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Abstract 
The survival of agroforestry tree species in sub-Saharan Africa is essential for 
sustainable livelihoods, particularly in the semi-arid environment. Drought in 
the Agroecological zones (AEZ) of Nigeria is one of the environmental factors 
limiting parkland tree regeneration. Species distribution modelling offers the 
opportunity to predict future distributions of plant species based on current 
distribution data and bioclimatic variables. Maxent (maximum entropy) model 
was employed to predict the future tree distribution in AEZ parklands, under 
the four Representative Concentration Pathway (RCP) climate change predic-
tion using current tree distribution (presence-only data) along a transect across 
three agroecological zones. The spatial data used were 19 bioclimatic variables 
and presence-only data for the two most important tree species—Parkia bi-
globosa and Vitellaria paradoxa. The result showed a drastic reduction (>45%) 
in the suitability of farmlands across predictions observed in the studied agroe-
cological zones. The 2050 scenario in both species predicted areas had an in-
creasing mid-range potential, over 44% lower suitability in sampled AEZ dis-
tribution predictions. The future prediction potential distribution maps for 
year 2070 of both species displayed large variations in suitability compared to 
2050, showing a significant increase (up to 53%) in areas climatically suitable 
for both species to regenerate and thrive. This is attributed to over increased 
annual evapotranspiration, despite increasing seasonal precipitation. This 
study highlights the need for more climate-smart regeneration and improved 
restoration strategies to reduce land degradation as climate conditions change 
over time. 
 

Keywords 
Restoration, Species Distribution, Drought, Maximum Entropy 

How to cite this paper: Abdullahi, I. N. 
(2024). The Impact of Changing Climate on 
Agroforestry Tree Distribution across Agroe-
cological Zones of Nigeria: MaxEnt Model-
ling Perspective. Open Journal of Forestry, 
14, 462-475. 
https://doi.org/10.4236/ojf.2024.144026 
 
Received: August 29, 2024 
Accepted: September 24, 2024 
Published: September 27, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution-NonCommercial 
International License (CC BY-NC 4.0). 
http://creativecommons.org/licenses/by-nc/4.0/ 

  Open Access

https://www.scirp.org/journal/***
https://doi.org/10.4236/ojf.2024.144026
https://www.scirp.org/
https://doi.org/10.4236/ojf.2024.144026
http://creativecommons.org/licenses/by-nc/4.0/


I. N. Abdullahi 
 

 

DOI: 10.4236/ojf.2024.144026 463 Open Journal of Forestry 
 

1. Introduction 

Quantifying changes in the spatial pattern of tree distribution for parkland land-
scape species can assist farmers in appropriate species selection, enhancing trees 
outside forest contribution to sustainable livelihoods. The first stage in modelling 
parkland tree plant distribution is the evaluation of the relationship between cur-
rent tree species occurrence and current environmental conditions. Next, future 
climate factors can be used to predict the tree growing conditions and these are 
used to determine the predictive distribution model. Output from such models is 
useful for landscape restoration (Chahouki & Sahragard, 2016). Predictive species 
distribution modelling (SDM) of trees has been applied in the study of invasive 
plant species trends and patterns (Thuiller et al., 2005), modelling species habitat 
niche and suitability (Deblauwe et al., 2016), deriving spatial information on spe-
cies diversity and richness (Dubuis et al., 2011) as well as trying to predict the 
impact of changing climate effects on agrobiodiversity survival (Kotschi, 2006; 
Verheyen et al., 2016). There are species distribution models available for predict-
ing the distribution of plant species and hydrology, each method having peculiar 
characteristics influencing the output factors (Moore et al., 2007; Onojeghuo et 
al., 2015; Oyerinde et al., 2016; Phillips et al., 1997; Prudhomme et al., 2014). Aus-
tin (2002) described the ecological model, the data model, and the statistical model 
as significant components contributing to fitting species distribution models. The 
best fitting models for species distribution include statistical modelling which is 
influenced by external factors, including the presence of data availability, environ-
mental factors and different variables’ effects on the model prediction (Chahouki 
& Sahragard, 2016; Phillips, Anderson, Dudík, Schapire, & Blair, 2017). Species 
distribution predictive models are classified into two categories based on the re-
quired type of input data (Guisan & Zimmermann, 2000). These are the presence-
absence models and the presence-only models. However, the potential to maxim-
ise climate resource-use with a limited amount of data has generated different 
SDM methods for modelling presence-only data, particularly on the plant species 
distribution (Chahouki & Sahragard, 2016). The MaxEnt (Maximum Entropy) 
method is one presence-only model technique with better accuracy (and wider 
acceptance) in prediction than other methods. The model predicts plant species 
occurrence localities using the estimation of a set of environmental variables that 
explains a few factors influencing the suitability of a species niche in a given time 
(Phillips et al., 1997). The species’ fundamental niche (forests, grasslands and 
parklands) is a combination of climate and ecological conditions that determine 
survivability in the long term. The real niche, a subset of the fundamental niche 
(e.g. parklands) that species occupy, can be predictable using the factors contrib-
uting to the overall agroecosystem (Case & Lawler, 2017). MaxEnt model is con-
sidered the best fitter because it is less sensitive to overfitting, especially when 
samples size, such as the real niche (parklands), is small, as it regularizes the input 
variables to help avoid the performance problems induced by overfitting. The 
model is being run using linear and quadratic terms in combination with other 
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settings that are kept as default in MaxEnt software until modified. The training 
sample is focused on the input of environmental variables and species occurrences 
geographical information under tuned parameters and choice of feature classes. 

Lyam et al. (2012) performed species distribution modelling for native Chryso-
pyllium albidum tree species in South-western Nigeria using MaxEnt and re-
ported 55% of the niche distribution is associated with temperature (at the coldest 
quarter) and only about 18% for precipitation for all potential sites for regenera-
tion. Other research findings in sub-Saharan Africa also showed that MaxEnt pre-
dicts geographical distributions of plant and animal species more accurately com-
pared to other spatial methods (Bocksberger et al., 2016; Li et al., 2014; Onojeghuo 
et al., 2015; Phillips et al., 1997). 

Bioclimatic variables from worldclim.org are considered as one of the most sig-
nificant climate records for global species modelling. This is because of its influ-
ence on trees 

2. Materials and Methods 

1) Species Data 
Field points spatial information of agroforestry trees were additional data col-

lected across different farmland 774 locations corresponding to the local govern-
ment areas in the agroecological zones of Nigeria (Figure 1). 

 

 
Figure 1. Map of Nigeria showing sampled 774 field points across the agroecological zones. 

 
2) Environmental Data 
Tree abundance and frequency were assessed and simulated with the climate 

data at the presence locations. Nineteen spatial bioclimatic datasets from the 
WorldClim database at 30' resolution or 1 square kilometre grids (Hijmans et al., 
2005) were used. They are the 19 bioclimatic variables derived from global 
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temperature and rainfall data of past and future (2050 and 2070) climates. The 
scenario is limited to the most extreme HadGEM3-ES model only with Repre-
sentative Concentration Pathways (RCPs) 8.5 trajectory. 
• Bio1 (annual mean temperature) 
• Bio2 (mean diurnal range (mean of monthly (max temp-min temp.) 
• Bio3 (isothermality (p2/p7) (100)) 
• Bio4 (temperature seasonality [standard deviation 100]) 
• Bio5 (max. temp. of warmest month) 
• Bio6 (min. temp. of coldest month) 
• Bio7 (temp. annual range (P5-P6) 
• Bio8 (mean temp. of wettest quarter) 
• Bio9 (mean temp. of driest quarter) 
• Bio10 (mean temp. of warmest quarter) 
• Bio11 (mean temp. of coldest quarter) 
• Bio12 (annual precipitation) 
• Bio13 (precipitation of wettest month) 
• Bio14 (precipitation of driest month) 
• Bio15 (precipitation seasonality [coefficient of variation]) 
• Bio16 (precipitation of wettest quarter) 
• Bio17 (precipitation of driest quarter) 
• Bio18 (precipitation of warmest quarter) 
• Bio19 (precipitation of coldest quarter) 

3) Species Distribution Modelling 
Spatial interpolation is one of the most common geographic techniques for spa-

tial data visualization in Geographic Information Systems (GIS). Kriging was ap-
plied as one of the numerous methods for spatial interpolation. Kriging is an esti-
mator used to interpolate spatial data for better accuracy and interpretation. There 
are different types of kriging (Meng, Liu, & Borders, 2013). In this research, we 
managed to estimate the extracted 19 bioclimatic variables datapoints of 774 lo-
cations GPS coordinates using ordinary kriging; each location is the lowest ad-
ministrative unit headquarters in Nigeria geopolitical zones. Ordinary kriging in 
ArcGIS 10.6 version was used because it minimises error variance in spatial esti-
mation interpolation. The Kriging interpolation was in ArcGIS 10.6 geostatistical 
analysis and created the maps in layers. The interpolated maps were then sub-
jected to modelling using the MaxEnt programming as done in Phillips and Dudik 
(2008). All layers of 19 bioclimatic variables were converted to ASCII raster grids 
and trees location coordinates remained in decimal degrees for accurate interpo-
lation. The outputs produced, including the Jackknife test results and AUC values 
were in HTML format. Also, ASCII files reproduced by the output where taken 
into ArcMap for formating. The model classifications of years 2050 and 2070 cli-
mate data were altered and colours in stretched colour ramp of models of current 
climate data were modified for uniformity. This enabled the result predictions of 
all distribution maps to be visualised and edited in ArcMap. As explained in 
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(Phillips et al., 2006), we are using MaxEnt in predicting the potential distribution 
of Parkia bilobosa and Vitellaria paradoxa across agroecological zones within Ni-
geria by probability distribution estimation. However, this is subject to a set of 
constraints that represent a lack of absence data about the focused distribution. 
Currently, MaxEnt method is rated as the most popular and accurate approach to 
modelling presence-only data, even when the sample size is small (Guillera-Ar-
roita et al., 2014; Phillips et al., 2017). 

4) Model Validation and species presence mapping 
In the study, model performance was assessed using several methods. First, we 

used the maximum entropy distribution free software 3.4.1 version of MaxEnt 
(Check: https://biodiversityinformatics.amnh.org/open_source/maxent/) to model 
the current and future distribution of parkland trees after preparation of the bio-
climatic variable maps as well as species occurrence data entry in the maximum 
entropy software. To evaluate the predictive performance of the models, valida-
tion is necessary for accuracy and reliability. So, we did model validation by di-
viding the dataset into the training data used to build the model, comprising 70% 
of all data and the test data (independent dataset) used to test run the model, tak-
ing the remaining 30% of all data as seen in (De’ath & Fabricius 2000). The area 
under the receiver operating characteristic curve (AUC) represents a model per-
formance measure focusing on sensitivity against specificity. The sensitivity for 
any threshold is a fraction of classified present positive instances while specificity 
is a fraction of classified negative instances that are not present. The AUC value 
typically is between 0.5 (random) and 1.0. The AUC value that shifts closer to 1.0 
indicates a better model performance. Furthermore, the success of the model was 
also evaluated on how the mapped probability values correspond to the presence 
records visually. This is because, in the continuous MaxEnt output (predicted 
maps), it is essential to regulate an optimal threshold for evaluating the pres-
ence/absence of target species in maps, as seen in Phillips et al. (2006) and Piri 
Sahragard and Ajorlo (2016). The geostatistical and modelling outputs between 
observed and predictive maps were determined in ArcGIS 10.6.1 release software. 
Monserud and Leemans (1992) defined the modelling accuracy in the following 
ranges of agreement: 

No agreement—0.05; 
Very poor—0.05 - 0.20; 
Poor—0.20 - 0.40; 
Fair—0.40 - 0.55; 
Good—0.55 - 0.70; 
Very good—0.70 - 0.85; 
Excellent—0.85 - 0.99; 
Perfect—0.99 - 1.00. 
Positive values indicate extremely good agreement with matched records. A 

good model produces landscapes of high probability covering the closest zones of 
presence records while landscapes of low probability generate only a few or no 
presence points around the presence records. 
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3. Results 

1) Variable contribution and Model performance 
The model fitness using testing data (blue line) is the real test of the model pre-

dictive power. The receiver operating characteristic (ROC) curve graph indicates 
how significant the maxent model is at predicting the current scenario sampled 
tree data. The specificity against sensitivity Area under the curve (AUC) had >0.8 
for current scenarios training data in both species sampled (Figure 2). The figure 
also indicated predicted areas. The AUC test data for V. paradaoxa is 0.2, which 
is less than the P. biglobosa specificity for the prediction of defined areas within 
the maps. The curves indicated probable predictability of presence changes for 
each varied environmental variable, keeping all other unwanted sample environ-
mental variables at average value. 

The jackknife test of variable importance in MaxEnt modelling showed that tree 
distribution across the agroecological zones landscapes was affected most by pre-
cipitation seasonality in the 19 bioclimatic variables, particularly drought regimes. 
For instance, when used individually the bio14w2 and bio17w2 were the leading 
important predictors across all the scenarios of the two sampled tree distribution 
in this study, except for Vitellaria paradoxa at year 2050 (Figure 2). Though 
bio06w2 identified the temperature seasonality of the coldest months as the most 
important variable predicting changes in 2050 for V. paradoxa, the drought indi-
ces on the biovariables tend to predict P. biglobosa distribution across the agroe-
cological landscapes of Nigeria. Results also indicated that ecological distribution 
of V. paradoxa was not only meaningfully influenced by precipitation level in dry 
seasons but also by cold temperature regimes (Figure 3). In addition, parkland 
distribution of P. biglobosa and V. paradoxa, all the most important variables that 
were significant predictors with optimum variable range across the three scenarios 
are presented in Table 1. 

2) Current and future distribution of Parkia biglobosa and Vitellaria para-
doxa across dryland savannahs of Nigeria 

The logistic map predicting P. biglosa and V. paradoxa distribution using cur-
rent 19 bioclimatic climate data is shown in Figure 3 below. The zones with the 
highest parkland potential for each species (red) are seen as thus: Parkia biglobosa 
in Sudan savannah, Northern Guinea savannah and Southern Guinea savannah 
and Vitellaria paradoxa in Sahel savannah, Sudan savannah, Northern Guinea sa-
vannah and Southern Guinea savannah. Other agroecological zones with potential 
(light yellow) are seen extending from the drylands of the Sahel savannah in the 
northern region down to the forested edges of the Derived savannah AEZ. 

Figure 3 also shows the 2050 and 2070 future parkland distribution maps for 
Parkia biglobosa and Vitellaria paradoxa across the AEZ of Nigeria. The zones 
with the highest suitability index (0.6 - 1.0) in future climates correspond to the 
current climate highest potential distribution areas but decreased in size in 2050 
scenario, showing the extension of yellow colours in both species and increasing 
lower suitability index (0.4 - 0.6). The highly suitable areas in 2050 scenario tend  
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Figure 2. Specificity versus sensitivity of predicted maps of sample tree distribution across the AEZ. 

 

to stretch towards north-eastern Sudan and Sahel savannah zones, with few 
patches found between NGS and SS zones in the central region. The 2050 scenario 
in both species predicted areas had an increasing mid-range potential (yellow), 
over 44% lower suitability (0.4 - 0.6) in sampled AEZ parkland distributions 
predictions. The 2070 future potential distribution maps for both P. biglobosa 
and V. paradoxa display large variations in parkland area suitability compared to  
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Table 1. The biovariables percent contribution and permutation importance of Parkia biglobosa and Vitellaria para-
doxa MaxEnt model predictions. 

Scenario Parkia biglobosa 
Percent  

contribution 
Permutation  
importance 

Vitellaria 
paradoxa 

Percent  
contribution 

Permutation 
importance 

Current 

bio14w2 66.7 45.8 bio11w2 43 19.2 

bio17w2 22.7 0 bio17w2 29 0 

bio12w2 5.1 12.3 bio14w2 28 75.9 

bio18w2 3.4 30 bio12w2 0 4.9 

bio13w2 2.1 11.9    

Year 2050 

bio02w2 30.8 0 bio02w2 39 2 

bio16w2 23.2 23 bio09w2 15.2 0 

bio17w2 22.9 9.5 bio13w2 15 16.9 

bio13w2 13 17.3 bio14w2 12.5 69.3 

bio11w2 3 0 bio11w2 7 0 

bio12w2 2.2 26 bio06w2 6.5 11.8 

bio05w2 2.2 0 bio17w2 3.5 0 

bio06w2 1.1 0 bio04w2 1.3 0 

bio03w2 1 0    

bio14w2 0.6 24.1    

Year 2070 

bio14w2 47.1 65.7 bio09w2 26.4 0 

bio16w2 18.6 32.3 bio14w2 18.9 62.2 

bio6w2 12.4 0 bio13w2 12.3 0 

bio7w2 7.4 0 bio16w2 11.5 36.1 

bio13w2 7 0 bio6w2 10.9 0 

bio3w2 3.8 0 bio7w2 5.9 0 

bio1w2 1.9 2 bio4w2 5 0 

bio09w2 1.1 0 bio17w2 3.1 0 

bio11w2 0.4 0 bio10w2 2.5 0 

bio18w2 0.3 0 bio19w2 1.6 0 

   bio11w2 1.2 0 

   bio1w2 0.5 1.8 

   bio3w2 0.1 0 

 
2050, showing a significant reduction in climatically unsuitable areas for both 
species to regenerate and thrive. Areas that indicated the highest suitability index 
(0.6 - 1.0) significantly increased (53%) compared to similar areas in current 
conditions that exhibited high potential parkland tree distribution. Generally, all 
geopoints marked in Figure 1 have reduced in suitability under future climate  
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Figure 3. Modelled map showing suitability of habitat for agroforestry tree species for cur-
rent and future climate scenarios. 

 
predictions, as half of the geopoints are located in areas below high suitability in-
dex. There is a difference in suitability as seen in the maps, with shifts occurring 
from west to east or north-eastern ward species movement, but there is no signif-
icant reduction (45%) in area size. In other words, future distribution of the spe-
cies with high regeneration and distribution potentials can be located in the Sudan 
and Northern Guinea savannahs of north-eastern region. The model also showed 
areas with similar environmental conditions for prediction outside the sampled 
area, in neighbouring countries of Niger and Cameroon. 

4. Discussion 

Based on the predictions through classification, communities in the central part 
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of Nigeria are the most affected by climate change, with most localities experienc-
ing drought-threatened conditions in future. The modelling of agroecological 
zone classification is to provide more insight into changing climate impacts on 
land-use change in Nigeria, with attention paid to livelihoods and farming sys-
tems. The local approach used in AEZ is more refined than the regional AEZ 
model as it offers more demonstration of how different AEZs will be affected at 
community levels, to allow policy makers and farmers to improve adaptation and 
mitigation to climate change impact (Seo, 2014). The projected local impacts of 
all the climate scenarios did not disagree with previous findings on the impacts 
magnitude of change in climate shifting agroecologies globally, up to 50% from 
the 2050s in sub-Saharan Africa (Bunn et al., 2015; Gaal et al., 2012; Kala et al., 
2017; Seo, 2014). The zones that are suitable for cereals and tuber production now 
will in the future now have climates with higher temperatures and long dry sea-
sons. These mean a total shift or possible disappearance of current AEZ charac-
teristics in Northern Guinea savannah, Southern Guinea savannah and Mid-Alti-
tude zones, as well as in most parts of the driest Sahel savannah. Furthermore, 
substantial landscapes across the northern region of Nigeria that currently lie 
within Sahel and Northern Guinea savannahs are to be replaced by Sudan savan-
nahs in the future. Just as modelled in (Kala et al., 2017; Seo, 2012), these scenarios 
will offer great consequences for decision makers and landowners in sustainable 
livelihood strategies that involve forest management in semi-arid regions. On the 
one hand, parkland landscape areas productivity will struggle for sustainability 
while the forested parts of Nigeria may become more productive. Research to 
adapt agricultural productivity to mitigate climate change impact will thus have 
to make agroecosystems better adapted to heat and drought stress. Thus, there is 
a need for regions to change their agronomic and plantation practices to remain 
productive and sustainable, for example, by learning from Sudan savannah farm-
ers what trees are planted and when they are planted in their locality. Other cli-
mate change-induced problems like the low yield in agricultural produce, and the 
disappearance of dryland resources, especially parkland trees, affect food security 
and livelihoods (Bayala et al., 2015; Ouedraogo et al., 2017). Across the agroeco-
logical zones, the high demand for land use to feed about 180 million human pop-
ulation with low input and technology is making parkland sustainability difficult 
(Abdullahi & Anyaegbu, 2017; Adesina & Chianu, 2002; Ehirim & Osuji, 2017; 
Okpoho, 2018). Currently, sub-Saharan Africa harbours savannah agroecological 
zones, which is home to over 700 million hectares of parklands sustaining liveli-
hoods of about 230 million people (FSIN, 2018). One-third of the human popula-
tion in the region are within rural Nigeria and depends on about 70 million low-
fertile hectares of parkland landscapes for food security and livelihoods (IITA, 
2000). The hectares cut across different savannahs within the predicted changing 
agroecological zone locations in Nigeria. On the other hand, classification of cli-
mate change induces AEZs shift was studied by (Kala et al., 2017) and (Seo, 2014) 
for sub-Saharan Africa. While the former used the generalised linear model for 
predicting farmers’ decision impact on future AEZ shift using climate scenarios, 
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the latter focused on how to evaluate the future behavioural decisions impact on 
land suitability. The results are useful but could not focus on the integration of 
ecological and climate sciences among regional states. Other studies used land 
cover datasets from Chinese GlobeLand30 land cover to predict the spatial land 
use change of cultivated landscapes between 2000-2010 (Arowolo & Deng, 2017). 
Although, seasonal length was relegated among the factors. The model estimated 
the current drivers of land-use change and the spatiotemporal intensity effect on 
agroecosystem distribution in Nigeria. Moreover, co-kriging interpolation was 
used to study the changing climate in Northern Nigeria after obtaining 1981 to 
2010 temperature and rainfall variables from NIMET. The interpolated results 
showed a prediction map of high variability in Vegetation index (NDVI) and pre-
cipitation across the period. In Bunn et al. (2015), global multiclass classification 
of coffee plantation suitability for future climates in agroecological zones was pro-
jected using the Random Forest model. FAO-guided AEZ method approach was 
used to redefine future classification of the coffee plantation climate suitability 
migration, upwards of up to 500 m increase in elevation. Meanwhile, Nigeria’s 
current AEZ is defined using overlay maps developed by the International Insti-
tute for Tropical Agriculture through multiple clustering analyses of local climate 
and other socio-ecological variables in Nigeria (IITA, 2000). 

The use of machine learning techniques such as the Random Forest algorithm 
has been debated as weak in overfitting specific variables, depending on the sce-
narios (Bunn et al., 2015; Hand & Till, 2001). In order to meet the objectives, the 
variables chosen were those acceptable globally with low levels of error to produce 
high classification accuracy rated in the Out of Bag Error shown above. Lastly, the 
impact of the changing climate scenario projected is close to projected scenarios 
in similar studies by (Bunn et al., 2015; Gislason et al., 2006; Kala et al., 2017; Seo, 
2014). However, climate change impacts on parklands are likely to be more severe, 
as was illustrated by the models under extreme emission scenarios, considering 
the shifts in agroecological zones. 

5. Conclusion 

The research study assesses the maximum entropy classification method to pre-
dict the impacts of climate change on agroecological zones (AEZs) of Nigeria with 
the observed and future bioclimatic variables. We concluded that the classification 
of AEZs is a major step for the parametrisation of agroecosystems in Nigeria, with 
a focus on parklands in the drylands of the Northern region. Consequently, the 
AEZ classification is limited to climate data for this research and predicted the 
gradual disappearance of three of the four current AEZs under different scenarios. 
We established a connection between climate data and agroeco-systems, under an 
extreme emission scenario. Hence, adaptation strategies should be induced by cli-
mate change drivers. The strategy of shifting agricultural and/or forest manage-
ment if the future climate is altered, for instance, requires an explained model of 
the spatially simulated current of the AEZ classification. There is an urgent need 
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for policy makers and researchers in agroecology to take climatic changes seri-
ously when making decisions on ecological sustainability, such as woodland cre-
ation. There is a need for priority trials of agroforestry farming strategies across 
the AEZs with future conditions at the locations identified to change. Additional 
agroforestry research should expand the climatic variable limits to include envi-
ronmental factors such as land cover (with land-use productivity index) when 
predicting the worst impacts of climate change on restoration schemes and land 
use change in the drylands of Nigeria. 
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