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Abstract 
In this paper, approaches are presented for the thresholding, detection, track-
ing and recognition of the road signs as part of an Advanced Driver Assistance 
System (ADAS). In all these approaches, feature extraction is the backbone, 
whereas detection and recognition require the use of detectors and classifiers, 
respectively. In this, two issues are dominant: 1) Tackling the variability in-
volved in the lighting conditions, sizes, and shapes of the road signs after seg-
regating them from a world scene, and 2) Focusing on inaccurate fuzzy mod-
eling arising due to the improper distribution of pixel intensities. The varia-
bility is overcome with the uncertainty representation using the information 
sets, an extension of fuzzy sets, whereas the incorrect fuzzy modeling is rectified 
using the pervasive information sets, an extension of intuitionistic fuzzy sets. 
The development of the intuitionistic fuzzy transform paralleling the fuzzy en-
tropy function paves the way for the formulation of different hesitancy features 
by cashing in on the non-membership function. Next, promulgation of the Han-
man law prescribes the fuzzy gradient/divergent values for different tasks. The 
notable landmarks of this work are the creation of a Color-Based Detector (CBD), 
derivation of the incremental hesitancy features accrued from the color histo-
grams and the formulation of a variant of the Hanman Transform Classifier 
using Convolutional Neural Network (CNN) features. We have used the Belgium 
dataset to vindicate the efficacy of the proposed methods. 
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1. Introduction 

Road sign detection is not only a very important functionality of an Advanced 
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Driver Assistance System (ADAS), but also a very challenging task. The various 
challenges faced by the road sign detection methods are due to variations in light 
and weather conditions. The complex and cluttered background also makes the 
detection of road signs a difficult task. As the road sign detector must be deployed 
in the autonomous vehicles, it must operate under the real-time conditions that 
pose the computational issues. Cognizant of these problems, a very efficient and 
a simple detector is devised for the detection of the road signs. In this work, we 
attempt to define the concept of pervasive information set for the representation 
of certainty/uncertainty in road signs resulting from the varied sizes and lighting 
conditions. This work gains importance because it can capture road signs of all sizes 
in a very short time. 

1.1. Related Work 

A lot of approaches are put forward under ADAS, of which the salient ones de-
serve our attention. A few to mention are: The Integral Channel Features (ICFs) 
are explored in [1] for the detection of the road signs using the sliding window 
approach. The performance of ICF is compared with that of the Aggregate Chan-
nel Features (ACFs) on the US road signs in [2]. The deep learning network-based 
OverFeat model is used in [3] on the Chinese dataset, Tsinghua-Tencent 100K for 
both the detection and classification of the road signs. In [4], the various object-
detection systems comprising Faster Region-based Convolutional Neural Network 
(FRCNN), Region-based Fully Convolutional Networks (R-FCNs), Single Shot De-
tector (SSD) and You Only Look Once version 2 (YOLOv2) are compared for the 
road sign detection. FRCNN is used in [5] for the detection of road signs using im-
ages from both the Türkiye dataset and the German Traffic Sign Detection Bench-
mark (GTSDB). A deep learning network is trained on the road signs to detect 
them at different scales in [6]. A new Chinese Traffic Sign Detection Benchmark 
(CTSDB) is created in [7], with an additional 4000 real traffic sign images and an-
notations. The YOLOv5 along with Feature Pyramid Network (FPN) is replaced 
with AF-FPN that combines the Feature Enhancement Module (FEM) and the 
Adaptive Attention Module (AAM) to improve the multi-scale road sign detec-
tion in [8]. The architecture of Faster RCNN is changed in [9] to detect the small-
size road signs in real time using the Online Hard Examples Mining (OHEM) ap-
proach. The functionalities of Segmentation Network (SegNet) and Encoder-De-
coder network termed as U-Net are combined in [10] for the road sign detection. 
A comprehensive review of the tricks devised for the road sign detection is given 
in [11]. Some of the recent work on road sign recognition is listed below. The recent 
advances in the recognition of the traffic signs are surveyed in [12]. The use of 
YOLOv5 for the road sign recognition is reported in [13]. The transfer learning-
based hybrid 2D-3D CNN models are applied to both the traffic sign detection and 
recognition as a prelude to ADAS in [14]. 

A comprehensive review of the use of 5G technology is presented in [15] for the 
detection of accidents. The hand tracking of sign language-based gestures of the 
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deaf and those with the hearing impairment using the Kalman filter is reported in 
[16]. With a view to improving the detection time of the road signs, the ghost 
module and multi-scale attention module are fused into the YOLOv8 trained on 
CTSDB and implemented on Raspberry Pi in [17]. The backbone feature network 
of YOLOv5 is replaced with MobileNetV3 to minimize the computational time 
and reduce the model size of the lightweight detection network in [18].  

1.2. Motivation 

As revealed from the literature survey, it has become imperative to redress firstly 
the uncertainty in the road signs due to the varied lighting conditions, sizes and 
their shapes and secondly, the inaccurate fuzzy modelling due to the prevalence 
of the random distributions of color pixel intensities. The features from the color 
histograms of the normalized pixel intensities of the road signs are found to be 
insensitive to the lighting conditions in addition to their sizes and shapes, so we 
can use colors as a cue in demarcating a road sign dominated by the red pixels 
from a world scene that in turn is dominated by the green pixels. It is therefore 
invigorating to design a color-based detector using not only the normalized color 
histogram features but also the Histogram of Gradients (HOGs) that describe the 
shapes. As the distributions of color intensities are random, the conversion of the 
color features into the fuzzy hesitancy features is a wise attempt to account for the 
inaccurate fuzzy modelling. On this count, we will investigate the intuitionistic 
fuzzy entropy functions patterned after fuzzy entropy functions to derive the fuzzy 
hesitancy features that help isolate either Region of Interest (ROI) or Regions of 
Interests (ROIs) purported to be a road sign from a world scene. We can use the 
Support Vector Machine (SVM) to classify the ROIs into the road signs and non-
signs. In order to classify the detected road signs into a correct class, we will mod-
ify the existing Hanman Transform Classifier. When we are dealing with a large 
number of feature vectors, the question of their independence or dependence mat-
ters a lot and the repercussions therefrom ought to be investigated.  

1.3. Objectives of the Research Work 

These objectives include the following:  
1) To formulate different types of features using histogram and uncertainty rep-

resentation by coping up with the inaccurate fuzzy modelling. 
2) To develop a condition for the thresholding operation, and methods for both 

the detection and recognition tasks. 
3) To extract CNN-based features for the recognition of the road signs. 
4) To deal with the independent and dependent vectors by devising a new Han-

man law. 
The rest of the paper is organised as follows: Section 2 briefly introduces the 

information sets, fuzzy/intuitionistic fuzzy entropy functions and transforms, and 
formulation of intuitionistic fuzzy hesitancy features including the mean features, 
intuitionistic fuzzy transform features and hybrid entropy-transform features. 
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Section 3 describes the pervasive information sets and the formulation of the his-
togram-based probabilistic-possibilistic entropy/transform features. Section 4 is 
devoted to the treatment of multivariate feature vectors and to the proposition of 
the Hanman law that directs how to use them if they are independent or depend-
ent. Section 5 presents the methods for the color-based thresholding, detection 
and recognition and also provides the normalized Red Green Blue (RGB) color 
model-based features for the detection and CNN-based features for the recognition. 
The results of their implementation on the Belgium dataset are discussed in Sec-
tion 6. The conclusions are given in Section 7. 

2. Information Sets and Intuitionistic Fuzzy Sets 

Road signs are occasionally captured based on color and shape. In this paper, a 
combination of the normalized color features and HOG is employed. As we all 
know, the color of an object is dependent on the illumination conditions that keep 
on changing most of the times over a day, therefore there is always an uncertainty 
associated with the varying intensities of the road signs. Fuzzy sets can be used for 
the detection of road signs because of the variability involved in the color intensi-
ties reflecting the fuzziness but they cannot address the problem of uncertainty 
associated with the very variability. As the representation of uncertainty in the 
color intensities of the different road signs is difficult with the fuzzy sets, we will 
see next how this is achieved with the information sets. 

2.1. Information Sets 

The information set concept is originated from the Hanman-Anirban information 
theoretic entropy function in [19] with a view to enlarge the scope of a fuzzy set that 
suffers from certain shortcomings such as 1) the delinking of its elements as pairs, 
2) arbitrary selection of a membership function, 3) lack of concern over what lies 
outside the set, and above all, 4) no provision to represent the certainty/uncer-
tainty associated with a set of attribute values. To ameliorate those shortcomings 
one by one, an information value from a set of information values constituting an 
information set is defined to be a product of the attribute value termed as the in-
formation source value and its membership value thereby connecting the compo-
nents of each pair of a fuzzy set into a single value to address the first shortcoming. 
A membership is constructed by looking at the distribution of the information 
source values in terms of its statistical parameters like mean and variance, which 
help fit a Gaussian membership function, thereby addressing the second shortcom-
ing. The membership function ( xµ ) is generally chosen to be the Gaussian func-
tion, The Gaussian membership function is defined as:  

 

21
2e

x meanI I

x
ρµ

 −− 
 
 =  (1) 

where ρ  is the standard deviation and meanI  is the mean of the information 
source values. The sum of information values gives the certainty information that 
shows its allegiance to the concept/class whereas the sum of products of the 
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information source values and the corresponding complement membership func-
tion values is the uncertainty information thus addressing the fourth shortcoming. 
The conversion of a fuzzy set into an information is facilitated by the Hanman-
Anirban entropy function, HAH  is defined as:  

 ( )3 2

1
1 e x x x

n aI bI cI dHA
x

x
H n I

− + + +

=

= ∑  (2) 

where a, b, c, and d are the constant parameters. A choice of their values from the 
statistical parameters of the distribution of the information source values will con-
vert the exponential gain function into the Gaussian function. To this end, let us 
substitute 0a = , ( )21 2b σ= , 2

meanc I σ= −  and ( )2 22meand I σ=  in Equa-
tion (2) that leads to:  

 ( )2 22

1 1
1 e 1x mean

n n
I IHA

x x x
x x

H n I n Iσ µ− −

= =

= =∑ ∑  (3) 

where x x xH I µ= ⋅ , is the information value. To get a lot of mileage, we take the 
help of the generalized Hanman-Anirban entropy function that has a power η   

on its exponential gain function, i.e. ( )3 2

e x x xaI bI cI d
η

− + + +
. Then, x

ηµ  becomes the  

generalized Gaussian function. By varying η  from 0 to 5, it gives rise to several 
shapes such as trapezoidal, triangular, Gaussian, etc. 

2.2. High-Order Information Sets 

The problem with the basic information values, xH  is that they lack the ability 
to represent the high-order certainty/uncertainty in the information source values. 
So, we are bent upon formulating the high-order information set like the Hanman 
transform for which the need arises to seek the adaptive form of Hanman-Anirban 
entropy function.  

Derivation of the Hanman Transform 
The adaptive Hanman-Anirban entropy function, HA

aH  that contains the varia-
ble parameters in its exponential gain function is defined as:  

 ( ) ( ) ( ) ( )( )3 2

1
1 e x x x

n a I b I c I dHA
a x

x
H n I

µ µ µ µ− + + +

=

= ∑  (4) 

Now, we will derive the Hanman transform denoted by H
TH  by substituting 

( ) ( ) ( ) 0a b dµ µ µ= = = , ( ) xc µ µ=  into Equation (4) as: 

 ( )

1
1 e x x

n
IH

T x
x

H n I µ−

=

= ∑  (5) 

The higher form of the information set is denoted by ( ){ }e x xI
xI µ− , since its ex-

ponential gain function is a function of information values whereas the basic in-
formation set is a function of the information source/attribute values. In case of 
an incorrect membership function, the effectiveness of an information set dimin-
ishes, and in such situation, an intuitionistic fuzzy set offers an olive branch. For 
the more recent works on the information sets, the readers may refer to the paper 
of Bansal and Madasu in [20] on Ear based authentication and that of Hanmandlu 
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et al. in [21] on Iris based authentication.  

2.3. Intuitionistic Fuzzy Sets 

The intuitionistic fuzzy set [22] enhances the scope of a fuzzy set that has pairs of 
elements on empowering it with two additional elements, viz., the non-member-
ship function and hesitancy function so that it can cater to the inaccurate fuzzy 
modeling. An intuitionistic fuzzy set intI  having each of its elements a 4-tuple is 
framed as:  

 { }, , ,int x x vx xI I hµ µ=  (6) 

where the functions denoted by ,x vxh µ  and xµ  are the values of hesitancy 
function, non-membership function, and membership function respectively of an 
attribute value, xI . The values of these three functions satisfy the following con-
dition:  

 1x vx xhµ µ+ + =  (7) 

2.4. Definition of the Pervasive Information Set and Formulation of  
the Hesitancy Features 

The pervasive membership is a combination of the modified xµ  and vxµ  that 
account for the deficiency in the fuzzy modeling arising out of an inaccurate mem-
bership function, whereas the basic pervasive information values are the products 
of the information source values xI  and the pervasive membership values, pxµ  
defined as under:  

 ( )x px x x vxI Iµ µ µ= ⋅ +  (8) 

The pervasive information set is denoted by { }x pxI µ , and xh  is related to 

pxµ  from Equation (7) and Equation (8) as:  

 1x pxh µ= −  (9) 

The variable hesitancy function is expressed as:  

 ( ) 1 k k
x x x vxh k k h µ µ= ⋅ = − −  (10) 

where k is the hesitancy degree that helps modify both xµ  and vxµ . The incre-
mental hesitancy function is obtained by subtracting Equation (9) from Equation 
(10) as:  

 ( )Δ . k k
x x x x x vx vxh k k h h µ µ µ µ= − = − + −  (11) 

This can be simplified as: 

 ( ) ( ) ( )1 1Δ 1 1k k
x x x vx vxh k µ µ µ µ− −= − + −  (12) 

Approximating the bracketed terms in the r.h.s. of Equation (12) as the expo-
nential gain functions lead to:  

 ( )
1 1

Δ e e
k k
x vx

x x vxh k µ µµ µ
− −− −= +  (13) 

where 1k >  for 1k −  to be positive. The Intuitionistic Fuzzy (IF) Hanman hes-
itancy entropy function as a sum of incremental hesitancy functions is given by:  
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 ( )
1

1 Δ
n

H
IF x

x
H n h k

=

= ∑  (14) 

It can be easily realized that the terms in the r.h.s. of Equation (13) are the fuzzy 
entropy values. Where k is the hesitancy degree by varying, it we can get different 
values of the incremental hesitancy function. In order to get the corresponding 
intuitionistic information value, we have to take the product of xI  with the r.h.s. 
of Equation (13). This is applicable to any intuitionistic fuzzy (hesitancy) en-
tropy/transform values. 

Here, the problem is how to obtain the values of vxµ . For this, we take recourse 
to the variable complement membership function. We already have two variable 
complement functions, namely, Sugeno complement ( ) ( )1 1x xsµ µ= − +  and 
Yager complement ( )11

ss
xµ= − . In these complements, s is a scale parameter that 

helps compute, vxµ  with different distributions. Equation (14) provides the mean 
hesitancy feature as it is an average of the values of the incremental hesitancy 
function.  

2.5. Relation with the Jyotsana-Hanman Fuzzy Entropy Function 

To explain this relation, let us recall the Jyotsana-Hanman Fuzzy entropy function 
[23]:  

 ( ) ( )3 2 3 2

1
e ex x x cx cx cx

n a b c d a b c dJH
F x cx

x
H K

η η
µ µ µ µ µ µ

µ µ
− + + + − + + +

=

= +∑  (15) 

where 1cx xµ µ= −  and K is the normalizing factor, given by: 

( )3 2

1

e e
a b c d

a b c dnn n

K η

η
 

− + + +  − + + + 

=

−

 

with the power η . This is derived from the Generalized Hanman-Anirban (GHA) 
entropy function in the probabilistic domain P, defined as: 

 ( ) ( )
3 2

1
e ei i i

n ap bp cp d a b c dGHA
P i

x
H K p

η
η− + + + − + + +

=

= −∑  (16) 

The factor K is the same as given above but the constant term, [ ]e a b c d η− + + +  is 
removed in Equation (15) because of fuzzification after replacing ip  with xµ  
in Equation (16). If we choose K = 1/n as an approximation to the normalizing 
factor, a = b = c = 0 and d = 1 in Equation (16), we get one form of the Jyosana-
Hanman fuzzy entropy function, as under:  

 ( )1
1

1 e ex cx
n

JH
F x cx

x
H

n
η ηµ µµ µ− −

=

= +∑  (17) 

This is similar to the r.h.s. of Equation (13) except that in place of vxµ , we have 

cxµ , the complement membership function and that in place of η  we have (k − 
1). Note that Equation (17) is a specific function that becomes the incremental 
hesitancy function on replacing cxµ  with vxµ  and η  with (k − 1). Let us con-
sider the adaptive Jyotsana-Hanman fuzzy entropy function having the variable 
parameters.  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 3 2. . . . . . . .

1
e ex x x cx cx cx

n a b c d a b c dJH
aF x cx

x
H K

η η
µ µ µ µ µ µ

µ µ
   − + + + − + + +   

=

= +∑  (18) 

Note that the constant parameters do not change during the summation oper-
ation whereas the variable parameters in Equation (18) can be changed for each 
value of the index, x. But the restriction is that their values should lie in the range 
(−1, 1). This is a replica of Equation (15) but with the variable parameters denoted 
as a(.), b(.), c(.) and d(.). Now, substituting K = 1/n, a(.) = d(.) = 0 and c(.) = Ix, 
we get the Hanman Fuzzy Transform (FT), given by:  

 ( ) ( )

1

1 e ex x x cx
n

I IH
FT x cx

x
H

n
η ηµ µµ µ− −

=

 = +  ∑  (19) 

This becomes the coveted Intuitionistic Hanman Fuzzy Transform, H
IFTH  on 

replacing cxµ  with vxµ  and η  with k-1, shown under: 

 ( ) ( )1 1

1

1 e e
k k

x x x vx
n

I IH
IFT x vx

x
H

n
µ µµ µ

− −− −

=

 = +  ∑  (20) 

The assumption of the variable parameters in Equation (18) bestows us a flexi-
bility that they can be different in the two terms in the summation provided K = 
1/n does not pose any problem as we can do away with the normalization in the 
possibilistic domain. In view of this, Equation (18) can be rewritten as:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 3 2

1 1 1 1 2 2 2 2. . . . . . . .

1

1 e ex x x cx cx cx
n a b c d a b c dJH

aF x cx
x

H
n

η η
µ µ µ µ µ µ

µ µ
   − + + + − + + +   

=

= +∑  (21) 

By having different variable parameters in the two terms, Equation (21) bestows 
the facility to derive different forms of the intuitionistic fuzzy entropy functions. 
We will derive more general equations than Equation (18) and Equation (21) that 
are the variants of the Jyotsana-Hanman fuzzy entropy function by invoking the 
Mamta-Hanman entropy function in [24]. 

2.6. Derivation of the Generalized Fuzzy Entropy Function 

The Mamta-Hanman entropy function, an extension of the Hanman-Anirban en-
tropy function, is defined as:  

 ( )
1

1
e x

n aI bMH
x

x
H K I

ηα
β − +

=

= ∑  (22) 

where 
( ) ( )

1
1

1 e a b

K
a b

n
η

η

αβ − +

=
 − − + − 
 

. 

For the purpose of simplification Jyotsana, 1
1K
n

=  for the reason given above.  

The corresponding Mamta-Hanman fuzzy entropy function can be easily framed 
based on the Jyotsana-Hanman fuzzy entropy function as:  

 ( ) ( )
1

1 e ex cx
n a b a bMH

F x cx
x

H
n

η ηα αµ µβ βµ µ
− + − +

=

 
= + 

 
∑  (23) 

It is now easy to write the adaptive form of Equation (23) as:  
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 ( ) ( )( ) ( ) ( )( ). . . .

1

1 e ex cx
n a b a bMH

aF x cx
x

H
n

η ηα αµ µβ βµ µ
− + − +

=

 
= + 

 
∑  (24) 

By replacing cxµ  with vxµ , η  with k − 1 and by substituting b = 0 and 
1a α= =  in Equation (23), the Mamta-Hanman Intuitionistic Fuzzy (IF) entropy 

function is obtained as:  

 ( )1 1

1

1 e e
k k
x vx

n
MH
IF x vx

x
H

n
µ µβ βµ µ

− −− −

=

= +∑  (25) 

In the similar manner, we can get the Mamta-Hanman Intuitionistic Fuzzy Trans-
form (IFT) by substituting ( ). xa I= , ( ). 0b = , 1α =  and replacing cxµ  with 

vxµ  and η  with k − 1 in Equation (24) as given by: 

 ( ) ( )1 1

1

1 e e
k k

x x x vx
n

I IMH
IFT x vx

x
H

n
µ µβ βµ µ

− −− −

=

 = +  ∑  (26) 

As can be observed that Equation (25) and Equation (26) have an extra param-
eter β  over Equation (19) and Equation (20), which can be leveraged to our ad-
vantage just as in Type-2 fuzzy set the variance is changed to elongate the shape 
of the Gaussian function. In an information set this option can be exercised but 
not here, as we are dealing with the inaccurate fuzzy model, i.e. the non-member-
ship function. 

The benefit of having different variable parameters in Equation (21) is not ex-
emplified. This exemplification is now on the cards with the invocation of the adap-
tive Mamta-Hanman fuzzy entropy function. To this effect, we will rewrite Equa-
tion (24) as follows:  

 ( ) ( )( ) ( ) ( )( )1 1 2 2. . . .

1

1 e ex cx
n a b a bMH

aF x cx
x

H
n

η ηα αµ µβ βµ µ
− + − +

=

 
= + 

 
∑  (27) 

To test the flexibility offered by the different parameters in the r.h.s. of Equation 
(27), consider two sets of substitutions with the first one as ( )1 . xa I= , ( )1 . 0b = ,

( )2 . 1a = , ( )2 . 0b =  and the second one as ( )1 . 1a = , ( )1 . 0b = , ( )2 . xa I= , 
( )2 . 0b =  and 1α =  in addition to replacing cxµ  with vxµ  and 1kη = − . 

The resulting hybrid Mamta-Hanman Entropy-Transforms (ETs) are given as un-
der:  

 ( ) ( )1 1

1
1

1 e e
k k

x x vx
n

IMH
hET x vx

x
H

n
µ µβ βµ µ

− −− −

=

 = +  ∑  (28) 

 ( ) ( )1 1

2
1

1 e e
k k

x x vx
n

IMH
hET x vx

x
H

n
µ µβ βµ µ

− −− −

=

 = +  ∑  (29) 

It may be noted that we would have got the same equation but for β  from 
Equation (21), keeping the other parameters the same and making the substitutions 
that include:  

1) ( ) ( ) ( )1 1 1 0a b d⋅ = ⋅ = ⋅ =  and ( )1 xc I⋅ = , ( ) ( ) ( )2 2 2 0a b d⋅ = ⋅ = ⋅ =  and  
( )2 1c ⋅ = .  
2) ( ) ( ) ( )1 1 1 0a b d⋅ = ⋅ = ⋅ =  and ( )1 1c ⋅ = , ( ) ( ) ( )2 2 2 0a b d⋅ = ⋅ = ⋅ =  and  
( )2 xc I⋅ = .  
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This conversion from the fuzzy domain into the intuitionistic fuzzy domain will 
not be possible without the different parameter settings in the two terms. The 
story doesn’t end here as several ramifications spring forth with an appropriate of 
choice of the variable parameters in the exponential gain functions in Equation 
(28) and Equation (29). For example, these gain functions can be converted into 
the logarithmic gain functions. 

2.7. A Brief Discussion on the above Features 

Let us gain insight into the problem to understand what is going on by the above 
formulations. We can see that both membership and non-membership functions 
are modified by the choice of parameters of the exponential functions as well as 
the hesitancy degree not to talk of the scale parameter in the construction of the 
no-membership function itself. The net effect of all these is to push the pervasive 
membership function values close to 1 thereby killing the underlying distribution 
of the information source values even if there exists any. This amounts to in clear 
terms what we achieve by the histogram equalization, enhancement or by a cut-
set operation on the membership functions of an image to affect its look and feel. 
But, this analogy enthuses us to seek the alternative ways of modifying the mem-
bership function itself rather than becoming parasite on the non-membership and 
the hesitancy degree. Though this is interesting and emulating but our cherished 
objectives don’t allow us to take any more extra steps in this direction. As we can 
see, the histogram equalization distributes an equal number of gray levels for each 
frequency of occurrence, and a cut set discards the lower values of a membership 
function, whereas the enhancement pushes the membership function values that 
lie above the crossover point to the vicinity of 1 and those below the crossover 
point close to 0. All these methods applicable to a fuzzy set have a limited effect in 
altering the membership function values of a well-defined mathematical function 
like Gaussian, Bell, Generalized Gaussian, etc. Hence, these are of no use as far 
as the intuitionistic fuzzy set is concerned to adapt at this juncture. Now coming 
to the usage point, we will use only the terms as features on the r.h.s. of equa-
tions of interest, viz Equation (20), Equation (24) and Equation (25). Irrespec-
tive of the choice, we are bothered about how effective are the features of a par-
ticular type. This is only ascertained while using them for the detection of the road 
signs. 

3. A Brief Description of Pervasive Information Sets 

The above formulations pave the way for the definition of pervasive information 
set. Recall the certainty information value x xI µ  in Equation (3) that tells how 
much xI  belongs to the concept (normal or abnormal) represented by the value 
of the Membership Function (MF), xµ . The Hanman-Anirban entropy function 
helps us find the certainty information from the distribution of the values of xI  
by fitting MF. By this, a fuzzy set comprising ( ),x xI µ  as pairs is converted into 
the information set { }x xI µ . 
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Consider x x x x xI I Iµ µ− =  which contains uncertainty (external) information. 
In the case of the intuitionistic information set, the sum of two kinds of infor-
mation, viz, certainty and uncertainty, is x x x vxI Iµ µ+  and the residual infor-
mation is ( ) ( )1x x x x vx x x vx x xI I I I I hµ µ µ µ− + = − − = . By resorting to the accu-
rate fuzzy modeling, the residual information becomes  

( ) ( ) ( )1 k k
x x vx x xI I h kµ µ = − − . At this juncture, we define the variable perva-

sive membership function, ( )px kµ  that leads to the variable Pervasive Information 
set as the sum of k

xµ  and k
vxµ , as given by: 

 ( ) k k
px x vxkµ µ µ= +  (30) 

This reminds us that in addition to k the pervasive membership function is also 
dependent on the scale s used in Yager and Sugeno complements. The pervasive 
information value is a variable unlike the information value in an information set 
and it is given by: 

 ( ) ( )px x pxH k I kµ=  (31) 

The pervasive information set is a collection of ( )pxH k , i.e. ( ){ }x pxI kµ . A 
flowchart showing the formation of the variable pervasive information set is given 
in Figure 1. As xµ  and vxµ  are less than 1, we can investigate the Frank T-norm,  
 

 
Figure 1. Flowchart on the formation of the variable pervasive information set. 

 

 ( )
( ) ( )elog 1 1 1

, , ; 1
1

x vx

FT
px x vx

k k
k k

k

µ µ

µ µ µ
 + − − = >

−
 (32) 

or Dombi T-norm,  
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 ( )
( ) ( )

1
1 1

1, , ; 1

1 1 1

DT
px x vx

k k k
x vx

k kµ µ µ

µ µ− −

= >
 + − + −  

 (33) 

The above parametric T-norms are the possible variants of the ( )px kµ  in 
which k acts as a parameter. However, a thorough experimentation would reveal 
which T-norm or S-norm is a suitable candidate for the role of a ( )px kµ . 

3.1. Properties of Pervasive Membership Function 

These are listed as follows:  
1) Just as the Hanman transform the pervasive Hanman transform can be easily 

derived as: 
 e x pxI

pT xH I µ−⋅=  (34) 
2) The pervasive membership function depends on two non-statistical param-

eters s and k and therefore it doesn’t fit any distribution.  
3) The name pervasive denotes that the information provided by xµ  and vxµ  

that cover both the inside and outside of a set. For instance, consulting a family 
doctor for any ailment is to receive an advice (internal information) whereas seek-
ing the opinion of an expert doctor on the same ailment is the external infor-
mation.  

4) The use of pervasive information set is necessitated to circumvent the inac-
curate fuzzy modeling of a membership function. When we are unable to fit a suit-
able xµ  for the distribution for the information source values, then it prompts 
us to go in for pxµ .  

5) While dealing with the set based operations, two pervasive membership func-
tions of a pervasive information set are amenable to the union and intersection 
operations but not to the complement operation. The union of two pervasive 
membership functions, 1pxµ  and 2pxµ  is { }1 2 1 2max ,px px px pxµ µ µ µ∨ =  and 
their intersection is 1pxµ  and { }2 1 2min ,px px pxµ µ µ= . They also do not satisfy the 
convex property due to Property 3. The components of the pervasive membership 
function can be subjected to T-norm or S-norm operators as in Equation (32) and 
Equation (33).  

3.2. Histogram Representation of Gray Levels in Road Signs 

Let us confine to the representation of gray levels g from 1 to 255 first which are 
normalized to (0, 1) and extending it to the RGB color model is straightforward. 
The histogram is a plot of g vs. ρ  where gρ  is the frequency of occurrence of 
g and hardly displays any kind of distribution. On the other hand, normalized 
gray levels range from 0 to 1. If we select any standard membership function for 
g, then the information set is { }g ggµ ρ  and the corresponding Hanman possi-
bilistic-probabilistic transform is { }e gg

gg µ ρ− . Now coming to the case of inaccu-
rate fuzzy modelling where gµ  is ill-defined, we need to tread in the intuitionistic 
domain. As we have improper gµ , we have to select the non membership func-
tion vgµ  by seeking a Sugeno or Yager complement. The question of hesitancy 
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degree arises here too, but interestingly we can use the frequency of occurrence, 

gρ  akin to probability as the hesitancy degree for two reasons: Firstly it lies in the 
range of 0 to 1 and secondly the more the probability , the lesser is the hesitancy. 
In light of this reasoning, the Jyotsana-Hanman fuzzy entropy function paves the 
way for the formulation of the possibilistic probabilistic Intuitionistic entropy func-
tion as:  

 
1

1 e e
g g

g vg
n

pp g vg
g

H
n

ρ ρµ µµ µ− −

=

 = + 
 

∑  (35) 

This is born out of Equation (15) with parameters set as K = 1, a = b = d = 0, c = 
1 and with replacement of xµ  with gµ , vxµ  with vgµ  and η  with gρ . Here, 
L stands for the number of gray levels. However, if we use the variable parameters 
as part of the Jyotsana-Hanman fuzzy entropy function, possibilistic-probabilistic 
intuitionistic Hanman transform is obtained as given by: 

 
1

1 e e
g g

g vg
n

g g
app g vg

g
H

n

ρ ρµ µµ µ− −

=

 = + 
 

∑  (36) 

We will now give a clue for its implementation, if g is divided into intervals such 
that each interval will have a bin consisting of a set of gray levels and the corre-
sponding frequencies of occurrences.  

 
1

1 e e
g gj jj

j jg vgj j
j j j

j j

L g g

app g vg
g gj

H
n

ρ ρ
µ µ

µ µ
−

− −

=

 
= +  

 
∑  (37) 

where j indicates the jth bin and jL  indicates the number of gray levels in that 
bin. If we have Nb as the number of bins then jL n=∑ . Note that difference 
between Equation (36) and Equation (37). Each term in the bin, denoted by appjH  
in Equation (37) gives the possibilistic-probabilistic entropy function that forms 
one feature whereas all the terms on the r.h.s. of Equation (36) qualify as features. 
It may be noteworthy for the readers that several probabilistic features are gener-
ated in [25] by combining the Hanman-Anirban entropy function with Shannon, 
Renyi and Tsallis entropy functions.  

4. Analysis of Multi-Variables in the Information Set Theory 

So far, we have dealt with a single input, i.e. an attribute or an information source 
having either a proper distribution of values that are amenable to be fitted with a 
well-defined mathematical function like the Gaussian membership function based 
on the fuzzy set concept or having a random distribution for which fitting an in-
accurate membership function is only possible in which case we go in for an intu-
itionistic fuzzy set concept. In either case, we can extract different types of features 
as explained above from the input, say, a road sign using the information set con-
cept. An important point to note at this point is that we can have one input pro-
ducing either one output or many outputs. On the other hand, there can be mul-
tiple inputs producing either a single output or many outputs. By this, we have 
four categories that include:  
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1) Single Input Single Output (SISO): e.g. one road sign showing one identity.  
2) Single Input Multiple Output (SIMO): e.g. one scene containing several con-

stituents.  
3) Multiple Input Single Output (MISO): e.g. one-color road sign displaying one 

identity.  
4) Multiple Input Multiple Output (MIMO): e.g. one-color scene with three 

channels having several constituents. 
The 4th category is applicable to the detection of a road sign from a world scene 

comprising the pixel intensities from the R, G, B channels. However, the detection 
of a road sign is difficult because of its small size as compared to other constituents 
such as track, trees, and buildings. But there is a silver lining associated with this 
detection, as most road signs are predominantly red in color, while the world 
scenes containing the road signs have trees (the green patches) on the two sides of 
the roads, including a central patch of greenery. So, we shall exploit the color gra-
dient as a cue in devising a threshold to segregate a road sign from the scene and 
in designing the Color-Based Detector.  

4.1. Multi-Variables in the Histogram Representation 

Here, we are concerned with a scene with RGB color model. We have already dis-
cussed how a gray level g in a bin with its membership function gµ , the non-
membership function, vgµ  and frequency of occurrence of gρ  that acts as a 
hesitancy degree is represented as the possibilistic-probabilistic entropy function. 
We now look at the histogram representation of g in both G and R channels with 
the corresponding histograms. For ease of notation, we consider a bin in G-histo-
gram and at the same location another bin in R-histogram. Their gray levels are 
denoted by gG  and gR , their membership functions by 

gGµ  and 
gRµ  and their 

frequencies of occurrences by 
gGρ  and 

gRρ  respectively. It may be noted that 

gGµ  and 
gRµ  are the result of opting a mathematical function for the gray levels 

in the two bins. The possibilistic-probabilistic information value for gG  is 
g gG Gµ ρ  

and that for gR  is 
g gR Rµ ρ . While the possibilistic-probabilistic transform values 

for gG  and gR  are e G Rg g
gG

µ ρ
µ

−
 and e R Gg g

gR
µ ρ

µ
−

 respectively.  

4.2. Multi-Variables in the Information Set Representation 

Unlike in the histogram representation, G and R scene images are partitioned into 
windows of some size. The pixel intensities of each window are fitted with a math-
ematical function. Let 

xGI  and 
xRI  be the pixel intensities and 

xGµ  and 
xRµ  

be the corresponding membership function values in the windows of G-scene and 
R-scene respectively. Then, the basic information values and the Hanman trans-
form values of pixel intensities are ( ),

x x x xG G R RI Iµ µ  and ( )e , eG Rx x
x xG RI Iµ µ− −  

respectively in the windows. If we replace 
xGµ  with 

pxGµ  and 
xRµ  with 

pxRµ  
where p stands for the pervasive membership function, we get the corresponding 
pervasive information values and pervasive transform values respectively. We can 
also make use of the intuitionistic fuzzy and transform features derived above as 
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alternatives by adopting them to G and r channels. Here comes the need for dis-
tinguishing between the independent and dependent variables. To this effect, the 
Hanman law states how to distinguish them. 

Hanman Law: Let the two variables gG  and gR  or 
xGI  and 

xRI  from their 
respective samples be compared for ascertaining their relative significance then 
their gradient information values or simply the error values need to be considered 
if they are independent else their divergence information values, if they are de-
pendent. 

Whether we have the gradient or divergence information values, if they are ex-
tracted from a number of samples, then the T-norms of the information values 
provide the minimum information to be considered for accomplishing the tasks 
such as detection, tracking, and recognition. It is tempting to know that the Bayes-
ian law that plays with a priori and posterior probability distributions has any-
thing to do with the Hanman law whose purpose is to offer guidance in the matter 
of independence/dependence of the feature vectors derived from the distributions 
of information source/attribute values. Some discussion to this effect is postponed 
to the conclusion section. As the probabilistic Hanman-Anirban entropy function 
is extended in [26] to embed the Bayesian learning into the information set fold; 
it won’t be difficult to establish a connection between the Hanman and Bayesian 
laws. 

Proof: It may be noted that the dependent variables can be called the conditional 
variables. Let R and G be the pixel intensities to be compared, the xHR  and xHG  
be the corresponding information values, then the gradient information is defined 
in the independent case as: 

 
x x x x

I
x x x

R R G G

HD HR HG
I Iµ µ

= −
= −

 (38) 

In the dependent case, the gradient information becomes: 

 

( ) ( )

1 |

x x x x

x x x x

D
x x x x

R R R G

R R R G

HD HR HR G
I I

I I

µ µ

µ µ

= −
= −

= −

 (39) 

where |x xHR G  is the cross-entropy function. If R depends on both G and B, then 
the relation between them can be written according to the Hanman law as:  

 

( )
( )

( )( )

2 | ,

,

,
x x x

x x x x x x

D
x x x x x

R R R x x

R R G G B B

HD HR HR G B

I I T G B

I T I I

µ

µ µ µ

= −

= −

= −

 (40) 

The parametric T-norms such as Frank and Yager T-norms are found to be 
effective. While implementing T-norms, two terms are taken at a time. The result-
ing first T-norm is used to get the second T-norm by combining the first T-norm 
and the third term. This way, the T-norm of any number of terms can be obtained. 
Here, the term refers to an information value, gradient and divergent information 
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value. In a simplest representation, we can have a product as the T-norm, that is: 

 

( ) ( ) ( )

( )
( )1

2 2 2

,
x x x x x x x x

x x
x x

x x

G G B B G G B B

G B
G B

G B

T I I I I

I I

I I

µ µ µ µ

µ µ

= ∧

= ⋅ ∧
+

 (41) 

This can be extended to any number of values as: 

 

( )

( )
( )

1 1 2 2

1 2
1 2

1 2

1
2 2 2 2

, , ,
x x x x nx nx

x x nx
x x nx

x x nx

G G G G G G

G G G
G G G

G G G

T I I I

I I I

I I I

µ µ µ

µ µ µ= ⋅ ∧ ∧ ∧
+ + +

⋅









 (42) 

Clarification on the Product T-Norm 
This formula has so much to say on the merging of several vectors consisting of 1) 
Information values, 2) Gradient information values, 3) Divergent information val-
ues, where they appear as the composition of information source values, member-
ship function values and the exponential gain functions. If they happen to be the 
computed values, then Jyotsana recourse to the parametric T-norms. Otherwise, 
this gives a solace as it can be applied on all the vectors at a time to yield their T-
norm thus relieving us from the ordeal of satisfying the four properties, viz, mon-
otonicity, commutativity, associativity and identity. The intersection operation 
gives the minimum of all the membership functions. Interestingly, we can use the 
T-norm operator on all the membership functions by taking two at a time. But 
this is a time-consuming process. Though we have clues at hand to improve, we 
will explore on this formula in a separate work. 

Just as we have considered many samples of GI , we can also have many sam-
ples of GI , we can also have many samples of 

xRI  like 
1xRI , 

2 xRI , 
nxRI  in that 

case either we can go for a parametric T-norm, T (
1xRI , 

2 xRI , 
nxRI ) by taking two 

terms, (
ixRI , 

1,i xRI
+

) at a time and then combining with the third 
2,i xRI

+
. Alterna-

tively, we can also make use of the above product as the T-norm proposed by us. 
Let us now move on to high level representations of attribute/information source 
values using the Hanman transform. The above gradient and divergent information 
values in both the independent and the dependent cases appear as:  

 e eR R G Gx x x x
x x

I II
x R GHDT I Iµ µ− −= −  (43) 

 

( )

|

e e

e e

R R G Gx x x x
x x

R R G Gx x x x
x

D
x x x x

I I
R R

I I
R

HDT HTR HTR G

I I

I

µ µ

µ µ

− −

− −

= −

= −

= −

 (44) 

where the superscripts I and D indicate the independent and the dependent cases 
respectively. In the situation of the inaccurate fuzzy modeling, the pervasive in-
formation set is the option for us as detailed at length in the previous sections. So, 
the above expressions in Equation (43) and Equation (44) can be easily changed 
by replacing 

xRµ  with 
pxRµ  and 

xGµ  with 
pxGµ , where the subscript p represents 
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the pervasive information set, in addition to having the hesitancy degree as (k − 
1). The above expressions take the forms as given by:  

 ( ) ( )1 1

e e
k k

R R G Gx px x px

x x

I II
x R GHDP I I

µ µ
− −

− −
= −  (45) 

 ( ) ( )1 1

e e
k k

R R G Gx px x px

x

I ID
x RHDP I

µ µ
− −

− − 
= − 

  
 (46) 

5. Application of Information Theory Concepts to Detection,  
Tracking and Recognition 

An application of the information set theory is made for the first time to the de-
tection, tracking and recognition of the road signs though it has been applied to 
other fields such as biometric authentication involving several modalities like face, 
fingerprint, retina, ear, and gait; to the medical diagnosis of diseases like brain 
tumor, breast cancer, diabetic retinopathy, and to several imaging processing ap-
plications listed in [26]. We now pinpoint its application to the tasks of the pipe-
line in Table 1.  
 
Table 1. An application of the information set theory to different tasks of the pipeline. 

Main tasks of the pipeline Sub-tasks Information set concept used 

Thresholding Thresholding Condition 
The gradient of the fuzzy  
Hanman transform values 

Detection Feature Extraction 
Incremental hesitancy-based  

color features 

Tracking Learning Model Divergent Hanman transform values 

Recognition Design of a Classifier 
Mamta-Hanman transform as the 

criterion function 

5.1. Detection 

The issue here is to separate a road sign from the world scene. The striking feature 
of most of the road signs is the red color whereas the world scene is dominated by 
the green color. So, we wish to use this color contrast in devising a threshold con-
dition for the segregation of a road sign from a world scene, based on histogram 
representation of green and red gray levels of a world scene. As already defined, 
the membership functions of the green and red channels are Ggµ  and Rgµ  and 
the corresponding frequencies of occurrences are 

gGρ  and 
gRρ , then the fuzzy 

Hanman-transform based threshold condition is expressed as:  

 ( )e e 1,1G G R Rg g g g
g gG RTh

µ ρ µ ρ
µ µ

− − = − ∈ −  
 (47) 

This condition is actually the gradient fuzzy Hanman transform values assum-
ing the independence of green and red pixel intensities. Having derived the thresh-
old condition as a fuzzy gradient between the fuzzy Hanman transform values of 
the normalized green and red pixel intensities in the normalized RGB color space, 
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the histogram representation of their distributions within a world scene is depicted 
in Figure 2. The fuzzy gradient attains a minimum value at the value of 0.5 at which 
the normalized red pixels have intensities, 0.5

xNRI >  and those of green pixels, 
0.5

xNDI >  where the subscript N denotes the normalization. Hence, this value is 
selected as a threshold.  
 

 
Figure 2. Histogram distribution of the red and green channels. 

 
All the red pixels of the scene demarcated by the threshold leading to its bina-

rization are linked to form a contour or an edge. A bounding box or blob enclosing 
each contour is subjected to the height-width limits in terms of minimum and 
maximum values as shown in Table 2 and these in turn help in segregating the 
Regions of Interests (ROIs) designated as the road sign candidates. The next step 
is to confirm the candidacy with a Color-Based Detector (CBD) by making use of 
different types of features such as incremental hesitancy features, mean hesitancy 
features given in Equation (13) and Equation (14). These features emerge from 
the conversion of the normalized R, G, B values denoted by 

xNRI , 
xNGI  and 

xNBI  in the candidate road signs on the application of the pervasive information 
set concepts. We have employed the incremental hesitancy features from Equa-
tion (13) and the mean hesitancy features from Equation (14) in the development 
of two CBDs with the first one being called CBD using the Hesitancy features 
(CBDH) and the second one, CBD using the Mean Hesitancy features (CBDMH) 
in addition to the Basic CBD (BCBD) that is built using the normalized RGB color 
features and also Histogram of Gradients (HOGs) as shape features. Though we 
are in position to amass several variants of CBD by the adaptation of different 
types of features, we focus on the three features only, and the details of their im-
plementation are relegated to Section 6 entirely devoted to the results, where we 
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will be using the Radial Basis Function-Support Vector Machine (RBF-SVM) as 
the detector to demonstrate the effectiveness of the features. The objective here is 
to confirm whether the captured ROI is that of a road sign with the help of any 
classifier in the role of a detector. The block diagram is as shown in Figure 3. 

 
Table 2. Limiting values for the features used to filter out ROIs. 

Minimum height 
(pixels) 

Maximum height 
(pixels) 

Minimum width  
(pixels) 

Maximum width 
(pixels) 

12 500 12 500 

 

 
Figure 3. Block diagram of the proposed pipeline. 

5.2. Tracking 

In this, we will touch upon the implementation clue. The issue here is to find the 
location of the corners of the bounding box enclosing the detected road signs in a 
new frame using the location of the previous road sign in the previous frame. This 
is actually the prediction of the location of a corner. To achieve, a tracking model 
is chosen along with an objective function. The unknown parameters of the model 
are found using the evolutionary learning model. Here, we choose a set of con-
tenders called a population to achieve the goal of finding a corner in the next 
frame. As we are concerned with two diagonal corners, we need two X coordinates 
and two Y coordinates. This learning model has to be executed separately to de-
termine each coordinate iteratively until the model is converged. The values of the 
objective function will provide the outcomes for which the membership functions 
are found. The presence of the second subscript in a membership function is de-
noted by the symbol, ζ  indicating that it is outcome-based. The unknown param-
eters serve as the information source, also called effort values. We can use the pru-
dent learning in [23] to achieve the goal. According to this approach, a contender 
not only competes with the achiever but also with the least performing contender. 
Then, the sum of the divergent Hanman transform values would provide the in-
crement to the updation of the effort values as given under.  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 21 e e e es s c c c c e eI it I it I it I it
c c cI it I it I it r rζ ζ ζ ζµ µ µ µ

ψ
− − − − + = + ⋅ − + ⋅ −  

 (48) 

where ψ  is the learning factor, r1 and r2 are the random numbers, (it) refers to the 
old iteration with (it + 1) being the new iteration. The first subscript c of the mem-
bership function denotes a contender of interest, s refers to the achiever, and e refers 
to the least performing contender. The number of iterations is specified a priori. 
We will not go deep into this approach as it is worth a separate research work.  
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5.3. Recognition 

The need arises for the recognition as some of the ROIs demarcated by the thresh-
olding, and then enclosed in the bounding boxes to be confirmed as the road signs 
by any CBD are prone to error as they turn out to be the false positives. To mitigate 
this shortcoming of detectors, we go in for the 2-stage mutli-scale Convolutional 
Neural Network (CNN) model in view wide spread popularity of the deep learning 
neural networks. The architecture of this model is shown in Figure 4 and we tap 
the feature maps after either the first block or the second block of the CNN model 
depending how effective are the CNN/deep features extracted from them. As ex-
plained in [27], it has two stages of learnable layers with each stage containing 
a convolutional layer, and a max-pooling layer followed by the local contrast nor-
malization layer. The combined output from both the layers forms the input to 
softmax classifier that uses Adam optimiser. However, we have formulated the er-
ror/gradient information based Hanman Transform (HT) classifier as an alterna-
tive to the above CNN-based softmax classifier. Unlike in the detection, the color 
pixel intensities are unimportant in the case of recognition as we are interested in 
the class of the detected road sign. So, all the three-color channels are merged to 
provide a gray level image. We have proposed two methods for the recognition 
discussed next.  
 

 
Figure 4. CNN model for tapping the feature maps. 

 
Method-1: In this method, the features drawn from the feature maps are clas-

sified using the Hanman Transform Classifier (HTC). First of all, we will discuss 
how the feature maps are generated from the detected road sign image that serves 
as the input to the CNN model. As shown in [28], an application of kernel func-
tion on an input image (i.e. road sign) in the convolutional layer in the first block 
converts it into a membership function matrix whose size is reduced in the max 
pooling layer of the same block. As we apply a specified number of kernels on the 
input image, we have as many membership function matrices as the number of 
kernels employed. Next, we move on to the second block where the inputs are the 
membership function matrices from the first block. The application of a kernel 
on each membership function matrix in the convolutional layer followed by the 
max-pooling operations in the second block leads to the substantially modified 
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membership function matrices of reduced size. The feature maps can be chosen 
from either the first block or the second block. The deep features are so named as 
they evolve from feature maps in the CNN model. As there are 32 filters, 32 values 
of the membership function emanate for each pixel, which are averaged out to get 
a single value. Like this, there are 28 × 28 deep features after the first convolutional 
layer.  

Development of a Variant of the Hanman Transform Classifier 
The first application of the Hanman Transform Classifier has appeared in [29] 
followed by its variant in [25]. The deep features are given to the proposed Variant 
of the Hanman Transform Classifier (VHTC) that operates on the error or gradi-
ent vectors between the training feature vectors of each class and a single test fea-
ture vector and delivers the identity or class label of the test feature vector. It may 
be noted that the gradient vectors contain the residual information that reflects 
the variability involved in the road signs due to varying lighting conditions, sizes 
and shapes. To process so many error vectors of a class, the parametric T-norm is 
advocated above. Following this principle, we have opted the Frank T-norm that 
takes two error vectors at a time and gives the T-normed error vector. Instead of 
computing an overall T-norm encompassing all the error vectors, we seek to find 
all the possible T-normed error vectors that contain the necessary information 
about class. But to get the sufficient information, the Hanman law recommends 
the gradient transform vector as the guiding factor. Here, we shall use the Mamta-
Hanman Transform denoted by MH

TH  to get the coveted the gradient transform 
vectors from the T-normed error vectors. The gradient transform vector with the 
minimum MH transform value is considered as the representative of that class; 
hence this transform acts as the criterion function. The infimum of all the repre-
sentatives bestows the class label of the unknown road sign.  

A brief description of the VHTC is as under: Let ( )trF ij  denote the thj  fea-
ture vector of the thi  sample in the training set and ( )tsF j  be the thj  feature 
vector of the test sample. The absolute error vector between thj  feature vector of 
the thi  sample of thl  class and thj  test feature vector is computed using:  

 ( ) ( ) ( ),ij tr tse l F i j F j= −  (49) 

Next, the Frank t-norm [30] between every possible pair ( ) ( )( ),ij kje l e l  of the 
(i, k) error vectors in the thl  class, is calculated from:  

 ( )
( )( ) ( )( )1 1

log 1
1

ij kje l e l

l
ik s

s s
E j

s

 − −
 = +
 −
  

 (50) 

where 1,2, , tri N=   (Number of the training feature vectors/samples) and k = i 
+ 1 but not equal to i with s > 0. The number of possible pairs or the t-normed 
error vectors is equal to ( )2 1trN

trlN N l
=

= − +∑ . As we want to cash in on the cer-
tainty associated with each t-normed error vector belonging to a class, its degree 
of association with the class has to be found. For simplicity, we consider the ex-
ponential function of the t-normed error vector as its membership function vector, 
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given by: 

 ( ) ( )e
l
ikE jl

ik jµ −=  (51) 

To derive the Mamta-Hanman transform, let us consider the adaptive Mamata-
Hanman entropy function, expressed based on Equation (22) as: 

 
( ) ( ). .

1
1

e x
n a I bMH

a x
x

H K I
ηα

β  − + 

=

= ∑  (52) 

Substituting 1 1K n= , l
x ikI E= , 0.3β =  arrived at by experimentation,  

( ) ( )
( ). l
ika µ= , 1α = , ( ). 0b =  and 1η =  in Equation (52) leads to the Mamta-

Hanman transform as: 

 ( ) ( ) ( ) ( ) ( )0.3

1
1 e

l l
ik ik

ik

n
j E jMH l

T ik
j

H l n E j µ−

=


=


 
 
∑  (53) 

As the criterion for classification, the infimum of the Mamta-Hanman trans-
form values of all the selected t-normed error vectors identifies the class label of 
the test sample. Apart from VHTC, another variant would take birth if the perva-
sive membership function swaps the exponential membership function in Equa-
tion (53). Our endeavor has been to make VHTC an indomitable classifier. The 
T-normed error vector with the minimum Mamta-Hanman transform value is 
qualified to be the representative of a class as all other T-normed error vectors 
possess the transform values that are well within the border adjoining another 
class whereas the infimum of the representatives of all classes gives the identity of 
the class label of the test feature vector. The representatives here resemble with 
the vectors of the SVM, a name given to the hyper planes that are fitted to the 
feature vectors of each class. The hyper parameters, viz., the regularization param-
eter C, and the width of the radial basis (Gaussian) function γ, of the hyper planes 
of SVM are found by the complex optimization for the sake of an optimum per-
formance. The other parameters that affect the performance of SVM are K, the 
number of clusters, and s that gives a shift of the hyperplane from a vector passing 
through the origin. Method-2: As far as the generation of the feature maps is con-
cerned, the procedure is the same in the second method as outlined in the first 
method but the difference lies in the features derived from the selected feature maps, 
and these are deep fuzzy hesitancy features and the deep mean hesitancy features. 
The algorithm for the extraction of these features is given below. 

We have used here SVM classifier for the classification of two types of fuzzy 
hesitancy features computed in Steps 7) and 8). An algorithm for the Extraction 
of Features: 

1) Resize a test road sign to 32 × 32.  
2) Convert the image into Y color space and then normalize it.  
3) Extract the deep hesitancy features after the first convolutional layer itself.  
4) Tap the features maps of dimension 28 × 28 numbering 32 as there are 32 

kernels.  
5) Compute the Gaussian membership function at each pixel location using 32-
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pixel intensities.  
6) Compute the Yager complement at pixel location.  
7) Compute the deep fuzzy hesitancy features using Equation (13).  
8) Compute the deep mean fuzzy hesitancy features using Equation (14).  
We have used here SVM classifier for the classification of two types of fuzzy hes-

itancy features computed in Steps 7 and 8.  

6. Results of Implementation 

So far, we have described succinctly the formulation of different feature types, the 
creation of a threshold condition, the design of detectors, the process of tracking 
by a learning model without braving for its implementation, and the modification 
of a brand of transform-based classifiers, each of which has a role to play in ADAS, 
realized through the proposed pipeline. 

6.1. Datasets Used 

The Belgium Traffic Signs Dataset (BTSD) hails from [31] and it contains 62 classes 
belonging to the mandatory, prohibitory, and danger road signs. As we are inter-
ested in red colored signs for both the thresholding and detection tasks, only 30 
classes of prohibitory and danger road signs are found to be relevant for our study. 
The Belgium Traffic Sign Classification Dataset (BTSCD) [31] is a subset of BTSD 
containing the cropped images and these are employed for classification. However, 
for the extraction of deep features, we have used only 14 classes of the road signs 
similar to those in the CURE-TSD [32] under the unchallenging environments only. 
Now, it is time to present the results emanating from their implementation on the 
real world scene samples of BTSD [31]. 

6.2. Detection 

The ROIs captured through thresholding are passed onto the SVM for further 
confirmation as road signs with the intention of eliminating false positives. In the 
baseline Color-Based Detector (CBD), the histograms of the Normalized RGB 
(NRGB) gray values from each channel by which we obtain 45 color features as a 
15-bin equal density histogram are concatenated with the HOG that capture both 
edge gradients and intensity changes, hence they are excellent for filtering out the 
false positives. To extract the HOG features, ROIs are resized to 32 × 32 and then 
converted into the grayscale. Further, they are divided into cells of 8 × 8 pixels and 
blocks of 2 × 2 cells. The number of orientations is taken as 9 with a consequent 
feature vector of 324. The length of the total feature vector becomes 369 for each 
ROI. To capture the certainty in the variation in color intensity of the road signs, 
the above color features are converted into the hesitancy features as described in 
Section 2.4 as they help improve the performance of the road sign detector. A few 
typical samples of the world scenes from the BTSD are shown in Figure 5. 

The color features from the sample of a world scene are converted into the in-
cremental hesitancy features using Equation (13) as they increase the recall. Non-
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Maximum Suppression (NMS) further reduces false positives by choosing the box 
with the highest score among the bounding boxes that overlap more than 50% 
[33]. Out of 5905 training images of BTSD, SVM is trained on 1536 images of the 
red color road signs in the prohibitory and danger categories. The negative set is 
created from the training images containing no road signs. The color thresholding 
is applied on them and the ROIs picked up by this process are considered as the 
false positives, thus serving as the non-road signs. A comparison of the results of 
the three CBDs, viz., BCBD, CBDH and CBDMH, with those of YOLOv5 is given 
in Table 3 from which it can be observed that CBDH has an edge over BCBD and 
CBDMH though YOLOv5 reigns supreme but with a toll of high computational 
time; hence not suitable as a real time detector. This is due to the conversion of 
the normalized RGB features into the hesitancy features thereby ascertaining the 
importance of the variable pervasive membership function. To get the optimum 
F-scores with SVM, the finetuning of its hyper parameters C and γ is also done 
here. The detected road signs due to BCBD, CBDH and YOLOv5 are illustrated 
in Figure 6.  
 

 
Figure 5. The world scenes from the Belgium streets. 

 
Table 3. The performance comparison of the three CBD detectors with YOLOv5 using SVM. 

Name of detector Recall Precision Best F-score 
Avg. time per 
frame in secs. 

BCBD 0.7018 0.6303 0.66 0.165 

CBDH 0.758 0.632 0.689 0.169 

CBDMH 0.7716 0.6172 0.685 0.169 

YOLOv5 0.955 0.73 0.82 0.9 
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Figure 6. Display of the detected road signs of BCBD, CBDH and YOLOv5.  

6.3. Recognition 

 
Figure 7. Attainment of F-scores with the varying values of epochs, regularization param-
eter, and rejection threshold for a given learning rate under the five-fold cross-validation 
of YCNN features using softmax. 
 
It may be noted that some of the ROIs detected as the road signs by the three CBDs 
and YOLOv5 are the false positives. To recognize them, we move from the de-
tection phase to the classification phase wherein, we first resize the ROIs into 32 × 
32 and convert the pixel intensities into YUV components of which Y (luma) com-
ponent is found to be the best as shown in [27] and U and V (chroma) components 
are discarded. The Y components of ROIs due to BCBD, CBDH, CBDMH and 
YOLOv5 are denoted by Y-BCBD, Y-CBDH, Y-CBDMH and Y-YOLOv5 respec-
tively. Second, we apply the multi-scale CNN model discussed above on these Y 
components to extract the corresponding CNN deep features denoted by YCNN-
BCBD, YCNN-CBDH, YCNN-CBDMH and YCNN-YOLOv5 from the feature maps. 
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Third, these features are classified by the softmax. We recall here that Type-2 
HanmanNets in [28] also utilize the deep features but extracted from the feature 
maps of the pretrained deep networks like AlexNet, GoogLeNet etc. So, they are 
parasites of CNN architectures. We have used BTSCD [31] for the experimen-
tation wherein, the five fold cross validation of YCNN features yields the best per-
formance at 90 epochs and the learning rate initially set at 1e-3 is dynamically al-
tered by the Adam optimizer until the convergence of softmax is achieved. As our 
main motive is to reduce the false positives, the maximum probability score of a 
road sign furnished by the softmax is checked to see if it is below a certain thresh-
old for it to be rejected as a non-sign. The performance of softmax is judged by the 
best weighted F-score, an amalgamation of both the true and false positives over 
all the classes. Figure 7 shows F-scores attained for the varying epochs needed for 
training the CNN model, regularization parameter and the rejection threshold.  

 
Table 4. The performance comparison of YCNN features with softmax. 

Softmax with the  
detector used 

Recall Precision Best F-score 
Avg. time per 
frame in secs. 

YCNN-BCBD 0.6712 0.659 0.665 0.178 

YCNN-CBDH 0.722 0.662 0.6910 0.180 

YCNN-CBDMH 0.733 0.653 0.692 0.180 

YCNN-YOLOv5 0.848 0.772 0.809 0.9129 

 
A comparison of recognition performance is shown in Table 4. As can be seen 

from this table that with all YCNN features, the recall has degraded because some 
of the road signs are misclassified, but the precision is increased with the reduction 
of the false positives. The F-score of YCNN-YOLOv5 shows a decline after recog-
nition but the YCNNs of the three CBDS witness an improvement.  

Results of Experiments to Test the Effectiveness of Different Features and 
Classifiers 
As a support to our experiments, we compare the recognition performance of a 
few prominent with that of VHTC. Note that this comparison shown in Table 5 
is not connected with the pipeline as it is only exercised on the cropped road signs 
of BTSCD, while Table 4 shows the recognition performance of softmax applied 
on the road signs detected by the CBDs, as part and parcel of the pipeline. 

 
Table 5. Accuracies of various classifiers on CNN features. 

Method Training accuracy Test accuracy 
Avg. time per frame 

in secs. 

Softmax 100 97.5 0.05 

VHTC 100 97.98 0.32 

Random forest classifier 100 98.465 0.0019 

SVM (linear) 100 97.89 0.00012 
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Continued 

SVM (rbf) 100 97.25 0.00012 

Naive bayes 100 97.899 0.00010 

Logistic regression 100 91.922 0.00013 

KNN 100 97.89 0.00004 

 
As can be noticed from Table 5 that though the time taken by VHTC is huge, 

the accuracy is better than that achieved with all the classifiers except the random 
forest classifier. The reason for this high computational time is that both the train-
ing and testing are done simultaneously, unlike other classifiers where the training 
is separate from the testing. 

 
Table 6. Accuracies of deep hesitancy features using SVM with different settings. 

K S C γ Layer 
Number of 

features 
Testing  

accuracy 
Avg. time per 
frame in ms 

2.3 0.5 5 20 Convolution layer 784 96.75 1.03 

2.3 0.5 25 12 After second  
convolution layer 

100 93.095 0.33 

 
Table 7. Accuracies of CNN features with SVM. 

C γ Layer 
Number of 

features 
Classifier 

Testing  
accuracy 

Avg. time per 
frame in ms 

25 0.001 
After first  

convolution layer 
25088 SVM 93.98 49.11 

20 0.0001 
After second  

convolution layer 
6400 SVM 97.238 17.05 

5 0.01 Without softmax 100 SVM 98.131 0.084 

  After applying softmax  Softmax 98.21 28.11 

 
Next, we utilize the hesitancy function for the extraction of the deep hesitancy 

features from the CNN feature maps. We have named the hesitancy features from 
the feature map as deep hesitancy features as against the hesitancy features that 
are the result of the conversion of the normalized color features from RGB chan-
nels of the road signs. Table 6 shows this comparison and in this we have used 
only 14 classes of the BTSCD [31]. We extract the deep hesitancy features from 
the feature maps of the CNN model after the first and the second convolutional 
layers. It is found that the deep hesitancy features from the first layer give the best 
performance with the SVM and the time taken for the classification is very less. 
Moreover, we are able to reduce the execution time considerably with the features 
drawn at the first layer feature map as can be witnessed from Table 6. Thus, the 
use of the deep hesitancy features forbids the need for a deep neural network as 
the feature maps tapped after the first convolutional layer are good enough. Through 
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five-fold cross-validation, different values of K, s, C and γ are experimented on 
SVM, and the best results are achieved with K = 2.3, s = 0.5, C = 5 and γ = 20. If 
we make use of CNN features either from the first convolutional layer or from the 
second before converting them into the deep hesitancy features, the results ob-
tained from SVM are given in Table 7. As the number of features is reduced, the 
deteriorating performance can be noticed.  

6.4. Strengths and Limitations of the Proposed Approaches 

The proposed approaches for the demarcation of ROIs from a world scene by 
thresholding, their possible confirmation as the road signs by any detector and 
lastly their classification by the variant of the classifier, are all credited with the 
uncertainty representation abilities in the pixel intensities during the feature ex-
traction and that in the feature vectors during the classifier design. The formula-
tion of different feature types can cope up with the inaccurate fuzzy modelling. As 
most of these feature types are embedded with the parameters that can be attuned 
to achieve the desired effects. No approach is foolproof, as each one has one or 
two loopholes. As features used in the tasks of detection and recognition are 
evolved from the use of histograms of pixel intensities, the concepts of the infor-
mation set, and the pervasive information set, we have a variety of them to choose; 
hence, the choice of an appropriate feature type is a limitation we have to live with. 
Some of the feature types are equipped with the parameters that need to be found 
by experimentation, and this is another limitation. Tackling small sizes of the road 
signs during detection/recognition is met with the problem of the false positives 
that endanger the performance of the approaches.  

6.5. Contributions to the Paper 

Several contributions are made while handling the detection and recognition tasks 
and they include the following:  

1) Formulation of the Mamta-Hanman fuzzy entropy function and its modifi-
cation to the intuitionistic fuzzy entropy function. As a byproduct the member-
ship function in a fuzzy set is incarnated to the pervasive membership function in 
an intuitionistic fuzzy set.  

2) Formulation of a variety of feature types that include intuitionistic fuzzy en-
tropy/transform, hybrid fuzzy-transform, possibilistic-probabilistic entropy func-
tion/transform, the normalized RGB color model, and deep features from CNN 
model. The utility of some feature types is not leveraged due to their unsuitability.  

3) Creation of a threshold condition using the fuzzy Hanman transform gradi-
ent.  

4) Development of CBDH that can cope with the inaccurate membership func-
tion by roping in the non-membership function.  

5) Proposition of Hanman law that provides guidance in managing the gradi-
ent/divergent values while tackling the independent and dependent vectors.  

6) Design of a VHTC that unlike HTC is gifted with the ability to change the 
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information source values in its new criterion function.  

7. Conclusions 

This paper presents the methods for thresholding that segregates the Region of 
Interest (ROI) from a world scene based on the color distinction, detection that 
attempts to verify whether the ROI is that of a road sign and lastly, recognition 
that categorizes the confirmed road sign into a correct class in the prohibitory and 
danger signs. The underlying processes are mainly feature extraction and classifi-
cation that are given an extensive coverage through the formulation of different 
feature types and a variant of the Hanman Transform Classifier. 

A brief exposure to the concept of information set followed by that of the per-
vasive information set adorns the introduction to the information set theory that 
has emerged from the fuzzy and intuitionistic fuzzy sets on enlarging their scopes. 
Consequently, in an information set, the complement membership function has a 
role to play, whereas in an intuitionistic/pervasive information set, the non-mem-
bership function has its own role to play in the sense that it can correct the inac-
curate membership function. The comprehensive treatment of the fuzzy entropy 
functions and the corresponding intuitionistic fuzzy entropy functions that lead 
to different types of features is given to ameliorate the drawbacks of the inaccurate 
fuzzy modeling in the context of the detection of the road signs from the real-
world scenes. While trying to detect the presence of a road sign in a world scene, 
the histogram representation of the scene is proved to be a boon as it facilitates 
the creation of a threshold condition in the form of the fuzzy gradient information 
values of the green and red gray levels according to the proposed Hanman law. 
This law aims to distinguish between the independent and dependent variables in 
terms of either the fuzzy gradient information values for the former or the fuzzy 
divergent information values for the latter. The Hanman law differs from the Bayes-
ian law that is applicable to a priori and posterior probability distribution, whereas 
the Hanman law is eminently suitable for different types of information sets such 
as basic information sets, pervasive, gradient and divergent information sets that 
can provide succor to the problems involving detection, recognition, learning, etc. 
A thorough investigation of the capabilities and handicaps of the Hanman and 
Bayesian laws is beyond the scope of this research work. 

The threshold condition fails to isolate the correct ROIs due to the lack of color 
distinction and presence of small-size road signs, thereby giving birth to the false 
positives. To prevent these, the three Color-Based Detectors (CBDs) saved our 
skins as the color features are fairly immune to the varied lighting conditions and 
sizes. Of the three, the CBDH using the fuzzy hesitancy has an upper hand, though 
YOLOv5 outperforms all the detectors, but it has its own black spot of high com-
putational time. Though we have several feature types at our disposal, we could 
not dare to evaluate all of them for the fear of the paucity of time. It is observed 
that tracking helps eliminate the false positives by way of predicting the location 
of a road sign in the next frame from the knowledge of its current location. But 
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this has not been explored, as it demands an entirely different learning framework. 
Enthused by the popularity of deep learning neural networks, we have embarked 
on the recognition of the road signs using high-level deep features extracted from 
the feature maps of the handcrafted CNN model. It has been shown that operating 
a kernel function on an image in the convolutional laver amounts to producing a 
membership function matrix. As a result, several kernel functions acting on the 
images in the different convolutional layers lead to the feature maps that are the 
substantially modified membership functions possessing the desirable character-
istics. These are roped in while forming the deep hesitancy features classified by 
SVM in Method-1. On the other hand, in Method-2, the features directly derived 
from the feature maps are classified using a variant of the Hanman Transform Clas-
sifier where the error gradient vectors between the training and test feature vectors 
are converted into the fuzzy gradient transform values that imbibe the capability 
of identifying the unknown class of the test feature vector as stated in the Hanman 
law. The results from the two methods vindicate the effectiveness of the deep fea-
tures and the proposed classifier. 

Although several feature types mentioned above as part of the contributions are 
created, all of them are not investigated due to their unsuitability to the present 
research work like possibilistic-probabilistic entropy/transform features, the com-
putation burden involved in their implementation and the results generated con-
sume space, thus necessitating a future study. For the reduction of the number of 
color features, fusion of any two channels’ (Say, G and B) features with the third 
channel (i.e. R) features is an option. In the parlance of information set theory, 
the fusion of G and B channels’ information values with R channel information 
values by the T-norms needs a concerted effort. A caveat lies in the slowness of the 
proposed Hanman Transform Classifier due to the requirement of both the train-
ing and test feature vectors simultaneously, and to make it faster, the training has 
to be separated from the testing for which all the training feature vectors have to 
be aggregated by the T norms under aegis of the Hanman law that offers succor 
to deal with a large number of feature vectors, thus demanding an investigation 
of the parametric T-norms for the purpose of aggregation as future work. In this 
work, we have addressed the twin issues of certainty representation and inaccurate 
fuzzy modeling. It would be interesting to work on another issue of fuzzy rough-
ness. 
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