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Abstract 

In this note we consider ruled varieties 2 1
2

rV −  of ( )2 ,PG r q , generalizing 

some results shown for 2,3r =  in previous papers. By choosing appropri-

ately two directrix curves, a 2 1
2

rV −  represents a non-affine subplane of order 

q  of the projective plane ( )2, rPG q  represented in ( )2 ,PG r q  by a 

spread of a hyperplane. That proves the conjecture assumed in [1]. Finally, a 
large family of linear codes dependent on 2r ≥  is associated with projective 

systems defined both by 2 1
2

rV −  and by a maximal bundle of such varieties 
with only an r-directrix in common, then are shown their basic parameters.  
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1. Introduction 

It is known that a projective translation plane Π can be represented in a projective 
space of even order, following the papers of André [2], Bruck and Bose [3]) and 
Vincenti [1]. 

A subplane of Π is affine and non-affine depending on whether it intersects the 
line at infinity in a subline or in one point. 

An affine subplane of order q  is represented by every transversal plane to the 
spread. All that holds also in case Π is the Desarguesian plane ( )2, rPG q  when 
the spread is a regular spread (cf. [2]-[6] for 2r = , [1] for 3r = ). 

Denote ( )2, rPG qΠ = , ( )2 ,PG r qΣ = , ( )2 1,PG r q′Σ = −  and   is a 
regular spread of ( )1r − -subspaces. 
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There exist 1 2 2 1r rq q q q− −+ + + + +  affine subplanes of ( )2, rPG qΠ =  of 
order q  having the same subline at infinity and through one fixed affine point, 
while 2 2rq −  affine subplanes having no affine point in common partition the 
affine points of Π (cf. Proposition 3.6, Theorem 3.7) 

A variety 2 1
2

rV −  of Σ is a ruled variety of ( )2 ,PG r q  with the minimum order 
directrix a rational curve of order 1r −  and a maximum order directrix a 
rational curve of order r , the two curves lying in two complementary spaces of 
dimension 1r −  and r , respectively (cf. [7], Capters 13, 8., 9.). The variety can 
be obtained by joining points of the two directrix curves corresponding via a 
projectivity. 

In Propositions 4.3 - 4.6 and Theorem 4.7 some fundamental incidence 
properties of 2 1

2
rV −  are shown. Such properties allow to prove that 2 1

2
rV −  

represents a non-affine subplane qΠ  of order q  of ( )2, rPG q  (cf. Theorem 
4.8). The properties of qΠ  of being a plane, translate into further incidence 
properties of the affine points of 2 1

2
rV −  (cf. Corollary 4.9). 

An example is then shown by choosing q  and r  such that  
( )gcd 1, 0q r d− = ≠  (cf. Paragraph 4.2). 

In Theorem 5.2 a maximal bundle   of varieties 2 1
2

rV −  having in common 
only a curve of order r  is constructed. 

To conclude, linear codes are associated with the projective systems related 
both to a variety 2 1

2
rV −  and to the bundle  , then their basic parameters are 

calculated (cf. Proposition 5.1, Theorems 5.3 - 5.5). 
Note that a part of Section 3 is necessarily common with previous articles, this 

representing a generalization as announced in the abstract. 

2. Preliminary Notes and Results 

Referring to the Section 2 of [1], denote ( )F GF q=  a finite field, sq p= , p  
an odd prime, F  the algebraic closure of the field F , 1nF +  the ( )1n + -
dimensional vector space over F , ( ) 1, nPG n q PrF +=  the n-dimensional  
projective space contraction of 1nF +  over F . It is considered a sub-geometry of 

( ),PG n q , the projective geometry over F . A subspace of ( ),PG n q  of 
dimension h  is denoted h-space. 

For the Definition of a variety v
uV  of dimension u  and order v  of 

( ),PG n q  see [1], Definition 2.1. 
From [7], p. 290, 7., follows the definition of a ruled variety 1

2
nV −  of ( ),PG n q  

(cf. Lemma 2.2 of [1]). 
Let Σ be the projective space ( )2 ,PG r q , ( )2 1,PG r q′Σ = −  a hyperplane of 

Σ,   a spread of ( )1r − -spaces of ′Σ  (for the definition of spread, regulus and 
regular spread cf. [3] and [1], Definition 2.3 and the representation). 

A transversal line l  to   is a line of ′Σ  such that l S∉  for every S∈ . 
As   is regular, then the line l  meets 1q +  subspaces of   consisting of a 
regulus (cf. [1], Definition 2.3). 

For the following definitions and results, see [8] and [9]. 
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Definition 2.1 A linear [ ], qn k -code C  of length n  is a k-dimensional 
subspace of the vector space nF . The dual code of C  is the ( )n k− -
dimensional subspace C⊥  of nF  and it is an [ ], qn n k− -code. 

For 1t ≥  the t-th higher weight of C  is defined by  

( ) { }min for all , dim ,t td d C D D C D t= = < =  

where D  is the number of indices i  such that there exists v D∈  with 
0iv ≠ .  

Note that ( )1 1d d C=  is the classical minimum distance of C , the Hamming 
distance. 

An [ ], qn k -code C  of minimum distance d  is also denoted [ ], , qn k d -
code. 

Definition 2.2 An [ ], qn k -projective system   of the projective space 
( )1,PG k q−  is a collection of n  not necessarily distinct points. It is called non-

degenerate if these n  points are not contained in any hyperplane.  
Assume that   consists of n  distinct points having rank k . 
For each point of X  choose a generating vector. Denote by M  the matrix 

having as rows such n  vectors and let C  be the linear code having tM  as a 
generator matrix. The code C  is the k-dimensional subspace of nF  which is 
the image of the mapping from the dual k-dimensional space ( )*kF  onto nF  
that calculates every linear form over the points of X . 

Hence the length n  of codeword of C  is the cardinality of X , the 
dimension of C  being just k . 

There exists a natural [1-1] correspondence between the equivalence classes of 
a non-degenerate [ ], qn k -projective system X  and a non-degenerate [ ], qn k -
code C  such that if X  is an [ ], qn k -projective system and C  is the 
corresponding code, then the non-zero codewords of C  correspond to 
hyperplanes of ( )1,PG k q− , up to a non-zero factor, the correspondence 
preserving the parameters , , tn k d . 

Generally, subcodes D  of C  of dimension r  correspond to (projective) 
subspaces of codimension r  of ( )1,PG k q− , therefore  

( ) ( ){ }1 1 max : 1, , codim 1d d C n X H H PG k q H= = − ∩ < − = . 
If d  is the minimum weight of a linear code C  then C  is an s-error-

correcting code for all 1
2

ds − ≤   
. We call 1

2
d − 
  

 the error-correcting 

capability of C . 

3. Affine Subplanes of Order q  of ( )rPG q2,  

From now on denote ( )2 ,PG r qΣ =  the 2r-dimensional geometry over the field 
( )F GF q= , ( )2 1,PG r q′Σ = −  a hyperplane of Σ,   a regular spread of 

( )1r − -spaces of ′Σ . Clearly 1rq= + . 
Let ( )2, rPG qΠ =  be the Desarguesian plane over the field ( )rGF q . Denote 

l∞  the line at infinity of Π. Represent Π in ( )2 ,PG r qΣ =  by the spread  . 
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Define the following incidence structure ( ), ,′Π =     (points, lines, 
incidence, respectively) where 

{ } { }1\ rP S −′= ∈Σ Σ ∪ ∈  , 

{ }{ } { }0 \ |r rS S l∞′ ′= = ⊂ Σ Σ ∩Σ ∈ ∪ =    , 

  is defined as follows 
If 0\ ,P l′∈Σ Σ ∈  then P l P l⇔ ∈ , no point of \ ′Σ Σ  is incident l∞ , 

1rS l− ∞  for all 1rS − ∈ , 1rS l−   where 0 1rl l S −′∈ ⇔ ∩Σ = . 
Lemma 3.1 ′Π ≅ Π .  
Proof. See [3]. 
From [1] and [3], Definitions 2.7, 2.8, Propositions 2.9, referred to the current 

dimension, follows that the affine points of Π are represented by the 2rq  affine 
points of \ ′Σ Σ , the points at infinity by the 1rq +  subspaces of  . The affine 
lines of Π are represented by the r-spaces rS  of \ ′Σ Σ  such that the subspaces 

1r rS S− ′= ∩Σ  belong to  , the line at infinity l∞  by the spread  . 
Definition 3.2 A subplane ( ), ,P L Iπ ′ ′ ′ ′=  of a plane ( ), ,P L Iπ =  is a 

subgeometry of π , that is, an incidence substructure for which P P′ ⊂ , for each 
line l L′ ′∈  there exists a line l L∈  such that l L′ ⊂  and I I′ = .  

Definition 3.3 A subplane of ( )2, rPG qΠ =  of order q  is affine if it meets 
the line l∞  of Π in a subline consisting of 1q +  points, it is non-affine if it 
meets the line l∞  in one point.  

Let t  be any transversal line to  , that is a line meeting 1q +  ( )1r − -
spaces of  . As   is regular, these 1q +  elements form a regulus ⊂   (cf. 
[3], Lemma 12.2). Choose and fix a plane \α ′⊂ Σ Σ  through the line t , that is, 
a transversal plane. 

As in Proposition 2.9 of [1], one can easily prove 
Proposition 3.4 The plane α  is isomorphic to a subplane ( )2,PG qπ ≅  of 

Π whose points at infinity are represented by the 1q + ( )1r − -spaces of  , the 
lines of π  being represented by the sublines intersections of α  with the r-
spaces of Σ  through the ( )1r − -spaces of  . As the line at infinity of π  is a 
subline of the infinity line of Π, then π  is an affine subplane.  

For the construction of transversal lines to   in ′Σ  the procedure is similar 
to the one used for the dimension 5 (cf. [1], Proposition 2.10). 

Proposition 3.5 The set of the transversal lines to   has cardinality 
1 2 2 1r rq q q q− −+ + + + + , that is, they are as many as the points of an ( )1r − -

subspace of  .  
Proof. Denote 1 2 3, ,S S S  three ( )1r − -subspaces of the regulus  . Fix a 

point 1P S∈  and denote 2,S P S=  the r-space of ′Σ  direct sum of P  and 

2S  and 3,S P S′ =  the r-space of ′Σ  direct sum of P  and 3S . Lying in a 
( )2 1r − -dimensional subspace, then S S t′∩ =  is a line. As a line of S , t  
meets 2S  in a point, as a line of S ′ , t  meets 3S  in a point. Therefore t  is a 
transversal line to the subspaces 1 2 3, ,S S S . As 1 2 3, ,S S S  belong to the regulus 
 , the line t  meets each of the 1q +  elements of  . In such a way one can 
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construct a transversal line for every point P  chosen in 1S , that is,  
1 2 2 1r rq q q q− −+ + + + + . 

Proposition 3.6 The cardinality of the affine subplanes of Π isomorphic to 
( )2,PG q  having the same subline of 1q +  points at infinity and containing one 

affine point is 1 2 2 1r rq q q q− −+ + + + + .  
Proof. Let 0r  be a transversal line to  , 0 0rα ⊃  a transversal plane, O  an 

affine point of 0α . Denote { }1 2 2| 0, , r r
it i q q q q− −= + + + +   the transversal 

lines to the regulus  . Each of the 1 2 2 1r rq q q q− −+ + + + +  planes ,i iO rα =  
represents an affine subplane iπ  of Π, ( )2,i PG qπ ≅  (cf. Proposition 3.4). 

Choose and fix a transversal line t . Consider the bundle ( )t  of the planes of 
\ ′Σ Σ  having the line t  as axis. Each plane ( )tα ∈  is isomorphic to ( )2,PG q  

(cf. Proposition 3.4) and it is an affine subplane of Π having a same subline of 
1q +  points on the line at infinity. 

Theorem 3.7 The planes of ( )t  are 2 2rq −  and partition the 2rq  affine 
points of Π.  

Proof. The planes of ( )t  are parallel to each other, therefore they have no 
affine point in common otherwise they would coincide. Each such a plane 
contains 2q  affine points. 

Let ( )h t= . As a line and an independent point define a plane, fixed the line 
t , there are 2rq  choices for a point in \ ′Σ Σ  to get the plane , \t P ′⊂ Σ Σ , 
this number to be divided by 2q , which equals the choices of an affine point on a 
same plane, hence 2 2rh q −= . 

4. A Ruled Variety rV 2 1
2

−  of ( )PG r q2 ,  

In ( )Σ 2 ,PG r q=  consider two normal rational curves m  and 2 1r m− −  of 
order m  and 2 1r m− − , respectively in two complementary subspaces mS  
and 2 1r mS − −  of Σ. Each of them consists of 1q +  points (cf. [10], Theorem 
21.1.1). They are projectively equivalent. From Lemma 1 follows that a ruled 
rational surface 2 1

2
rV −  of order 2 1r −  of ( )2 ,PG r q  is generated by 

connecting corresponding points of the two directrices m  and 2 1r m− −  of 
2 1

2
rV − , (cf. [7], p. 290, 7.). The variety consists of 1q +  skew lines and ( )21q +  

points. 
Choose and fix 1m r= −  so that 2 1r m r− − = . 
For our purpose to choose appropriately a directrix r  in an r-dimensional 

subspace of Σ, some considerations have to be made. 
It is well known that a rational normal curve r  of order r  of an r-

dimensional geometry ( ),PG r q  can be defined by 1r +  independent binary 
forms of order r , ( ) [ ]0 1 0 1, ,ig s s F s s∈ , 0,1, ,i r= 

, or by 1r +  functions 
( ) ( ): 1,i if s g s=  where at least one of if  has degree r . Moreover it must be 

q r≥  (cf. [10], p. 229). 
A hyperplane of the geometry ( ),PG r q  meets r  in at most r  points, 

corresponding to the solutions of an equation of degree r  over ( )F GF q= . 
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The orbits of the hyperplanes under the action of the group of the projectivities 
of ( ),PG r q  fixing r , correspond just to such possibilities (for 3r =  cf. [10], 
pp. 229-230, and p. 234, Corollary 4, 5 ). 

For our construction, we need an r-curve having no point in the hyperplane of 
( ),PG r q  chosen as hyperplane at infinity. Therefore it needs to find irreducible 

polynomials over F  of degree r . Two ways are indicated in [11] and in [12]. 
However we show an example of what is written above. 
Let us introduce coordinates ( )0 1, , , rx x x  in ( ),PG r q  so that a curve r  

of order r  can be expressed as follows ( ) ( )( ){ }121, , , , , |rr
rs s s f s s F− += ∈ , 

where ( )rf s  is an irreducible polynomial of degree r  (for the symbology see 
[10], p. 229). 

Example 4.1 The curve ( ) ( )( ){ }121, , , , , |rr
rs s s f s s F− += ∈  and the 

hyperplane 0rx =  have no point in common.  
Another way to find irreducible polynomials of a given degree, is obtained by 

considering the problem of searching in { }* \ 0F F=  the elements that are not 
r-th powers. 

Given nq p= , p  a prime, a field ( )F GF q=  and a positive integer r , 
denote ( )gcd , 1d r q= − , the great common divisor. 

Lemma 4.2 The subset *
rN F⊂  of the non-r-th powers has cardinality 

( )( )1 1q d
d

− −
, so that if 1d ≠  each polynomial [ ]rx h F x− ∈  with rh N∈  is 

irreducible over F .  
Proof. Denote * *: F Fϕ →  the mapping : rx xϕ  . Set  

{ }*ker | 1rx F xϕ = ∈ = , the subset of the r-th roots of unity. Then  

( )ker gcd , 1r q dϕ = − = . Hence ( )
*

*

ker
FFϕ
ϕ

≅  so that in *F  there are 

*
1

ker

F q
dϕ
−

=  elements that are r-th powers. If 1d ≠ , then the complementary 

set ( )* *\rN F Fϕ=  of the elements that are not r-th powers has cardinality 

( )( )1 1q d
d

− −
, hence every polynomial rx h−  with rh N∈  is irreducible over 

F . 
NOTE 1—A rational normal curve r  of an r-space consists of 1q +  points 

( q r≥ ) no 1r +  of which in a hyperplane 1rS −  (that is, a hyperplane meets r  
in at most r  points, cf. [10], p. 229, Theorem 21.1.1, (iv)). Hence r  points lie 
in no 2rS − , 1r −  points in no 3rS − .  

Choose and fix an ( )1r − -space 1rS∞
− ∈  and a rational normal curve 

1
1

r
rS− ∞

∞ −⊂  of order 1r − . Let 0
rS  be an r-dimensional subspace of \ ′Σ Σ  such 

that 0 0
1 1\r r rS S S∞
− −′∩Σ = ∈  and 0

0
r

rS⊂  a rational normal curve of it of order 
r  with 0

0 1
r

rS −∩ =∅ . 
Let 1

0: r r−
∞Λ →   be a projectivity. Represent { }1 | 1, , 1r

iG i q
∞

−
∞ = = + , 

{ }0 | 1, , 1r
i iG G i q

∞
= = Λ = + . Denote 2 1

2
rV −  the variety arising by connecting 

corresponding points of 1r−
∞  and 0

r  via Λ (cf. [7], p. 291). The curves 1r−
∞  
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and 0
r  are directrix curves of 2 1

2
rV − , the set { }| 1, , 1i i ig G G i q

∞
= = = +  is 

the set of the generatrix lines of 2 1
2

rV − . The set   partitions the variety. 
Let H  be any hyperplane. In a suitable complexification of Σ, 2 1

2
rH V −∩  is a 

curve of order 2 1r −  (cf. [7], p. 288, 5.). 
Proposition 4.3 The variety 2 1

2
rV −  consists of 1q +  mutually skew affine 

generatrix lines and of 2q q+  affine points. 
a) A directrix curve 1r−

∞≠   cut by a hyperplane on 2 1
2

rV −  cannot lie in an 
( )1r − -space. The curve 1r−

∞  is the unique minimum order ( )1r −  directrix. 
If a space S  contains r  points of 1r−

∞ , then 1rS −
∞⊃  . 

Moreover k r≤  generatrix lines are independent and belong to a ( )2 1k − -
space. 

b) An r-space containing 1rS∞
−  contains at most one generatrix line. 

c) The r-space joining one generatrix line and the ( )1r − -space 1rS∞
−  meets 

no other generatrix in an affine point. 
d) r  generatrices { }| 1, ,ig i r=   are joint by a hyperplane H  that 

contains the ( )1r − -space 1rS∞
− , so that { }2 1 1

2 | 1, ,r r
iH V g i r− −

∞∩ = = ∪  . 
e) A hyperplane contains neither a fixed directrix, nor a fixed generatrix.  
Proof. The proof of the first statement is analogous to that of Proposition 3.1 of 

[1]. 
a) Assume a hyperplane H  meets 2 1

2
rV −  in a directrix curve 1 1r r− −

∞≠   
lying in a ( )1r − -space S . Then 2 1

2
rV −  is contained at most in the ( )2 1r − -

space generated by S  and 1rS∞
−  and the variety generated by the two curves 

would have order at most 2 2r − , a contradiction. Hence the curve 1r−
∞  is the 

unique minimum order 1r −  directrix. 
For the proof of the last two statements see [7], 5., 6., pp. 288-289. 
b) Assume S  is an r-space containing 1rS∞

−  and two generatrix lines 1 2,g g . 
Denote 0

r
i iG g= ∩  , 1,2i =  then the line 1 2G G  belongs to both 0

rS  and S  
so that the point 1 2G G G ′= ∩Σ  is a common point of 1rS∞

−  and 0
1rS − , a 

contradiction. 
c) Denote 1, rS g S∞

−=  with g∈ , an r-space. Assume that for { }\g g′∈  
with 1rg G−

∞ ∞′ ′∩ =  is \S g G∞′ ′∩ ≠ ∅ . Then g S′ ⊂ , so that S  contains two 
generatrix lines and the ( )1r − -space 1rS∞

− , a contradiction to b). 
d) Assume r  generatrices { }| 1, ,ig i r=   are joint by a ( )2 2r − -space S ′ . 

As S ′  contains the r  independent points 1r
i iG g −
∞ ∞= ∩  , 1, ,i r= 

,  

1i rG S
∞

∞
−∈ , then 1rS S∞

− ′⊂  and 1r S−
∞ ′⊂ . As S ′  cannot contain 2 1

2
rV − , a 

hyperplane H S ′⊃  and through a further point 2 1
2 \rP V S− ′∈  should contain 

also the generatrix Pg  through P . Hence H  would meet 2 1
2

rV −  in ( )1r +  
generatrix lines and in a curve of order 1r − , that is, in a curve of order 2r , a 
contradiction (cf. [7], p. 288, 5.). Hence { }2 1 1

2 | 1, ,r r
iH V g i r− −

∞∩ = = ∪  , that 
is, a curve of order 2 1r −  (and H  contains no further point of 2 1

2
rV − ). 

e) Let { }1 | 1, , 1r ig i r− = = −  be a subset of 1r −  generatrices of 2 1
2

rV − . 
Denote ( ) 2 32 1 1 rrS S S −− −= =  the subspace containing 1r−  (cf. [7], 6., p. 289). Let 
H  be a hyperplane with H S⊃  and assume H  contains a residual and fix 
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directrix curve   of order r . Let P  be a point of 2 1
2

rV − , \P H∈  . Denote 
,S S P′′ = . Then every hyperplane containing S ′  and S ′  itself, would contain 

the generatrix Pg  through P , so that { }1r Pg S− ′∪ ⊂ , a contradiction to d). 
An analogous contradiction is reached if we assumed a generic hyperplane H  

with ,g g H′ ⊂  contained a fix generatrix (cf. [7], 6., pp. 289-290). 
From [7], pp. 287-290 follows 
Proposition 4.4 A hyperplane H  containing 1r −  generatrices contains a 

residual curve   of order r  of an r-space S H⊂ . Moreover S  is skew to 

1rS∞
− ,   is irreducible and is a directrix.  
Proof. A hyperplane H  meets 2 1

2
rV −  in a rational normal curve of order 

2 1r −  or in a curve of order 2 1m r< −  met by all generatrices and in 2 1r m− −  
generatrices. In the current case m r=  or 1m r= −  can happen. 

If a hyperplane meets 2 1
2

rV −  in 1r−
∞ , the unique directrix curve of order 1r −  

(see a), Proposition 4.3), then it contains ( )2 1 1r r r− − − =  generatrix lines and 
viceversa (see d), Proposition 4.3). If a hyperplane contains 2 1 1r r r− − = −  
generatrices, then it meets 2 1

2
rV −  in a residual curve   of order r . 

Assume   irreducible and contained in an µ -space Sµ , with rµ < . Let 
H  be the hyperplane containing Sµ  and 2 1r µ− −  points iP  of 2 1

2
rV −  and 

then also the 2 1r µ− −  generatrix lines 
iPg . In such a case H  would meet 

2 1
2

rV −  in a curve of order 2 1 2 1r r rµ+ − − > − , a contradiction. Hence each 
curve   irreducible of order r , lives in an r-space S  and it is a directrix curve, 
that is, meets each generatrix in one point (cf. [7], 3. p. 287). If such an r-space S  
met 1rS∞

− , then a hyperplane 1, rH S S∞
−⊇  would contain 2 1

2
rV − , a contradiction. 

Hence 1rS S∞
−∩ =∅ . 

Assume   is reducible. The unique possibility is that it consists of r  
generatrix lines. Let H  and H ′  be two hyperplanes. Assume H  has in 
common with 2 1

2
rV −  r  generatrices and H ′  has in common with 2 1

2
rV −  

other r  generatrices. Denote 2 2rS H H− ′= ∩ . By varying the hyperplanes in the 
bundle ( )2 2rS −  of hyperplanes, both each hyperplane and the space 2 2rS −  itself 
would have in common with 2 1

2
rV −  the locus of all these points. Such a locus 

would be a directrix contained in all the hyperplanes of the bundle. Therefore such 
a directrix curve should exist in all the hyperplanes of the bundle, a contradiction 
to Proposition 4.3, e) (cf. [7], 6. p. 290). 

Proposition 4.5 a) Each directrix curve of order r  is obtained by cutting 
2 1

2
rV −  with the hyperplanes through any 1r −  generatrices. 

b) The cardinalities of the intersections of hyperplanes H  with 2 1
2

rV −  are 
( )1, 1, 1 1q rq r q+ + + + . It is { } ( )2 1

2max : hyperplane 1 1rH V H r q−∩ = + + . 
c) The cardinalities of the intersections of hyperplanes H  with 2 1 1

2 \r rV − −
∞  

are ( )1, 1 2,q r q rq≤ + − + . It is { }2 1 1
2max \ : hyperplaner rH V H rq− −

∞∩ = . 
Proof. a) An irreducible curve   of order r  is a rational normal curve, that 

is, it lies in an r -space (cf. Proposition 4.4). 
Let 2 1

2
rV −⊂  be a directrix curve of order r  and H ⊃   a hyperplane. As 

H  cannot contain 1r−
∞  otherwise 2 1

2
rH V −⊃ , then H  must contain 1r −  
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generatrix lines. 
b) Let H  be a hyperplane. If 2 1

2
rH V −∩  is an irreducible curve of order 

2 1r − , then 2 1
2 1rH V q−∩ = + . 

If { }2 1
2 1 1, , ,r r

rH V g g−
−∩ =   , ig ∈  (cf. a)), then 2 1

2 1rH V rq−∩ = + . 
If { }2 1 1

2 1, , ,r r
rH V g g− −

∞∩ =   , ig ∈  (cf. d), Proposition 4.3), then  
( )2 1

2 1 1rH V r q−∩ = + + . 
That is we get the following possibilities: ( )1, 1, 1 1q rq r q+ + + + . 
It is easy to prove that ( ) { }2 1

21 1 max : hyperplanerr q H V H−+ + = ∩ . 
c) Let H  be a hyperplane. If 2 1

2
rH V −∩  is an irreducible curve of order 

2 1r − , then 2 1 1
2 \ 1r rH V q− −

∞∩ ≤ + , depending on whether it has or does have 
not points on ′Σ . 

If { }2 1
2 1 1, , ,r r

rH V g g−
−∩ =   , ig ∈  (cf. a)), then  

( )( ) ( )2 1 1
2 \ 1 1 1 1 2r rH V q r q r q− −

∞∩ = − − + + = − + . 
If { }2 1 1

2 1, , ,r r
rH V g g− −

∞∩ =   , ig ∈  (cf. d), Proposition 4.3), then  
2 1 1

2 \r rH V rq− −
∞∩ = . 

That is, we get the following possibilities: ( )1, 1 2,q r q rq≤ + − + . 
It is easy to prove that { }2 1 1

2max \ : hyperplaner rrq H V H− −
∞= ∩  . 

Proposition 4.6 a) No two directrix curves   and ′  of order r  belong to 
a same r-space. 

b) Two directrix curves of order r  meet in one point. 
Proof. a) Assume   and ′  belong to a same r-space S . Then a hyperplane 

H S⊃  would meet 2 1
2

rV −  in a curve of order at least 2r , a contradiction. 
b) Let   and ′  contained in two different r-spaces, S  and S ′ , 

respectively. Assume ′∩   contains two different points, P  and Q . Then 
S S PQ′∩ ⊃  so that the hyperplane ,H S S ′=  meets 2 1

2
rV −  in a curve of 

order 2r , a contradiction. If ′∩ = ∅  , then by connecting corresponding 
points, 2 1

2
rV −  would contain a variety of order 2r , a contradiction. 

4.1. Bundles of Curves of Order r  on rV 2 1
2

−  and a Non-Affine  
Subplane 

Choose two ( )1r − -spaces 0
1 1,r rS S∞
− − ∈  and an r-space 0

rS  of \ ′Σ Σ  
through 0

1rS − . 
Fix the minimum order directrix 1r−

∞  in 1rS∞
−  and in 0

rS  the curve 0
r  as 

an r-directrix so that 0
0 1
r

rS −∩ =∅ . 
Represent { }1 , | 1, ,r

iO G i q
∞

−
∞ ′= =  , { }0 , | 1, ,r

iO G i q= =  . The two curves 
are referred through the projectivity 1

0: r r−
∞Λ →   such that ( )O O′Λ = , 

( )i iG G
∞

Λ = . 
The variety 2 1

2
rV −  arises by connecting the points of 1r−

∞  and 0
r  that 

correspond through Λ (cf. [7], p. 291). Denote 0g  the generatrix line OO′  
where 0 0

rO g= ∩ , 1
0

rO g −
∞′ = ∩ . 

The set { }0 , | 1, ,i i ig g G G i q
∞

= = =   of the generatrix lines of 2 1
2

rV −  
partitions the variety. 

In a suitable complexification of Σ, each hyperplane H  meets 2 1
2

rV −  in a 
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curve of order 2 1r −  (cf. [7], p. 288, 5.). 
Choose a generatrix 1 0g g≠  and a point 1 1P g∈ , { }1

1 1 0 1,r rP g g−
∞≠ ∩ ∩  . 

Set 1 1OP P∞′∩Σ = . Denote 1
1rS −  the ( )1r − -space of the spread   to which 

1P∞  belongs. For the choices we made follows 1 0
1 1r rS S− −≠  so that if  

1 1
1 1,r rS OP S −= , then 1 0

r rS S≠ . If we project from O  the line 1g  by 
constructing the 1q −  lines { }{ }1

1 1 1 1 0 1| \ ,r rOP P g g g −
∞∈ ∩ ∩  , we get the plane 

1,O gπ =  such that t π ′= ∩Σ  is a transversal to the three subspaces 
0 1

1 1 1, ,r r rS S S∞
− − − . 
Therefore the line t  is a transversal line to the whole regulus ⊂   defined 

by { }0 1
1 1 1, ,r r rS S S∞
− − − . 

By varying the point 1 1P g∈  a set of 1q −  r-spaces i
rS  through the point 

O  are generated in addition to 0
rS . Represent such a bundle  

{ }| 0, , 1iOO
r rS i q= = − . 
Moreover, for each { }0 \P g O∈ , we can repeat the same procedure to obtain 

a bundle { }| 0, , 1iPP
r rS i q= = − . 

Generality is not loss if we start by choosing two generatrix lines 
{ } { }0 1 0 1, ,g g g g′ ′ ≠ . 

Theorem 4.7 a) Through each point { }0 \P g OO O′ ′∈ =  there exists a bundle 
CP  of q  curves of order r  on 2 1

2
rV −  having the point P  in common, each 

curve of CP  lying in one r-space intersecting an ( )1r − -space of 1\ rS∞
− . Each 

bundle covers the 2q  points of 2 1
2 \rV OO− ′ . 

b) The cardinality of the set { }{ }0C | \P P g OO O′ ′= ∈ =C  is 2q . 
c) C  is the whole set of the directrix curves of order r  of 2 1

2
rV − .  

Proof. a) For each r-space iO O
r rS ∈ , denote iH  the hyperplane containing 

iO
rS  and a set iR  of 1r −  generatrix lines with 0 1, ig g R∈ . From Propositions 

4.4 and 4.5 follows that iO
rS  must contain a directrix curve r

i  of order r . 
For construction each curve r

i  has no points in 1
i i
r rS S− ′= ∩Σ . Denote CO  

the bundle of all r
i . From Proposition 4.6, a) follows that such q  pairwise 

curves have only the point O  in common. 
The bundle CO  consists of q  curves, each curve collecting q  points of 

{ }2 1
2 \rV O−  hence CO  covers 2q q q⋅ =  points of 2 1

2 \rV OO− ′ . 
In a completely similar way for each { }\P OO O′∈  we get the same result for 

CP . 
b) The cardinality of { }{ }C | \P P OO O′ ′∈  is 2q  as for each point 

{ }\P OO O′ ′∈  it is CP q=  and the points of { }\OO O′ ′  are q . 
c) Let   be a directrix curve of order r . As   meets each generatrix line, 

if 0P g= ∩  then CP∈ . 
Denote '  the set of the affine points of 2 1

2
rV − . Represent ( )Π 2, rPG q=  as 

in Section 3, Lemma 3.1. 
Let ( ), ,q ′ ′ ′Π =     be the incidence substructure of Π defined as follows: 

{ } { }1rP S∞
−′ ′= ∈ ∪  , 

{ }{ }C | \P P OO O′ ′ ′= ∈ ∈ ∪   , 
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′  is defined as follows 
′ =   restricted to the affine points and lines, 1rS g∞

− ′  for all g∈ . 
Theorem 4.8 qΠ  is a non-affine subplane of Π of order q .  
Proof. It is known (cf. [13] [14] pp. 160-161 and [5] pp. 40-41) that if in an 

incidence structure the following four properties hold  

2

1 3
2 6

− 
 − 

 

where 
1—the number of the points is 2 1q q+ + , 
2—the number of the lines is 2 1q q+ + , 
3—each line contains 1q +  points, 
62—two lines meet in at most one point, 
then the structure is a projective plane of order q . 
From Proposition 4.3 follows that the cardinality of the affine points of 2 1

2
r−  

is 2q q+  to which the point at infinity 1rS∞
−  has to be added. Hence 

2 1q q′ = + + , that is, 1 - holds. 
From Theorem 4.7 follows { }{ }C | \P P OO O′ ′= ∈C  is 2q . As 1q= +  

then 2 1q q′ = + + , that is, 2 - holds. 
Each curve of CP  has as many points as 0

r  has, that is 1q + . Each 
generatrix line g∈  has q  affine points and the point ad infinity 1rS∞

− , hence 
3 - holds. 

From Proposition 4.6 follows that two curves of order r  meet in one point. 
Each such a curve is a directrix so that meets each generatrix line in one point. 
Two generatrix lines meet only in the point 1rS∞

− . Hence 62, really 6 holds. 
To verify that qΠ  is a subgeometry of Π (cf. Definition 3.2), note first that its 

set of points is clearly a subset of the points of Π. Moreover, every line g∈  is 
contained in a unique 3-space ,S g π∞=  which meets no other generatrix (cf. 
Proposition 4.3, (c)) and every cubic of CP  lies in a unique r-space (cf. 
Proposition 4.6, (a)) meeting ′Σ  in an ( )1r − -space of   (cf. Theorem 4.7, 
(a)). 

The properties of qΠ  of being a plane can be translated into further incidence 
properties of 2 1

2
rV − . 

Corollary 4.9 Let ,P Q  be two points of 2 1
2

rV − . If P ′∈  and 1rQ S∞
−=  

then the line PQ  of qΠ  is the generatrix Pg , if ,P Q ′∈  then ,P Q  
belong to one directrix curve of order r  of an r-space S  with 

1\ rS S∞
−′∩Σ ∈ .  

4.2. An Example 

Denote ( )F GF q= , ( )2 ,PG r qΣ = . Let ( )2 1,PG r q′Σ = −  be a hyperplane of 
Σ,   a regular spread of ′Σ . 

Let ( ) ( )1 1, , , , , , , ,r rt x x y y t=  x y  in Σ be a coordinate system so that 0t =  
represents ′Σ , ( ),x y  are internal coordinates for ′Σ  and for a point 
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Σ \P ′∈ Σ , ( ) ( ) ( )*
1 1, , , , , , , , , ,r rP t x x y y t F t≈ = = x y x y , { }* \ 0F F= . 

Represent the spread   as follows  

( ){ } ( ){ }1 1, | , | ,r r
r rS F S F∞
− −= = ∈ ∪ = ∈ m0 y y x xm x m  

where =y xm  is the multiplication in the field rF , M=xm x  with M  a 
r r×  matrix over F . The set { }|M M= = x xm  is a field isomorphic to 

( )2rF , strictly transitive over rF . 
Denote { }1 1, |k

r rS S k F∞
− −= ∈  the regulus of   represented by the scalar 

matrices kI . 
Let ( ) ( )[ ]rf x GF q x∈  be an irreducible polynomial of degree r  (cf. [11] 

[12]). For instance, more explicitly, choose q  and r  such that  
( )1, 1d gcd q r= − ≠ . From Lemma 4.1 follows that in ( )F GF q=  there is a  

subset rN  of 
( )( )1 1q d

d
− −

 non-r-th powers elements so that the polynomials  

rx s−  are irreducible whenever rs N∈ . 
Choose and fix the irreducible curve 1r−

∞  of order 1r −  in the space 1rS∞
−  

and the irreducible curve 0
r  of order r  in the r-space 0

rS  of \ ′Σ Σ  through 
0

1rS −  so that 0
0 1
r

rS −∩ =∅ , 1r−
∞  and 0

r  represented as follows 

( ) ( ){ } ( ){ }1 10, ,0,1, , , ,0 | 0, ,0,0, ,1,0r r GF q Oλ λ λ− −
∞ ′= ∈ ∪ =     

( )( ) ( ){ } ( ){ }1
0 1, , , ,0, ,0, | 0, ,0,0, ,0,1r r

rf GF q Oλ λ λ λ−= ∈ ∪ =    ,  

where ( )rf λ  is an irreducible polynomial of degree r .  
The two curves are referred through a projectivity 1

0: r r−
∞Λ →   represented 

by having inserted the same parameter λ  for which it is agreed that the points 
are considered corresponding to each other, plus ( )O O′Λ = . 

If { }1 , | 1, ,r
iO G i q
∞

−
∞ ′= =   then { }0 , Λ | 1, ,r

i iO G G i q
∞

= = =  . The 
variety 2 1

2
rV −  arises by connecting the corresponding points of 1r−

∞  and 0
r  

(cf. [7], p. 291). The curves 1r−
∞  and 0

r  are directrix curves of 2 1
2

rV − , the set 

{ }0 , | 1, ,i i ig OO g G G i q
∞

′= = = =   of the generatrix lines of 2 1
2

rV −  partitions 
the variety. 

Consider the following 2 2r r×  matrix in r r×  blocks 

.0
I kI

M Iϕ

 
=   
 

 

Denote ϕ  the affinity of Σ  represented by Mϕ  
The extended projectivity ϕ  is represented by the ( ) ( )2 1 2 1r r+ × +  matrix 

Mϕ  obtained from Mϕ  by adding the vector ( )0, ,0,0, ,0,1   as the 
( )2 1r + th column and the ( )2 1r + th row. 

Theorem 4.10 a) Through each point { }\P OO O′ ′∈  there exists a bundle 

PC  of q  curves of order r  on 2 1
2

rV −  having the point P  in common, each 
curve lying in one r-space intersecting an ( )1r − -space of 1\ rS∞

− . Each bundle 
cover the 2q  points of 2 1

2 \rV OO− ′ . 
b) The cardinality of the set { }{ }C | \P P OO O′ ′= ∈C  is 2q . 
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c) C  is the whole set of the directrix curves of order r  of 2 1
2

rV − .  
Proof. a) For each point ( ) ( )1 1, ,0 0, ,0, , , ,0r rA a a S∞

−= = ∈ 0 a  it is  
( ) ( ):A A M Aϕϕ = = , that is, 1rS∞

−  is pointwise fixed. For each point  
( ) ( ) 0

1 1, ,0 , , ,0, ,0,0r rB b b S −= = ∈ 0b  it is ( ) ( ) ( ): , ,0B B M kϕϕ = = b b , that is, 

( )0
1 1

k
r rS Sϕ − −= , and ( )O Oϕ = . Hence ( )0

1rSϕ −  is an r-space k
rS  through O  

with 1
k k
r rS S −′∩Σ = . The curve 0

0
r

rS⊂  of order r  is mapped onto an r-curve 
r k
k rS⊂  with r

kO∈  and 1
r k
k rS −∩ =∅ . Therefore there exists a bundle 0C  

of q  curves of order r  through O  collecting the 2q  points of 2 1
2 \rV OO− ′ . 

Let ( )0, ,0,0, , ,1P h=    be a point of { }\ ,OO O O′ ′  and denote hτ  the 
associated translation. Therefore ( )h O Pτ =  and ( )0C Ch Pτ = . 

b) The cardinality of { }{ }C | \P P OO O′ ′∈  is 2q  as for each point  
{ }\P OO O′ ′∈  it is CP q=  and the points of { }\OO O′ ′  are q . 

c) For the proof see (c), Theorem 4.7. 
Corollary 4.11 Chosen and fixed 0

1 1,r rS S∞
− − ∈ , the variety 2 1

2
rV −  selects in 

the spread   a regulus to which 1rS∞
−  and 0

1rS −  belong.  
Let ( )2, rPG qΠ =  be the projective plane over ( )rGF q . Represent Π in Σ, 
( ), ,Π =     as in Lemma 3.1. 

Let '  be the set of the 2q  affine points of 2 1
2

rV − . Define ( ), ,q ′ ′ ′Π =     
as in the previous Section 4.1. 

It is immediate to prove the following results, analogous to Theorem 4.8 and 
Corollary 4.9, respectively.  

RESULT 1— qΠ  is a non-affine subplane of Π of order q . 
RESULT 2—Let ,P Q  be two points of 2 1

2
rV − . If P ′∈  and 1rQ S∞

−=  then 
the line PQ  of qΠ  is the generatrix Pg , if ,P Q ′∈  then ,P Q  belong to 
one directrix curve of order r  of an r-space S  with 1\ rS S∞

−′∩Σ ∈ . 

5. Codes Related to rV 2 1
2

−  

To construct linear codes starting from 2 1
2

rV −  and bundles of them, first we must 
associate projective systems and calculate their number of points. Then it needs 
to calculate the cardinalities of intersection with the hyperplanes to find the 
distance and the error-correcting capability. 

Let 2 1
2

rV −= , 2 1 1
2' \r rV − −

∞=   be projective systems defined by 2 1
2

rV − . It is 
2 2 1q q= + +  and 2q q′ = + . Denote C  and C′  the codes associated 

to them. 
From Definitions 2.3, 2.4 and Proposition 4.5 follows 
Proposition 5.1 C  is an [ ], , qn k d -code with 2 2 1n q q= + + , 2 1k r= + , 

( )2 1d q r q= − − . 
C′  is an [ ], , qn k d′ ′ -code with 2n q q′ = + , 2 1k r= + , ( )2 1d q r q′ = − − .  
Proof. 
The distance of a code related to a projective system equals the number of the 

points of the system minus its max intersection with hyperplanes. Hence, from 
Proposition 4.5 follows that the minimum distance for C  equals  
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( )( ) ( )2 22 1 1 1 1q q r q q r q+ + − + + = − − , for C′  equals  
( )2 2 1q q rq q r q+ − = − − . Then both codes have same dimension and minimum 

distance which is the better the smaller r  is. In any case the code 'C  seems to 
be better than C  because n n′> . 

In Section 4.1 is shown that the variety 2 1
2

rV −  selects the regulus   to which 
both 0

1 1,r rS S∞
− −  belong. Denote 1 1:rS S

∞

∞
− = , 1

1:r
∞

−
∞ =  , 1:=  . Fix the 

directrix curve 0
r  of order r  in 0

rS . 
Theorem 5.2 There exists a bundle   of varieties 2 1

2
rV −  with the curve 0

r  
as directrix, 1rq −= , any two varieties having in common no element of the 
spread  .  

Proof. It involves choosing step by step an ( )1r − -space of the spread   
outside the regulus identified by the variety of the previous step, and, in this, a 
directrix curve of order 1r − . 

Step 1—Construct the variety 2 1
1 2

rV −=  starting from the curve 1
1
r
∞

−  and the 
curve 0 0

r S⊂ . In 1\   there are rq q−  possible choices for the next step. 
Step 2—Choose an ( )1r − -space 2 1\S

∞
∈  . Fix a curve 1

2
r
∞

−  in it and 
construct the variety 2 1

2 2
rV −=  starting from 1

2
r
∞

−  and the curve 0
0
r

rS⊂ . Let 

2  be the regulus of   to which 2S
∞

 and 0
1rS −  belong. In { }1 2\ ,    

there are 2rq q−  possible choices for the next step. 
Step 3—Choose an ( )1r − -space { }3 1 2\ ,S

∞
∈   . Fix a curve 1

3
r
∞

−  in it of 
order 1r −  and construct the variety 2 1

3 2
rV −=  starting from 1

3
r
∞

−  and the 
curve 0

0
r

rS⊂ . Let 3  be the regulus of   to which 3S
∞

 and 0
1rS −  belong. 

In { }1 2 3\ , ,     there are 3rq q−  possible choices for the next step. And so 
on. 

The procedure ends evidently at the 1rq − -th step. Therefore  

{ }1| 1,2, , r
i i q −= =    and 1rq −= . 

Each variety of   represents a non-affine subplane of ( )2, rPG qΠ =  and 
by construction follows that two such subplanes have in common the subline 
represented by 0

r  and no infinite point. 
Denote { }|i iP= ∈ ∈

    , 1\ r
i i i

−
∞′=    and { }|i iP′ ′= ∈ ∈

    ,  
11,2, , ri q −= 

. 
Theorem 5.3 Any two varieties of   have in common only 0

r .  
The set   has cardinality 1 1r rq q q+ + + + .  
The set ′  has cardinality 1 1 1r rq q q+ −− + + .  
Proof. 
Assume two varieties 1 2, ∈   , have in common, in addition to 0

r , a point 

0
rP∉ . Among the 1q +  lines { }0| rPC C C∈  there are the two generatrix lines, 

i ig ∈ , 1,2i = , 1 1PC g= , 2 2PC g= , 1g  defining the ( )1r − -space 1S
∞

 and 

2g  the ( )1r − -space 2S
∞

 of the spread  . 
Choose a point { }0 1 2\ ,rC C C C∈ . From Corollary 4.9 follows that through the 

points P  and C  is defined one directrix curve of order r  of an r-space 1S  
of the variety 1  with 1S ′∩Σ ∈  and one directrix curve of order r  of an r-
space 2S  of the variety 2  with 2S ′∩Σ ∈ . 
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On the other hand, by considering the points ,P C  as points of Π, the line 
PC  selects in ′Σ  an ( )1r − -space S ′∈  so that the r-space ,PC S ′  

represents the line of Π through P  and C . This implies that  

1 2S S S′ ′ ′∩Σ = ∩Σ = , that is, the subplanes represented by 1  and 2  would 
have in common the infinite point represented by S ′ , a contradiction to 
Theorem 5.2. 

For each variety i ∈   , 0\ r
i   consists of ( ) ( )2 21 1q q q q+ − + = +  points 

so that ( )1 2 11 1r r rq q q q q q q− += + + + = + + + . 
For each variety i ′ ′∈   , ( )2 22 1 1i q q q q q′ = + + − + = +  so that 0\ r

i ′   
consists of ( )2 21 1q q q q+ − + = −  points and  

( ) ( )1 2 1 11 1 1r r rq q q q q q− + −′ = − + + = − + + .  
Theorem 5.4 The cardinalities of the intersections of hyperplanes with   are: 
a)  1r rq q −= + , 

1b )  ( )1 2 1rr q q≤ − + + , 

2b )  ( )1 rr q r≤ − + , 

3b )  ( )1 1rr q q= − + +  
and { } ( )max : hyperplane 1 2 1rH H r q q∩ ≤ − + + . 

The cardinalities of the intersections of hyperplanes with ′  are: 

1b )'  ( )1 rr q q≤ − + , 

2b )'  ( )( ) 11 1 rr q q r−≤ − − + , 

3b )'  ( )( )( )11 1 1 1rr q q q−= − − − + +  
and { } ( ) ( ) ( )1max : hyperplane 1 1 1 1rH H r q q q−′∩ = − − − + + . 

Proof. 
a) Assume H ′= Σ . By construction, H  contains the 1rq −  subspaces 

i∞ ∈  , each of them containing the directrix curve 1r
i∞
− , one for each of the 

1rq −  varieties of  . Then ( )1 11r r rH q q q q− −∩ = + = + . 
b) Let H  be a hyperplane H ′≠ Σ . 

1b )  Assume H  contains an ( )1r − -space i∞
  for some i  so that it 

contains 1r
i∞
− . Of course H  cannot contain any other ( )1r − -space of the 

spread being H ′≠ Σ . From Proposition 4.3, d), follows that H  contains also a 
set of r  generatrix lines meeting 0

r  in a subset I  of r  points. 
Hence H  contains at most these ( )1q qr+ +  points. 
As 2 2rH S −′∩Σ = , then H  meets each of the 1 1rq − −  subspaces 

\j iS
∞ ∞
∈   (with directrix curves 1r

j∞
−  of j ∈   for every j i≠ ) in an 

2rS − . Such a space can meet each curve 1r
j∞
− , j i≠ , in at most 1r −  points (cf. 

NOTE 1), that is, in total ( )( )11 1rr q −− −  points. The hyperplane H  could 
contain 1r −  generatrix lines through those points for each of the ( )1 1rq − −  
varieties j i≠  , cutting the directrix 0

r  in subsets of I  otherwise H  
would contain the whole variety i . That is we must add at most further 
( ) ( )11 1rr q q −− −  points. Then H  contains at most  
( )( ) ( ) ( ) ( )( )( )1 1 11 1 1 1 1 1 1r r rr q r q q r q q− − −− − + − − = − + −  points. 

Summarizing, as  
( ) ( ) ( ) ( )( ) ( ) ( )11 1 1 1 1 1 1 2 1r r rq qr r q q r q q r q r q q−+ + + − − = − − + + + = − + + , 
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then we get ( )1 2 1rH r q q∩ ≤ − + + . 

2b )  Assume H  contains no ( )1r − -space i∞
  for every 11, , ri q −= 

. As 
H ′∩Σ  is a subspace 2 2rS S −= , then iS

∞
∩  for every i  is an ( )2r − -space 

2i rS S −=  which meets i∞
  in at most 1r −  points (cf. NOTE 1). These points 

are at most ( ) 11 rr q −− . 
Apart of the points on 0

r , for each i∞
  the 1r −  generatrix lines contain 

( )( )1 1r q− −  points, that is, in total ( )( ) 11 1 rr q q −− − . To this number at most 
r  points of 0

r  have to be added. 
Summarizing, as ( ) ( )( ) ( )1 11 1 1 1r r rr q r q q r r q r− −− + − − + = − + , then  

( )1 rH r q r∩ ≤ − + . 

3b )  Assume H  contains 0
rS  and therefore 0

r , that is 1q +  points of 

 . In such a case H  contains 1r −  generatrices for every variety i , that is 
( ) ( )11 1r rr q q r q−− ⋅ = − . Summarizing we get ( )1 1rH r q q∩ = − + + . 

It is easy to prove the following inequalities hold:  
( ) ( ) ( )1 2 1 1 1 1r r rr q q r q q r q r− + + > − + + > − +  as q r≥  (cf. NOTE 1), 
moreover ( )1 1 2 1r r rq q r q q−+ < − + + , that is,  

{ } ( )max : hyperplane 1 2 1rH H r q q∩ ≤ − + + = . 
To calculate the intersections of hyperplanes with ′ , all those relating to ′Σ  

must be subtracted from the cardinalities calculated for  . 
Let H  be a hyperplane H ′≠ Σ . 

1b )'  From 1b )  we get ( ) ( ) ( )1 2 1 1 1r rH r q q q r q q′∩ ≤ − + + − + = − + . 

2b )'  From 2b )  we get  
( ) ( ) ( ) ( )( ) ( ) ( )1 1 1 11 1 1 1 1 1r r r rH r q r q q r r q r q q r− − − −′∩ ≤ − + − − + − − = − − + . 

3b )'  In 3b )  the hyperplane H  contains 1r −  generatrix lines for each 
variety i , in this case equivalent to ( )( )( )11 1 1rr q q −− − −  points. So that by 
adding the points of 0

r  we get ( ) ( ) ( )11 1 1 1rH r q q q−′∩ = − − − + + . 
By comparing the three inequalities: 1) ( )1 rr q q− + , 2) ( ) ( ) 11 1 rr q q r−− − + , 

3) ( ) ( ) ( )11 1 1 1rr q q q−− − − + +  we get 1) > 2), 1) < 3), 3) > 2) we can say 
{ } ( ) ( ) ( )1max : hyperplane 1 1 1 1rH H r q q q−′∩ = − − − + + . 

Let =   , ′ ′=    be the projective systems defined by   and ′ , 
respectively. It is 

1 1r rq q q+= + + +  and 
1 1 1r r rq q q q+ −′ = − − + + . 

Denote C  and C′  the codes associated to them. 
From Theorem 5.3 and 5.4 follows 
Theorem 5.5 C  is an [ ], , qn k d -code with 1 1r rn q q q+= + + + , 2 1k r= + , 

( )1 2r rd q r q q+≥ − − − . 
C′  is an [ ], , qn k d′ ′ -code with 1 1 1r rn q q q+ −′ = − + + , 2 1k r= + ,  

( ) ( ) ( ) ( )1 11 2 1 1r r rd q r q r q r q r+ −′ = − − − − + − − − .  
Proof. The distance of a code related to a projective system equals the number 

of the points of the system minus its max intersection with hyperplanes, so that  

we get ( )( ) ( )1 11 1 2 1 2r r r r rd q q q r q q q r q q+ +≥ + + + − − + + = − − −  and  

( )( )( )( )
( ) ( ) ( ) ( )

1 1 1

1 1

1 1 1 1 1

1 2 1 1

r r r

r r r

d q q q r q q q

q r q r q r q r

+ − −

+ −

′ = − + + − − − − + +

= − − − − + − − −
. 
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Given the same dimension 2 1r + , the code C  has both greater length of 
codeword and greater distance than the code C′ , hence C  is better than C′ , 
despite C′  has a precise distance. 

Example 5.6 For minimum 2r = , the code C  is an [ ], , qn k d -code with 
3 2 1n q q q= + + + , 5k = , 3d q q≥ − . 

The code C′  is an [ ], , qn k d′ ′ -code with 3 1n q′ = + , 5k = ,  
3 2 1d q q q′ = − + − . 

By comparing these two codes with those of Proposition 5.1 for 2r =  it is clear 
that the codes of Theorem 5.5 are better. 
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