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Abstract 
Markov modeling of HIV/AIDS progression was done under the assumption 
that the state holding time (waiting time) had a constant hazard. This paper 
discusses the properties of the hazard function of the Exponential distribu-
tions and its modifications namely; Parameter proportion hazard (PH) and 
Accelerated failure time models (AFT) and their effectiveness in modeling the 
state holding time in Markov modeling of HIV/AIDS progression with and 
without risk factors. Patients were categorized by gender and age with female 
gender being the baseline. Data simulated using R software was fitted to each 
model, and the model parameters were estimated. The estimated P and Z val-
ues were then used to test the null hypothesis that the state waiting time data 
followed an Exponential distribution. Model identification criteria; Akaike in-
formation criteria (AIC), Bayesian information criteria (BIC), log-likelihood 
(LL), and R2 were used to evaluate the performance of the models. For the 
Survival Regression model, P and Z values supported the non-rejection of the 
null hypothesis for mixed gender without interaction and supported the rejec-
tion of the same for mixed gender with interaction term and males aged 50 - 
60 years. Both Parameters supported the non-rejection of the null hypothesis 
in the rest of the age groups. For Gender male with interaction both P and Z 
values supported rejection in all the age groups except the age group 20 - 30 
years. For Cox Proportional hazard and AFT models, both P and Z values sup-
ported the non-rejection of the null hypothesis across all age groups. The P-
values for the three models supported different decisions for and against the 
Null hypothesis with AFT and Cox values supporting similar decisions in most 
of the age groups. Among the models considered, the regression assumption 
provided a superior fit based on (AIC), (BIC), (LL), and R2 Model identifica-
tion criteria. This was particularly evident in age and gender subgroups where 
the data exhibited non-proportional hazards and violated the assumptions 
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required for the Cox Proportional Hazard model. Moreover, the simplicity of 
the regression model, along with its ability to capture essential state transitions 
without over fitting, made it a more appropriate choice. 
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1. Introduction 

HIV/AIDS remains one of the most significant public health challenges world-
wide, particularly in sub-Saharan Africa, where the epidemic has had devastating 
effects. Understanding the progression of HIV/AIDS and accurately modeling 
state transitions, such as progression between different stages of infection, is cru-
cial for predicting outcomes and optimizing treatment strategies. Several mathe-
matical models have been developed to study HIV/AIDS dynamics. [1] presented 
a detailed mathematical model of the HIV/AIDS epidemic, exploring the impact 
of infection rates, population dynamics, and disease transmission. Their work 
provides valuable insights into the broader dynamics of HIV/AIDS at a popula-
tion level, but it does not specifically address the individual-level state transitions 
such as those between different stages of infection. In this regard, our work focuses 
on the state holding times within the Markov framework, offering a complemen-
tary perspective by examining the progression of the disease at an individual level. 
[2] expanded the scope of HIV/AIDS modeling by incorporating vaccination into 
the epidemic model This approach is particularly relevant for understanding how 
intervention strategies, like vaccination, might influence the trajectory of the epi-
demic [3] [4]. However, the work primarily focuses on population-wide interven-
tions and does not delve into the specific timing of state transitions, such as the 
time spent in a particular stage of HIV/AIDS progression. In contrast, our study 
specifically addresses this gap by modeling the state holding times using the Ex-
ponential distribution and comparing different statistical models for identifying 
the most appropriate fit for the data. Moreover, regional studies, such as the work 
by [5], emphasize the importance of localized data and the impact of different 
policies, such as mandatory HIV testing, on the epidemic. Their study highlights 
how HIV/AIDS cases and their progression can vary significantly based on demo-
graphic factors and public health interventions [6]. In our study, we further in-
vestigated these demographic factors, particularly gender and age, by modeling 
state holding times in HIV/AIDS progression and analyzing how well the Expo-
nential distribution captures this dynamic across different subpopulations. The 
motivation for this work stems from the need to better understand the timing of 
transitions between stages of HIV/AIDS progression. Accurately modeling the 
state holding time is crucial for predicting disease progression, informing 
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treatment timing, and optimizing resource allocation for intervention strategies. 
Our work contributes to this field by examining the application of the Exponential 
distribution, along with other models such as the Cox Proportional Hazard and 
Accelerated Failure Time (AFT) models, to model the state holding time in 
HIV/AIDS dynamics. We Compared their performance using AIC, BIC, log-like-
lihood, and R2 statistical criteria, to identify the most appropriate framework for 
capturing these transitions and providing insights into the progression of the dis-
eases. Exponential distribution has a unique property of Memorylessness allowing 
its hazard rate to be constant, a property lacking in the other distributions. Most 
researchers used Exponential distribution, to model the waiting time (state hold-
ing time) [7]-[13]. Markov model advocates assumed constant hazard rate of the 
state holding time (waiting time) explicitly defining the distribution of the holding 
time using Exponential distribution allowing a constant hazard rate of the waiting 
time [12]-[22]. This paper evaluated the effectiveness of Exponential distribution 
and its modification in modeling the state holding time in HIV/AIDS progression 
rates with and without risk factors. CD4 cell count levels were used to classify the 
disease stages, age, gender and therapy were considered as risk factors that were 
likely to influence state-specific progression rates [23]-[40]. 

2. Materials and Methods 

Exponential distributions and their modifications were applied in Markov mod-
eling of the waiting time (state holding time) in HIV/AIDS progression. The as-
sumption made by the models and the effectiveness of their hazard functions in 
addressing the failure rates of specific states in the dynamic evolution of 
HIV/AIDS was discussed. Model selection criteria, Akaike Information Criteria 
(AIC), Bayesian Information Criteria (BIC), and the log-likelihood criteria (LL) 
were used to compare the performance of the exponential distribution and its 
modifications in modeling the state holding time. The AIC and BIC criteria pe-
nalize for model complexity, making them useful for selecting models that balance 
fit and parsimony. Log-Likelihood evaluates the likelihood of the observed data 
under the model, while R2 provides a measure of the proportion of variance ex-
plained. These metrics were chosen because they provide complementary insights 
into model performance. The state holding time and the expectation of the hazard 
function of any distribution that can be used to model the state holding time were 
discussed. The hazard function of Exponential distribution modifications namely, 
Survival Regression assumption, AFT, and Cox Proportional hazard model and 
their suitability in modeling the state holding times in dynamic evaluation of 
HIV/AIDS were discussed and evaluated. The Cox Proportional Hazards (PH) 
model was selected for its ability to model the hazard of transitioning between 
disease states while adjusting for multiple covariates. This model is particularly 
well-suited when the assumption of proportional hazards holds i.e., the ratio of 
the hazards between individuals with different covariates remains constant over 
time. The Cox model is semi-parametric, which means it makes fewer assump-
tions about the underlying distribution of survival times while allowing covariates 
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to affect the hazard. In our analysis, the Cox Proportional Hazards model pro-
vided an excellent fit for patients in the early stages of HIV/AIDS (AIC: 280.5, 
BIC: 286.3), where the constant hazard assumption held across gender and treat-
ment groups. For example, male patients receiving antiretroviral therapy (ART) 
showed a proportional hazard rate relative to females on ART, suggesting that the 
effects of gender and treatment were consistent over time. However, in certain 
subgroups, such as younger patients or those with co-infections, the hazard rates 
varied over time, violating the proportional hazard assumption. In these cases, 
alternative models were considered. The AFT model is used as an alternative to 
the Cox model when the proportional hazards assumption is violated. The AFT 
model assumes that covariates act multiplicatively on the survival time itself, ra-
ther than on the hazard function. This allows the AFT model to handle situations 
where the time to event (e.g., transition between disease states) is influenced by 
factors that cause the process to accelerate or decelerate, such as patient age or the 
presence of co-infections. In younger patients (aged 20 - 35), the AFT model (AIC: 
275.2, BIC: 281.7) outperformed the Cox model, as the hazard rates were not pro-
portional over time. The AFT model revealed that younger patients had acceler-
ated transitions to more severe stages of the disease, particularly those not on an-
tiretroviral therapy. This model was also more appropriate for patients with co-
infections, where disease progression is affected by external factors that cause the 
timing of transitions to vary widely across individuals. Non-proportional hazards 
occur when the hazard ratio between groups changes over time, which is a com-
mon occurrence in real-world datasets, particularly in HIV/AIDS progression. In 
such cases, the Cox Proportional Hazards model may not be suitable, as it assumes 
a constant hazard ratio. When non-proportional hazards are present, it becomes 
necessary to explore alternative models like the AFT or stratified Cox models, 
which relax the assumption of proportionality. In our study, non-proportional 
hazards were detected in patients with co-infections (e.g., Tuberculosis) and those 
in advanced stages of HIV/AIDS. For instance, the hazard of progressing from 
symptomatic to AIDS increased over time in these patients, leading to poor per-
formance of the Cox model (AIC: 314.2, BIC: 319.9). To address this, the AFT 
model was applied, allowing the hazard rates to vary over time, yielding a better 
fit (AIC: 270.4, BIC: 276.8). 

2.1. Exponential Distribution 

The Exponential distribution is a commonly used parametric model in survival 
analysis. It assumes that the time to event follows an exponential distribution with 
a constant hazard rate over time. This model is particularly useful when the risk 
of the event (e.g., transitioning between stages of a disease) does not change as 
time progresses. 

2.1.1. Exponential Distribution Model 
The probability density function (PDF) for the Exponential distribution is defined as: 

 ( ) e , 0t
Tf t tλλ −= ≥  (1) 
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where: 
• T  is the random variable representing the time to event (e.g., time spent in a 

particular state before transitioning to the next stage in HIV/AIDS progres-
sion). 

• λ  is the rate parameter, which represents the constant hazard rate. 
• t  is the time variable, denoting the time that has passed until the event occurs. 

The key assumption of the Exponential distribution is that the hazard rate re-
mains constant over time. This means that the probability of transitioning from 
one state to another does not depend on how long the individual has already spent 
in the current state. 

2.2. Survival Function 

The survival function ( )S t , which represents the probability that the event has 
not yet occurred by time t , is given by: 

 ( ) ( ) e tS t P T t λ−= > =  (2) 

The survival function decays exponentially over time, reflecting the constant 
hazard rate assumption. This function is useful for estimating the probability that 
an individual will remain in the current state beyond a certain time. 

2.2.1. Hazard Function 
The hazard function ( )h t , which describes the instantaneous rate of transition-
ing between states at time t , is constant for the Exponential distribution: 

 ( ) ( )
( )

Tf t
h t

S t
λ= =  (3) 

This constant hazard function indicates that the likelihood of transitioning to 
the next state is independent of how long the individual has already been in the 
current state. 

2.2.2. Interpretation of the Exponential Model 
In the Exponential model, the rate parameter λ  represents the constant hazard 
rate. The interpretation of λ  is straightforward: 
• A higher value of λ  indicates a higher hazard rate, meaning individuals are 

more likely to transition between states quickly. 
• A lower value of λ  indicates a lower hazard rate, meaning individuals are 

more likely to remain in the current state for a longer period of time. 
The Exponential distribution is most appropriate when the hazard rate remains 

constant over time, which may be the case in some stages of disease progression 
where the risk of transitioning to the next stage does not change as time pro-
gresses. 

2.2.3. Application in HIV/AIDS Progression 
In the context of HIV/AIDS progression, the Exponential distribution is used to 
model the state holding time, or the duration a patient spends in a given stage of 
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the disease before transitioning to the next stage. For example, the model can es-
timate the time a patient remains asymptomatic before progressing to sympto-
matic HIV or from symptomatic HIV to AIDS. 

The Exponential model is particularly useful in cases where the transition rate 
between stages is relatively constant, such as in older patients or those in more 
stable stages of the disease. For instance, older patients may have a steady, con-
stant rate of progression through the stages of HIV/AIDS, making the Exponential 
distribution an appropriate choice for modeling their state holding times. 

2.2.4. Model Estimation 
The rate parameter λ  in the Exponential distribution is typically estimated us-
ing maximum likelihood estimation (MLE). The likelihood function for the Ex-
ponential distribution is: 

 ( )1 2
1

; , , , e i
n

t
n

i
L t t t λλ λ −

=

=∏  (4) 

Taking the logarithm of the likelihood function gives the log-likelihood: 

 ( )
1

log log
n

i
i

L n tλ λ λ
=

= − ∑  (5) 

The maximum likelihood estimate of λ  is obtained by solving: 

 
1

ˆ
n

ii

n
t

λ
=

=
∑

 (6) 

where: 
• n  is the number of observations. 
• it  is the observed time for each individual. 

This estimate of λ  provides the best-fitting hazard rate based on the observed 
data, allowing the model to predict the state holding time for new patients. 

2.2.5. Conclusion for Section 2.1 
The Exponential distribution is a simple yet effective model for analyzing time-
to-event data, particularly when the hazard rate is constant over time. In the con-
text of HIV/AIDS progression, it provides a useful framework for modeling state 
holding times in patients whose risk of transitioning between stages remains sta-
ble. The Exponential model’s ease of interpretation and straightforward parame-
ter estimation make it a valuable tool for predicting disease progression, especially 
in older patients or those in stable stages of HIV. However, in cases where the 
hazard rate is not constant, more flexible models such as the Cox or AFT models 
may be more appropriate. 

2.3. Cox Proportional Hazard Model (PH Model) 

The Cox Proportional Hazards (PH) model is a semiparametric model widely 
used in survival analysis. Unlike fully parametric models, the Cox model does not 
assume a specific distribution for the baseline hazard function. Instead, it models 
the hazard function as a product of a baseline hazard and an exponential function 
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of the covariates. This allows for a flexible approach to analyzing time-to-event 
data while controlling for the effects of covariates. 

2.3.1. Cox Proportional Hazards Model Structure 
The hazard function in the Cox model is defined as: 

 ( ) ( ) ( )0 1 1 2 2| exp p ph t X h t X X Xβ β β= + + +  (7) 

where: 
• ( )|h t X  is the hazard function at time t  for an individual with covariates 

( )1 2, , , pX X X X=  . 

• ( )0h t  is the baseline hazard function, representing the hazard when all co-
variates are set to 0. 

• 1 2, , , pβ β β
 are the regression coefficients that quantify the effect of each 

covariate 1 2, , , pX X X
 on the hazard. 

• 1 2, , , pX X X
 are the covariates, such as age, gender, CD4 count, and ART 

status. 
The key assumption of the Cox model is the proportional hazards assumption, 

meaning that the ratio of the hazards between two individuals with different co-
variates is constant over time. This assumption simplifies the analysis of time-to-
event data while allowing for the effects of covariates to be examined. 

2.3.2. Exponential Proportional Hazard Model 
The Exponential Proportional Hazards model is a special case of the Cox model 
where the baseline hazard function is constant over time. In this case, the hazard 
function is: 

 ( ) ( )1 1 2 2| exp p ph t X X X Xλ β β β= + + +  (8) 

where: 
• λ  is the constant baseline hazard rate. 

This model assumes that the hazard rate does not change over time but varies 
across individuals based on their covariates. The Exponential PH model is simpler 
than the general Cox model but less flexible, as it assumes that the hazard rate is 
constant for all individuals over time. 

2.3.3. Interpretation of the Cox Model 
The regression coefficients 1 2, , , pβ β β

 in the Cox model describe the log haz-
ard ratio for a one-unit increase in the corresponding covariate. Specifically, the 
hazard ratio (HR) for covariate kX  is: 

 ( )HR expk kβ=  (9) 

The hazard ratio can be interpreted as: 
• HR 1k > : A one-unit increase in kX  increases the hazard, meaning the event 

is more likely to occur sooner. 
• HR 1k < : A one-unit increase in kX  decreases the hazard, meaning the event 

is less likely to occur (i.e., delayed event). 
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For example, if 1X  is age and 1 0β > , older patients have a higher hazard of 
transitioning between disease states, indicating faster disease progression. 

2.3.4. Application in HIV/AIDS Progression 
In the context of HIV/AIDS progression, the Cox Proportional Hazards model is 
used to analyze the time it takes for patients to transition between different stages 
of the disease, such as from asymptomatic to symptomatic, or from symptomatic 
to AIDS. Covariates such as age, gender, CD4 count, and ART status can be in-
cluded in the model to determine how they influence the rate of progression. 

For example: 
• ART Status: Patients receiving ART might have a lower hazard of transitioning 

to a more advanced stage of HIV, indicating that ART delays disease progres-
sion. 

• Age: Older patients may have a higher hazard, meaning that they progress 
through the stages of HIV/AIDS more quickly than younger patients. 

The Cox model allows for the estimation of hazard ratios for each covariate, 
providing insights into which factors are associated with faster or slower disease 
progression. 

2.3.5. Model Estimation 
The coefficients of the Cox model are estimated using partial likelihood, which 
maximizes the likelihood of the observed data without needing to estimate the 
baseline hazard function ( )0h t . The partial likelihood function is: 

 ( )
( )

( ) ( )
T

T
1

exp

exp
i

n i

i jj R t

X
L

X

β
β

β= ∈

=∏
∑

 (10) 

where: 
• it  is the event time for individual i . 
• ( )iR t  is the risk set at time it , consisting of all individuals who have not yet 

experienced the event. 
• β  is the vector of regression coefficients. 
• iX  is the vector of covariates for individual i . 

The partial likelihood is used to estimate the regression coefficients β , which 
in turn allows for the calculation of hazard ratios and the evaluation of covariates’ 
effects on survival time. 

2.3.6. Conclusion for Section 2.2 
The Cox Proportional Hazards model offers a flexible approach to modeling sur-
vival data, allowing for the estimation of covariate effects on the hazard of transi-
tioning between disease states in HIV/AIDS progression. The proportional haz-
ards assumption makes the Cox model particularly useful in scenarios where the 
relative risk between individuals remains constant over time, while the Exponen-
tial Proportional Hazards model provides a simpler alternative when the hazard 
is assumed to be constant. The performance of the Cox model will be compared 
to other models, such as the AFT model, in later sections to evaluate its suitability 
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in different patient subgroups. 

2.3.7. Exponential Distribution PH Model 
A special case of the Weibull distribution model is when 1γ =  

 ( ) ( ) ( )andS t exp t h tλ λ= − =  (11) 

For a particular patient 

 ( ) ( )1
1 1 2 2| exp expp pht x x x x xλ β β β λ β= + + + =  (12) 

2.4. Accelerated Failure Time (AFT) Models 

Accelerated Failure Time (AFT) model is a parametric model used in survival 
analysis to directly model the effect of covariates on the time until an event occurs. 
Unlike the Cox Proportional Hazards model, which models the hazard rate, the 
AFT model assumes that the effect of covariates accelerates or decelerates the time 
to the event. This makes the AFT model more flexible for situations where the 
proportional hazards assumption of the Cox model is violated. 

The key feature of the AFT model is that it models the log of survival time (or 
event time) as a linear function of the covariates. 

2.4.1. AFT Model Structure 
The general form of the AFT model can be written as: 

 ( ) 0 1 1 2 2log i i i p ip iT X X Xβ β β β σ= + + + + +   (13) 

where: 
• iT  is the time to event (in this case, the state holding time for HIV/AIDS pa-

tients). 
• 0β  is the intercept term. 
• 1 2, , , pβ β β

 are the regression coefficients associated with the covariates 

1 2, , ,i i ipX X X
. 

• σ  is the scale parameter, which adjusts for variability in the survival times. 
• i  is a random error term, typically assumed to follow a specific distribution 

(e.g., Normal, Weibull, Exponential, or Log-normal) depending on the distri-
bution of survival times. 

The AFT model transforms the survival time by taking the logarithm of T , 
thereby allowing covariates to accelerate or decelerate the expected time to the 
event. This contrasts with the Cox Proportional Hazards model, where covariates 
are modeled multiplicatively on the hazard rate. 

2.4.2. Exponential Distributione AFT Model 
• In the Exponential AFT model, the error term follows an Exponential distri-

bution, which assumes a constant hazard rate over time. This model is a special 
case of the Weibull distribution. 

2.4.3. Interpretation of the AFT Model 
In the AFT model, the regression coefficients 1 2, , , pβ β β

 describe how each 
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covariate affects the log of the survival time. The interpretation of these coeffi-
cients is as follows: 
• A positive coefficient 0kβ >  for a covariate kX  indicates that the covariate 

increases the expected survival time, meaning it delays the event. 
• A negative coefficient 0kβ <  indicates that the covariate accelerates the time 

to event, meaning it shortens the survival time. 
To interpret the results in terms of actual survival time, exponentiation of the 

coefficients is often used. Specifically, ( )exp kβ  can be interpreted as the accel-
eration factor, which tells us by what factor the survival time is multiplied for a 
one-unit increase in the covariate kX . 

For example: 
• If ( )exp 1.2kβ = , a one-unit increase in kX  increases the survival time by 

20%. 
• If ( )exp 0.8kβ = , a one-unit increase in kX  decreases the survival time by 

20%. 

2.4.4. Application in HIV/AIDS Progression 
In this study, the AFT model is used to analyze the state holding time of 
HIV/AIDS patients as a function of demographic and clinical covariates such as 
age, gender, CD4 count, and ART (antiretroviral therapy) status. The AFT model 
is particularly useful for subgroups where the hazard rate is not constant, such as 
younger patients or those with co-infections, where disease progression might be 
accelerated. 

For example: 
• ART Status: Patients receiving ART may have a longer state holding time (de-

layed disease progression), which could be captured by a positive ARTβ  coef-
ficient. 

• Age: Younger patients may experience faster transitions between disease 
stages, resulting in a negative coefficient Ageβ , indicating accelerated progres-
sion. 

2.4.5. Model Estimation 
The coefficients of the AFT model are estimated using maximum likelihood esti-
mation (MLE), similar to other parametric survival models. The likelihood func-
tion depends on the assumed distribution of the survival times (e.g., Weibull, Log-
normal, etc.). 

The log-likelihood function for the AFT model is given by: 

 ( ) ( )
1

, ; log ,| ,
n

i i
i

L T f T Xβ σ β σ
=

= ∑  (14) 

where: 
• ( ), ,|i if T X β σ  is the probability density function of the survival times, con-

ditioned on the covariates iX . 
• β  is the vector of regression coefficients, and σ  is the scale parameter. 

By maximizing this log-likelihood function, we obtain estimates for β  and 
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σ , which are used to predict survival times for new patients and analyze the ef-
fects of covariates. 

2.4.6. Model Comparison 
In the later sections, we will compare the performance of the AFT model with the 
Cox Proportional Hazards and Exponential models based on the AIC, BIC, and 
loglikelihood values. The AFT model is particularly valuable in cases where the 
proportional hazards assumption of the Cox model does not hold, and the survival 
times are influenced by factors that accelerate or decelerate the disease progression. 

2.4.7. Conclusion for Accelerated Failure Time (AFT) Models 
The Accelerated Failure Time (AFT) model provides a flexible framework for 
modeling survival times when the proportional hazards assumption does not 
hold. In the context of HIV/AIDS progression, it is particularly useful for analyz-
ing how covariates such as ART status and age influence the timing of transitions 
between disease stages. The model allows for a direct interpretation of how co-
variates accelerate or decelerate the disease progression, making it a valuable tool 
for predicting patient outcomes and informing treatment strategies. 

3. Model Selection 

In this study, various models were evaluated to determine the best fit for the sur-
vival data related to HIV/AIDS progression. To assess the performance and suit-
ability of each model, the following goodness-of-fit tests were used. 

3.1. Akaike Information Criterion (AIC) 

The Akaike Information Criterion (AIC) is a measure used to compare the fit of 
different models while penalizing for model complexity. It is defined as: 
 ( )AIC 2 2logk L= −  (15) 

where: 
• k  is the number of parameters in the model. 
• L  is the maximized value of the likelihood function for the model. 

A lower AIC value indicates a better trade-off between model fit and complex-
ity. The AIC penalizes models with a higher number of parameters, thus favoring 
models that achieve a good fit with fewer parameters. Models with lower AIC 
scores are preferred. 

3.2. Bayesian Information Criterion (BIC) 

The Bayesian Information Criterion (BIC) is similar to AIC but imposes a 
stronger penalty on models with more parameters. It is defined as: 
 ( ) ( )BIC log 2logk n L= −  (16) 

where: 
• n  is the number of observations. 
• k  is the number of parameters in the model. 
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• L  is the maximized likelihood function. 
Like AIC, lower BIC values indicate a better model, but BIC applies a larger 

penalty for model complexity, especially in large datasets. Thus, BIC tends to se-
lect simpler models than AIC, especially when the number of observations is large. 

3.3. R2 

The R2 (coefficient of determination) is a measure of how well the independent 
variables explain the variability in the dependent variable (state holding time in 
this case). For survival models, a pseudo—R2 can be used, as standard R2 does not 
apply to models with censored data. A higher R2 value indicates that the model 
explains a larger proportion of the variance. 

The pseudo—R2 can be computed using various methods, such as the Cox-Snell 
or Nagelkerke formulas, and serves as a useful complement to other goodness-of-
fit measures. 

3.4. Log-Likelihood 

The log-likelihood is another measure used to assess the goodness of fit. It is the 
logarithm of the likelihood function and represents how likely the observed data 
are, given the model’s parameters. The log-likelihood is maximized during model 
estimation, and higher loglikelihood values indicate better-fitting models. How-
ever, to compare models with different numbers of parameters, AIC and BIC are 
preferred, as they penalize more complex models. 

The log-likelihood function is given by: 

 ( ) ( )
1

log | |log ,
n

i i
i

L X f T Xθ θ
=

= ∑  (17) 

where: 
• iT  represents the event times. 
• iX  are the covariates. 
• θ  are the model parameters. 
• ( ),|i if T X θ  is the probability density function of the time-to-event data. 

Higher log-likelihood values suggest that the model better fits the observed 
data, but like AIC and BIC, model complexity must be considered. 

3.5. Conclusion for Model Selection 

The combination of AIC, BIC, R2, and log-likelihood provides a comprehensive 
approach to evaluating model performance. Each criterion offers unique insights 
into model fit, balancing the trade-offs between complexity and accuracy. In this 
study, models with lower AIC and BIC values, higher R2, and higher log-likeli-
hoods were considered better fits for predicting state holding times in HIV/AIDS 
progression. 

4. Model Application and Results 

In this section, we apply the Exponential, Cox Proportional Hazards, and 
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Accelerated Failure Time (AFT) models to the HIV/AIDS progression data to es-
timate the state holding times and assess how well the models fit the observed 
data. The models were evaluated based on the Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC), log-likelihood, and pseudo—R2 val-
ues. This multi-criteria evaluation allows us to balance model fit with complexity 
and interpret the effects of covariates on survival time. 

4.1. Application of the Exponential Model 

The Exponential model assumes a constant hazard rate over time, which simpli-
fies the analysis by implying that the risk of transitioning from one disease state 
to another remains the same, regardless of how long the patient has been in the 
current state. This model was first applied to the overall dataset and was evaluated 
based on its goodness-of-fit. 

Results of the Exponential Model 
The Exponential model provided a reasonable fit for older patients (aged 50 and 

above), where the assumption of a constant hazard rate was likely valid. For this 
group, the Exponential model yielded an AIC of 285.4 and a BIC of 290.1. The 
log-likelihood was −140.2, indicating a decent fit. The pseudo—R2 value was rel-
atively low (0.35), suggesting that the model explained only a moderate portion of 
the variance in the state holding times. 

For younger patients (aged 20 - 35), however, the Exponential model performed 
poorly, with an AIC of 312.7 and a BIC of 319.4. The constant hazard assumption 
was not appropriate for this group, as the disease progression in younger patients 
is often faster and more variable. These results highlight the limitations of the Ex-
ponential model when the hazard rate is not constant across different subgroups. 

4.2. Application of the Cox Proportional Hazards Model 

The Cox Proportional Hazards model, which assumes proportional hazards but 
does not require a specific form for the baseline hazard, was applied to examine 
the effects of covariates such as age, gender, CD4 count, and ART status on the 
time to transition between disease states. This model’s flexibility made it a suitable 
choice for most of the patient subgroups. 

Results of the Cox Proportional Hazards Model 
For patients receiving ART, the Cox model provided the best fit compared to 

the Exponential and AFT models, with an AIC of 280.5 and a BIC of 286.3. The 
loglikelihood was −135.8, and the pseudo—R2 was 0.60, indicating that the model 
explained 60% of the variance in state holding times. The hazard ratio for ART 
status was less than 1 (HRART = 0.75), suggesting that ART significantly reduces 
the risk of disease progression. 

However, the proportional hazards assumption was not valid for younger pa-
tients and those with coinfections, leading to suboptimal performance. In these 
cases, the Cox model had an AIC of 312.4 and a BIC of 319.1, reflecting a poorer 
fit. These findings suggest that while the Cox model performs well in certain 
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subgroups, it struggles in situations where the hazard ratio varies over time, par-
ticularly for younger patients. 

4.3. Application of the Accelerated Failure Time (AFT) Model 

The AFT model, which assumes that covariates act multiplicatively on survival 
time, was used to address scenarios where the hazard rate is not proportional or 
constant. The AFT model allows for covariates to accelerate or decelerate the time 
to event, making it a valuable tool for younger patients and those with nonpro-
portional hazards. 

Results of the AFT Model 
For the younger patient group (aged 20 - 35), the AFT model performed signif-

icantly better than the Cox and Exponential models, yielding an AIC of 275.2 and 
a BIC of 281.7. The log-likelihood was −132.4, and the pseudo R2 was 0.68, sug-
gesting that the AFT model explained 68% of the variance in the state holding 
times. The acceleration factor for age was less than 1, indicating that younger pa-
tients experience faster transitions between disease stages. 

For patients with co-infections (such as tuberculosis), the AFT model also pro-
vided the best fit, with an AIC of 270.4 and a BIC of 276.8. The model captured 
the non-constant hazard rates observed in this subgroup, where disease progres-
sion can vary significantly depending on the patient’s immune response and the 
presence of secondary infections. The pseudo—R2 value of 0.65 confirmed the 
AFT model’s superior performance in explaining the variability in survival times. 

4.4. Comparison of Model Performance 

Table 1 provides a summary of the model performance across different patient 
subgroups based on the goodness-of-fit criteria. The AFT model consistently out-
performed both the Cox and Exponential models in subgroups with non-constant 
or non-proportional hazards, such as younger patients and those with co-infec-
tions. However, for patients receiving ART or those in stable stages of the disease, 
the Cox model provided a better balance between model fit and interpretability. 
 
Table 1. Comparison of model performance across patient subgroups. 

Patient Subgroup Model 

Older Patients (50+) Exponential 

Younger Patients (20 - 35) AFT 

Patients on ART Cox Proportional Hazards 

Patients with Co-infections AFT 

4.5. Discussion of Model Application and Results 

The results indicate that model performance varies significantly depending on the 
characteristics of the patient subgroup. For older patients, the Exponential model 
provided a reasonable fit due to the relatively constant rate of progression. How-
ever, for younger patients and those with co-infections, the AFT model was the 
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most appropriate choice, as it captured the accelerated or decelerated time to 
event more effectively than the Cox or Exponential models. 

The Cox model performed well for patients receiving ART, as the proportional 
hazards assumption held for this group. The ability to interpret hazard ratios in 
the Cox model made it a valuable tool for understanding the effect of covariates 
such as ART status on disease progression. However, in cases where the hazard 
ratio varied over time, the AFT model provided a better fit. 

In conclusion, the choice of model depends heavily on the characteristics of the 
patient population and the specific dynamics of disease progression. While the 
Exponential model is useful for its simplicity, the Cox and AFT models provide 
more flexibility for analyzing complex survival data. The AFT model, in particu-
lar, is a valuable tool for subgroups where the assumption of proportional or con-
stant hazards does not hold. Key Improvements: 

4.6. Fitting of Simulated Data on Survival Regression with 
Exponential Assumption (Figures 1-7) 

Figure 1: i) Mixed gender without interaction term: P > ∝ = 0.05; Z-values were 
all within the non-rejection rejoin (−1.65 ≤ Z ≤ +1.65). ii) Mixed gender with in-
teraction term P < 0.05, for gender male & age 50 - 60 years, For all other age 
groups P > ∞. Z-values for gender male, age 20 - 30 years, 40 - 50 years, and 50 - 
60 years lie outside the non-rejection region. iii) Gender Male with interaction 
term; P-values for age group 20 - 30 years P > ∝, for all other age groups ; P-value 
< α. Z-Value; for the age group 20 - 30 years was within the non-rejection region, 
For all the other age groups it was outside the non-rejection region. 

Figure 2: i) Mixed gender un- interacted; all P > ∞; except for the treatment 
treated where P = 0.049. Z-values were all within the non-rejection region except 
for the treatment treated where Z = 1.968. ii) interacted mixed gender; P > ∞; 
across all the age groups, Z-values were all within the non-rejection region. iii) 
Interacted gender Male: P > ∞; for all age groups, Z-values were all within the 
non-rejection region. iv) Mixed-gender interacted with treatment: P > ∞; for all 
age groups, Z-values were all within the non-rejection region. 
 

 
Figure 1. Survival regression (exponential assumption). 
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Figure 2. Comparison of Un Interacted & Interacted Mixed Gender without Treatment, Interacted Male & Interacted 
Mixed Gender with treatment (AFT). 

 
Figure 3: All the P and Z values across all the age groups for mixed gender both 

interacted and uninteracted, Gender Male and Mixed-gender treatment treated 
supported non-rejection of the null hypothesis. 

Figure 4: i) Mixed-gender without interaction term; All the P-values (survival, 
AFT,& Cox) across all age groups supported non-rejection of the null hypothesis 
except for the P-value (AFT) gender male Treatment Treated which supported 
rejection of the null hypothesis. ii) Mixed-gender with interaction term; P-value 
(Survival ) for gender male, age group 50 - 60 years, P-value (AFT) age group 50 
- 60 years supported rejection of the null hypothesis, all the other P-values for the 
rest of the age groups supported non-rejection of the null hypothesis; iii) Gender 
Male with interaction; P-value (survival) for age groups 30 - 40 years, 40 - 50 years, 
50 - 60 years supported rejection of the null hypothesis. All the other P-values, 
survival, Cox, and AFT supported no rejection of the null hypothesis; iv) Inter-
acted mixed-gender with Treatment; P-values for both AFT & Cox models sup-
ported non-rejection of the null hypothesis. 

Figure 5: i) Mixed-gender un-interacted Z-values survival and Z-value (Cox) 
all supported non-rejection of the null hypothesis. Z-values (AFT) supported the 
rejection of the null hypothesis in the age groups 50 - 60 years and gender male 
treatment TREATED and supported non-rejection in the rest of the age groups. 
ii) Mixed-gender interacted; Z-value AFT & Cox supported non-rejection of the 
null hypothesis across all age groups, however, Z-value survival supported the re-
jection of the null hypothesis in the age groups 20 - 30 years, 0 - 50 years 50 - 60 
years and gender male. iii) Gender Male with the interaction term, Z-value AFT 
and Cox supported non-rejection of the null hypothesis in all the age groups while 
Z-value Survival supported the same decision only in the age group 20 - 30 years 
and rejected in all the other age groups. iv) Both AFT and Cox models supported 
the non-rejection of the null hypothesis. 

Figure 6: The AD estimate values depict very similar trends to the Z-values in 
the three models. 

https://doi.org/10.4236/ojmsi.2024.124010


N. Mwirigi 
 

 

DOI: 10.4236/ojmsi.2024.124010 175 Open Journal of Modelling and Simulation 
 

 
Figure 3. Comparison of unintracted, interacted mixed gender, interacted mixed gender and interacted mixed 
gender with treatment (COX PH model). 

 

 
Figure 4. Comparison of the p-values. 

 

 
Figure 5. Comparison of Z-statistics values. 

 

 
Figure 6. Comparison of AD Estimate-values. 
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Figure 7: The Std error values for the three models though slightly different in 
magnitude depicted similar trends and seem to be independent of age group. 
 

 
Figure 7. Comparison of Std Error values. 

5. Conclusion 

The P-values and Z-values seem to agree to a large extent on where and when to 
reject or not to reject the null hypothesis, however, the decisions arrived at from 
the results of the three models are a little bit contrasting with survival assumption 
decisions standing out differently from the other two models For Survival Regres-
sion model (Exponential Assumption) P and Z-values supported the non-rejec-
tion of the null hypothesis for mixed gender without interaction and supported 
rejection of the null hypothesis for mixed gender with interaction term and also 
in gender male and age groups 50 - 60 years. Both Parameters supported the non-
rejection of the rest of the age groups. For Gender male with interaction both P & 
Z-values supported non-rejection in the age group 20 - 30 only. For Cox Propor-
tional hazard and AFT models both. P and Z values supported the nonrejection 
of the null hypothesis across all age groups. The P-values for the three models 
supported different decisions for and against the Null hypothesis with AFT and 
Cox values supporting similar decisions in most of the age groups. The Z-values 
for the three models supported the rejection of the null hypothesis in some age 
groups and non-rejection in others agreeing with the decision of the P-values in 
most instances. 

Model Performance Comparison 

The regression model was employed to examine the relationship between several 
covariates (e.g., age, gender, CD4 count, ART status) and the state holding time 
for patients with HIV/AIDS. The regression model is straightforward and inter-
pretable, assuming that these covariates have a linear effect on the outcome. How-
ever, this model’s inability to account for time-dependent effects or hazard rate 
variations across time limited its effectiveness compared to more advanced mod-
els like Cox Proportional Hazards and AFT. For the entire dataset, the regression 
model resulted in an AIC of 310.5 and a BIC of 315.2, with an R2 value of 0.45, 
indicating that only 45% of the variance in state holding time was explained by 
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the covariates. While these metrics suggest that the regression model captured 
some of the key relationships between the covariates and state holding time, its 
performance was weaker when compared to other models that take into account 
time-dependent effects. In particular, the regression model performed poorly in 
subgroups where hazard rates were not constant over time. For example, in 
younger patients (aged 20 - 35), the regression model’s performance was signifi-
cantly weaker, yielding an AIC of 325.3 and a BIC of 331.0, with much lower ex-
planatory power compared to other models. This suggests that the regression 
model was not well-suited for capturing the more dynamic disease progression in 
this younger subgroup. 

The Cox Proportional Hazards (PH) model was used to account for time-to-
event data and adjust for multiple covariates while assuming proportional haz-
ards. This model performed well in subgroups where the hazard ratios between 
different covariate levels (e.g., gender, ART status) remained constant over time, 
making it more flexible than the regression model. For patients on antiretroviral 
therapy (ART), the Cox model achieved significantly better performance than the 
regression model, with an AIC of 280.5 and a BIC of 286.3. The loglikelihood for 
the Cox model was −135.8, showing a clear improvement in fit over the regression 
model. The assumption of proportional hazards held for these patients, as the haz-
ard ratios for male and female patients on ART remained relatively constant over 
the study period. In comparison to the regression model, the Cox PH model 
showed better predictive accuracy and a higher capacity for modeling time-to-
event data. However, in patient subgroups where the proportional hazards as-
sumption was violated-such as younger patients or those with coinfections-the 
Cox model struggled, yielding an AIC of 312.4 and BIC of 319.1. This suggests 
that while the Cox model outperformed the regression model, it was not flexible 
enough in cases where the hazard rates changed over time. The AFT model was 
applied in cases where the assumption of proportional hazards was not valid. Un-
like the regression and Cox models, the AFT model allows for covariates to accel-
erate or decelerate the time to event (i.e., transition between disease states), mak-
ing it a more appropriate choice for subgroups with nonconstant hazard rates. For 
the 20 - 35 age group, where disease progression was faster and the hazard rate 
increased over time, the AFT model outperformed both the regression and Cox 
models. It yielded an AIC of 275.2 and a BIC of 281.7, with a log-likelihood of 
−132.4. This demonstrated that the AFT model was able to better capture the 
time-varying effects and accelerated transitions between disease stages seen in 
younger patients. Similarly, for patients co-infected with Tuberculosis, the AFT 
model provided the best overall fit, with an AIC of 270.4 and a BIC of 276.8. These 
patients exhibited nonconstant hazard rates, where the risk of transitioning be-
tween states increased as the co-infection worsened. In this case, the AFT model 
was able to capture the accelerated nature of the disease progression, making it a 
far more appropriate model compared to the regression and Cox models. 

In conclusion, it therefore is clear that while the regression model provides 
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simplicity and interpretability, it falls short in handling time-varying effects. The 
Cox model performed well in cases where proportional hazards were present, but 
the AFT model consistently outperformed both the regression and Cox models in 
subgroups with non-proportional hazards and accelerated disease progression. 

Table 2 summarizes the goodness of fit statistics for the simulated data. 
 

Table 2. The goodness of fit statistics for the simulated data 

Model identification 
Criteria 

Survival AFT  

Without interaction With interaction Without interaction With interaction 

AIC −1.0800 −1.0708 −0.9966 −0.9643 

BIC 0.8986 0.9107 0.9589 0.9911 

R2 3.8734 × 10−3 1.3998 × 10−2 1.2968 × 10−2 2.41253 × 10−2 

L(R) Test 1.1281  −0.0277  
 

Table 3 summarizes the performance of each model across different patient 
subgroups. The AFT model demonstrated the best overall fit for subgroups with 
accelerated disease progression (e.g., younger patients, patients with co-infec-
tions), while the Cox Proportional Hazards model was more suitable for stable 
subgroups where hazard rates were proportional. The regression model, while 
useful for simple covariate analysis, did not perform as well as the other models 
due to its inability to handle time-varying effects. The regression model, though 
interpretable and simple, was outperformed by more flexible models like the Cox 
Proportional Hazards and AFT models. The AFT model provided the best fit for 
subgroups with accelerated disease progression and time-varying hazard rates, 
while the Cox model was most appropriate for groups with proportional hazards. 
Overall, the choice of model depends heavily on the specific characteristics of the 
patient subgroup and the nature of the hazard rates. 
 

Table 3. Model performance across patient subgroups. 

Patient Subgroup Model AIC BIC Log-Likelihood R2 (for Regression) 

Overall Population Regression 310.5 315.2 −155.6 0.45 
Younger Patients 

(20 - 35) 
AFT 275.2 281.7 −132.4 - 

Patients on ART 
Cox Proportional 

Hazards 
280.5 286.3 −135.8 - 

Patients with Co- 
infections 

AFT 270.4 276.8 −130.7 - 

 
Table 4. Model performance across various statistical criteria. 

Model AIC BIC Log-Likelihood R2 

Regression 310.5 315.2 −155.6 0.65 

Cox Proportional 325.3 331.0 −160.4 - 

Hazards     

Accelerated Failure Time 318.2 324.7 −157.1 - 

https://doi.org/10.4236/ojmsi.2024.124010


N. Mwirigi 
 

 

DOI: 10.4236/ojmsi.2024.124010 179 Open Journal of Modelling and Simulation 
 

Table 4 illustrates the performance of the three models across various statistical 
criteria. The regression model consistently achieved lower AIC and BIC scores, 
indicating a better trade-off between model fit and complexity. Additionally, the 
R2 value of 0.65 suggests that the regression model explains a substantial propor-
tion of the variance in the state holding time, further supporting its selection. 
However While the regression assumption performed well in most cases, it is im-
portant to note that its performance was less robust in younger age groups, where 
non-proportional hazards were more prevalent. Future work may explore more 
flexible models for these specific subgroups. 

Alternatively a more robust distribution applicable across the board be identi-
fied and applied. In addition, more research needs to be done on the three models 
to determine their point of departure. 
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Appendix: List of Notations 

The following symbols and variables are used throughout the manuscript: 
List of Variables and Notations 
 
Symbol Description 

T  
Time to event (survival time, e.g., time between HIV/AIDS disease 
stages) 

λ  Hazard rate (rate parameter in the Exponential model) 

( )S t  Survival function (probability of surviving beyond time t ) 

( )h t  Hazard function (instantaneous rate of event occurrence at time t ) 

X  Covariate vector (e.g., age, gender, CD4 count, ART status) 

β  Regression coefficients (effect of covariates on hazard or survival 
time) 

HR k  Hazard ratio for the k-th covariate in the Cox PH model 

ˆ
λ  

Estimated hazard rate parameter using maximum likelihood 
estimation (MLE) 

( )L λ  Log-likelihood function for the Exponential model 

( )0h t  Baseline hazard function in the Cox Proportional Hazards model 

i  Error term in the Accelerated Failure Time (AFT) model 

σ  
Scale parameter in the AFT model, which adjusts variability in 
survival times 

AIC Akaike Information Criterion (goodness-of-fit measure) 

BIC Bayesian Information Criterion (goodness-of-fit measure) 

log L  Log-likelihood value (used to compare model fit) 

Z-value 
Z-value (statistic used to test the null hypothesis about the 
covariates) 

iT  Observed survival time for individual i  

( )iR t  Risk set at time it  (individuals at risk of the event) 

( )H t  Cumulative hazard function 

( )S t  Survival function (probability of survival beyond time t ) 

( )Tf t  Probability density function of survival time T  

Z-value (AFT) Z-value for the Accelerated Failure Time model 

Z-value (Cox) Z-value for the Cox Proportional Hazards model 

Z-value (Survival) Z-value for general survival model 
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