + 

 

It is obvious that Δ 0<  holds within Ω, under the condition of 0C < , we can 
obtain the following inequality 

https://doi.org/10.4236/ojmsi.2024.124011


K. Yuan 
 

 

DOI: 10.4236/ojmsi.2024.124011 194 Open Journal of Modelling and Simulation 
 

( ) ( )

( )
( ) ( )

0 1 1

1
1 1
1 1 1

1 1 0.
1 1

C c kc r kc

r kc
r kc

c r r
kc kc kc

mr c
kc

βθ α αη

η α
αη η ηβθ η η
α α α

η αη β
α α

< ⇔ + < +

 
+ + −  ⇔ < = < < + + + + 

−   ⇔ + − − >   + +   

 

In other words, when 0C < , the ( )2 0,E c  is a saddle point, and the system 
does not admit any closed orbits. Consequently, the unique coexistence equilib-
rium point ( )* * *,E x y  is globally asymptotically stable. 

In conclusion, we have the following result. 
Theorem 3.3. If 0C <  holds, the system (2.3) has a unique coexistence equi-

librium *E , and global asymptotic stable. 
The global stability of the unique coexistence equilibrium point ( )* * *,E x y  in 

system (2.3) will be intuitively presented in Section 5 through numerical simulation. 

4. Population Density Analysis 

In this section, we study the effects of fear level k  and refuge coefficient m  on 
the coexistence equilibrium ( )* * *,E x y  where the expressions of *x  and *y  is 
satisfy the following equation: 

* *2 * *
*

*
*

*

1 1 0,
11

1 0.
1

1

mrx dx x y
k y

ysy
ma x c

η αη β
αα

α
α

  −  + − − − =    ++   
      − =   − +   +   

 

Denote * *2 * *
*

1 1
1 1

mP rx dx x y
k y
η αη β
α α

 −  = + − − −  + +  
,  

*
*

*
1

1
1

yQ sy
ma x cα
α

 
 
 = −

  − +  +  

, the determinant of Jacobian matrix at ( )* * *,E x y  

of system (2.3) is given by 

( )
( )

( )
( )

( )
( )

* *

* *
* *

*
* *

2*

* *
2*

,
,

1
1

11

1
1

1
1 1 0.

1 11

x y

x y

P PD P Q
J

Q QD x y

kr x mdx x
k y

mas s

krm mdsx as x
k y

α η αβ
αα

α
α

α ηα αβ
α αα

= =

 − −  − − −  + + =  
  − −  +  

 −    + − + − >    + +   + 

=
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The proof here is based on the following implicit function existence theorem. 
Theorem 4.1 (implicit function existence theorem [31]) 
Suppose the functions ( ), , , , , , , 0F x y z u v w = 

 and  
( ), , , , , , , 0G x y z u v w = 

 (where , , ,x y z  are independent variables, and 
, , ,u v w  are dependent variables or implicit functions) are continuous in some 

neighborhood of the point ( )0 0 0 0 0 0, , , , , , ,x y z u v w 
, and their partial deriva-

tives with respect to , , ,u v w  exist. Furthermore, assume that at this point, the 
determinant of the Jacobian matrix. 

F F F
u v wJ
G G G
u v w

∂ ∂ ∂ 
 ∂ ∂ ∂=  
∂ ∂ ∂  
∂ ∂ ∂ 





 

is non-zero, i.e., ( )det 0J ≠ . 
Then, in some neighborhood of the point ( )0 0 0, , ,x y z

, the equations 0F =  
and 0G =  uniquely determine a set of implicit functions ( ), , ,u u x y z= 

, 
( ), , ,v v x y z= 

,  , ( ), , ,w w x y z= 
, such that these implicit functions are 

continuous at the point ( )0 0 0, , ,x y z
 and their partial derivatives with respect 

to , , ,x y z  exist. 
Furthermore, these partial derivatives can be calculated using the following for-

mulas: 

( ) ( ) ( )
1 2, , , ,

det det det
nJu J u J w

x J y J z J
∂ ∂ ∂

= − = − = −
∂ ∂ ∂

  

where 1 2, , , nJ J J  are the determinants obtained by replacing the correspond-

ing columns of the Jacobian matrix J  with , , ,F F F
x y z

 ∂ ∂ ∂
 ∂ ∂ ∂ 

  and  

, , ,G G G
x y z

 ∂ ∂ ∂
 ∂ ∂ ∂ 

 , respectively. 

By applying the theorem of implicit function, we can derive the derivatives of 
*x  and *y  with fear level k : 

( )
( )
( )

( )

*

*

*

*

* *

2*

,d 1 1
d ,

11 0,
1

k y

k y

P PD P Qx
Q Qk J JD k y

sr x y
J k y

α η

α

= − = −

−
− <

+
=

 

( )
( )
( )

( )

*

*

*

*

* *

2*

,d 1 1
d ,

11 1 0.
11

kx

kx

P PD P Qy
Q Qk J JD x k

r x y mas
J k y

α η α
αα

= − = −

−  − ⋅ − < + 
=

+

 

Thus, it follows that, the population densities of both prey and predators are 
inversely related to the parameter k , suggesting that the fear effect negatively im-
pacts their respective population sizes. 
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Next, we delve into the impact of prey refuges on the population densities of 
both prey and predators. Similarly, it can be concluded that: 

( )
( )

( )
( )

*

*

*

*

** * *
*

2*

,d 1 1
d ,

11 1 0,
1 1 11

m y

m y

P PD P Qx
Q Qm J JD m y

kr xS x y as x m x
J k y

α ηαβ α αβ
α α αα

= − = −

  −    = + + − >   + + +  +  

 

( )
( )

*

*

*

*

*
* *

,d 1 1
d ,

1 1 .
1 1

mx

mx

P PD P Qy
Q Qm J JD x m

as x mdx y
J

α αβ
α α

= − = −

   = − − −   + +   

 

From the above that, 
*

0dx
dm

>  can be inferred that the prey population density  

is an increasing function of m , indicating that the prey refuge contributes posi-
tively to the growth of prey population density. 

When * *1
1

mdx yαβ
α

 < − + 
, 

*

0dy
dm

> , suggesting that the prey refuge is ben-

eficial for increasing the predator population density under these conditions. 

Conversely, when * *1
1

mdx yαβ
α

 > − + 
, 

*

0dy
dm

< , which means that the prey 

refuge is not conducive to the growth predator population density in this scenario. 

Specially, when * *1
1

mdx yαβ
α

 = − + 
, the predator population density attains its 

maximum value. 

5. Numerical Simulations 

In this section, we will validate our previous analysis by numerical simulations. 
All parameter values in this section are based on their biological significance in 
reality. 

Example 5.1. To visualize the influence of fear level k  on the population den-
sitives of both prey and predators, we denote the following parametric values: 

 0.5, 0.2, 0.25, 0.1, 0.5, 0.3, 0.2, 0.5, 0.1,r d m s a cη α β= = = = = = = = =  (5.1) 

and vary the parameter k . 
Under the condition of parameter (5.1), the inequality 0C <  always holds at 

all times. Indicating that the system maintains a unique coexistence equilibrium 
consistenly and global asymptotic stable. The Figure 1(a), depicts a unique inte-
rior equilibrium point ( )* 1.2309,0.6785E  for the model (2.3) with 1k = ; Fig-
ure 1(b) depicts a unique interior equilibrium point ( )* 1.0316,0.58485E  for the 
model (2.3) with 3k = ; Figure 1(c) depicts a unique interior equilibrium point 

( )* 0.7501,0.4525E  for the model (2.3) with 10k = . Figure 1(d) depicts a 
unique interior equilibrium point ( )* 0.3333,0.2566E  for the model (2.3) with 
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100k = . As can be seen from Figure 1, as the fear level K increases, the population 
densities of both prey and predator decrease. This indicates that the fear level is 
detrimental to the increase in population densities of both prey and predator. Es-
pecially, in Figure 1(d), even with a high fear level k , the prey population still 
exists. In other words, having a fear effect with saturated fear cost in the system 
(2.3), redator and prey populations can coexist with minimal fear cost. 

 

 
Figure 1. Population densities of prey and predator under varying levels of fear k . The values of the other 
parameters are provided in (5.1). 

 
Example 5.2. Considering the following parameters, let’s explore the impact of 

prey refuges on population density in ecology.  

 0.5, 0.2, 1, 0.1, 0.5, 2, 0.2, 0.5, 0.1,r d k s a cη α β= = = = = = = = =  (5.2) 

and vary the parameter m . 
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Figure 2. Population densities of prey and predator under varying prey refuge m. The values of the other parameters 
are provided in (5.2). 

 
As can be seen from Figure 2(a), here exists a positive correlation between prey 

population density and prey refuge, suggesting that an increase in prey refuge will 
elevate the prey population density. In Figure 2(b), when 0 0.843m< < , the 
predator population density rises with the augmentation of prey refuge; con-
versely, when 0.843 1m< < , the predator population density diminishes as the 
prey refuge expands. Notably, at the point where 0.843m = , the predator popu-
lation density attains its maximum. This phenomenon can be ecologically inter-
preted as follows: When prey refuges are scarce, the number of sheltered prey is 
also limited, and at this juncture, the prey population continues to grow, enabling 
predators to capture sufficient prey to sustain their existence. However, as the 
number of prey refuges increases, more prey seek shelter within, making it chal-
lenging for predators to hunt enough prey to maintain a high population density, 
thereby leading to a decline in the predator population density. 

Example 5.3. To visualize the impact of the Predator-taxis sensitivity α  on 
the dynamic behavior of system (2.3), the following parameters are selected: 

 0.2, 0.25, 0.3, 0.2, 0.5, 5, 0.2, 0.8, 0.2,r m d k s a cη β= = = = = = = = =  (5.3) 

and vary the parameter α . 
Under the condition of parameter (5.3), in Figure 3(a), 0α = , system (2.3) 

has a unique globally asymptotically stable equilibrium ( )* 0.1667,0.3333E . In 
Figure 3(b), 1α = , the dynamics is similar to that in Figure 3(a), and the greates 
difference between these two figures is that the value of *E  decreases from 
(0.1667, 0.3333) to (0.0663, 0.2451). With further increase of parameter α , the 
value of *E  decreases from (0.0663,0.2451) in Figure 3(b) to (0.0191, 0.2118) in 
Figure 3(c). In Figure 3(d), 9α = , system (2.3) has no unique globally asymp-
totically stable equilibrium *E , the prey-free equilibrium ( )2 0,0.2E  of system 
(2.3) is globally asymptotically stable. This indicates that an increase in Predator-
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taxis sensitivity α  is not conducive to the population density of prey and pred-
ators. When the Predator-taxis sensitivity is higher than a certain threshold, the 
unique coexistence equilibrium point of system (2.3) disappears, and system (2.3) 
tends to stabilize at the prey-free equilibrium. 
 

 
Figure 3. Impact of the Predator-taxis sensitivity α  on the dynamic behavior of system (2.3). The values of the 
other parameters are provided in (5.3). 

6. Conclusions 

In this paper, the dynamical behaviors of a modified Leslie-Gower predator-prey 
model incorporating fear effect and prey refuge are investigated. We consider that 
the predator population has substitute food source, enabling the predators to sur-
vive even if the prey population becomes extinct. Taking into account the limited 
energy of prey populations for both foraging and seeking refuge, we hypothesize 
that an excessive investment in refuge-seeking behaviors will necessarily detract 
from time spent foraging. We bridge these two independent factors through the 
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Predator-taxis sensitivity α , yielding System, which holds profound biological 
significance. When examining the impact of fear effects on predator populations, 
we contend that predator fear does not necessarily lead to prey extinction. Rather, 
at high levels of fear, prey populations can persist through various anti-predator 
behaviors. This assertion is corroborated by the validation presented in Figure 
1(d). 

Next, we demonstrate the non-negativity, boundedness, and persistence of the 
model under the condition of non-negative initial values. The stability of equilib-
rium points is investigated by computing the real parts of the eigenvalues of the 
Jacobian matrix evaluated at these points. Our findings reveal that the trivial equi-
librium and the predator-free equilibrium are always saddle points, whereas the 
prey-free equilibrium is a stable node under certain conditions, otherwise, it is 
also a saddle point. In the presence of a coexistence equilibrium, we prove that it 
is always locally asymptotically stable. Under such circumstances, the prey-free 
equilibrium becomes unstable, and according to the Bendixson-Dulac criterion, 
the system (2.3) exhibits no closed orbits, thus confirming the global asymptotic 
stability of the coexistence equilibrium. In the scenario where a coexistence equi-
librium exists, we employ the implicit function theorem to derive the derivatives 
of prey and predator population densities with respect to the fear level k  and the 
prey refuge coefficient m . The computational results indicate that the fear effect 
is detrimental to the increase in both prey and predator population densities. Con-
versely, the prey refuge positively contributes to the enhancement of prey popu-
lation density. When the prey refuge is relatively small, it acts as a facilitator for 
predator population density. However, as the prey refuge exceeds a certain thresh-
old, it exerts an inhibitory effect on the predator population density. 

Finally, we validate the aforementioned conclusions through numerical simu-
lations. Under the condition of parameter (5.1), in Figure 1, it illustrates the im-
pact of fear effect on prey and predator population densities. As the fear level in-
creases, both prey and predator population densities decrease. Notably, in Figure 
1(d), when the fear level is exceedingly high, the prey population persists, which 
aligns with observations in the real world. Under the condition of parameter (5.2), 
in Figure 2, it demonstrates the influence of prey refuge on prey and predator 
population densities. Specifically, prey refuge fosters the growth of prey popula-
tion density. Furthermore, a low level of prey refuge stimulates predator popula-
tion density, whereas a high level of prey refuge inhibits the growth of predator 
population density. Under the condition of parameter (5.3), we numerically vali-
date the effect of the Predator-taxis sensitivity α  on the dynamical behavior of 
system (2.3). As evident in Figure 3, as α  progressively increases, the popula-
tion densities of both prey and predator diminish. Notably, upon exceeding a spe-
cific threshold value of α , the unique positive equilibrium point of system (2.3) 
vanishes, and the system converges to stability at the predator-free equilibrium. 
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