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Abstract 
Peanut (Arachis hypogaea L.) production is valued at $1.28 billion annually 
in the USA. Plant growth habit can be used to determine plant population 
density and cultivation practices a given farmer uses. Erect plants are gener-
ally more compact and can be more densely planted unlike plants with more 
prostrate growth. The objectives of this study were to analyze publicly avail-
able datasets to identify single-nucleotide polymorphism (SNP) markers as-
sociated with plant growth habit in peanuts and to conduct genomic selec-
tion. A genome-wide association study (GWAS) was used to identify SNPs 
for growth habit type among 775 USDA peanut accessions. A total of 13,306 
SNPs were used to conduct GWAS using five statistical models. The models 
used were single-marker regression, generalized linear model (PCA), gener-
alized linear model (Q), mixed linear model (PCA), and mixed linear model 
(Q) and a total of 181, 1, 108, 1, and 10 SNPs were found associated with 
growth habit respectively. Based on this dataset, results showed that genomic 
selection can achieve up to 61% accuracy, depending on the training popu-
lation size being used for the prediction. SNP AX-176821681 was found in 
all models. Gene ontology for this location shows an annotated gene, 
Araip.0F3YM, found 2485 bp upstream of this SNP and encodes for a pep-
tidyl-prolyl cis-trans isomerase. To the best of our knowledge, this is the first 
report identifying molecular markers linked to plant growth habit type in 
peanuts. This finding suggests that a molecular marker can be developed to 
identify specific plant growth habits in peanuts, enabling early generation 
selection by peanut breeders. 
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1. Introduction 

Peanuts (Arachis hypogea L.) are used for their high oil and protein content and 
have an annual value of $1.28 billion in the USA [1]. Over 100 countries cultivate 
peanuts. Peanut consumption provides essential nutritional elements such as fo-
late, copper, potassium, vitamin E, and etc. for human health [2]. Peanut biomass 
is also a high-quality forage for livestock, providing 700 g of organic matter di-
gestibility and about 140 g of crude protein per kg of dry plant matter [3].  

Both peanut morphology and plant growth habit have been used to classify 
Arachis hypogaea L. into two subspecies. The two subspecies are then divided 
into different botanical varieties [4]. Specifically, plant growth habit is an im-
portant trait which affects both agronomic practices and crop yield. Erect plants 
with small branch angles are more compact; allowing for dense plantings unlike 
those that are prostrate with big branch angles [5]. There is disagreement re-
garding if inheritance of the growth habit trait is nuclear or cytoplasmic and if 
the mechanism controlling branch angle inheritance is polygenic or monogenic 
[6]-[8]. A chromosomal segment substitution line population was utilized by 
Fonceka et al. (2012) who found that several quantitative trait loci (QTLs) con-
trol peanut growth habit [9]. However, Kayam et al. (2017) found a major QTL 
on chromosome B05 for growth habit using bulk segregant analysis with se-
quencing results [8]. 

Genome-wide association studies (GWAS) utilize collected phenotype and gen-
otype data from a large sample of unrelated individuals, which was first developed 
to detect variants among the genetics of human diseases [10]-[12]. Genome-wide 
single nucleotide polymorphisms (SNPs) identified via array-based genotyping, 
genotyping-by-sequencing, or resequencing make up the genotype data. GWAS 
analysis does not require population development and can detect genes with 
smaller effect sizes, and improve resolution with smaller blocks of linkage dise-
quilibrium (LD) [11] [12]. 

Statistical methods are used to associate genetic markers with the phenotype 
being studied. These analysis methods identify SNPs at which variation in gen-
otype is significantly associated with variation in phenotype. Performing an 
ANOVA on each individual SNP can accomplish this using the hypothesis that 
there are no differences between the trait mean for any genotype group [13]. 
Unfortunately, as the number of SNPs used increases, the probability of false 
positives also increases [13] [14]. Unknown relatedness among individuals is 
another contributor to false positives. This is because those related individuals 
form subpopulations within the population. It is difficult to avoid or minimize 
the unequal relationships within the assembled population for a GWAS study 
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[15] [16]. If the phenotype is present at a higher frequency in the subpopulation 
this results in spurious associations with the phenotype. Hence, multiple testing 
methods are used such as false discovery rate (FDR) and Bonferroni correction 
[17] [18]. 

Null markers, unlikely to affect the trait of interest, have been used to estimate 
population structure effects on test statistics and adjust the final p value to reduce 
false positives [19]. These types of markers were also used to define a set of sub-
populations within a dataset; structured association [20]. Once individuals have 
been grouped in one or more subpopulations, the subpopulation membership is 
used as a cofactor. The general linear model (GLM) adds the cofactors to correct 
for population structure [20]. 

In this study a mixed linear model (MLM) replaced the previously mentioned 
methods and uses population structure (Q) and kinship (K) to account for relat-
edness [15]. The kinship matrix uses genotype data from all individuals to esti-
mate the relatedness among them. Using allele frequencies and identity-by-state 
to estimate identity-by-descent and kinship coefficients is a method [21]-[23]. 
With the MLM model, false positives are controlled by having a fixed effect of 
population structure and a random effect of polygenic background which is de-
fined by kinship [15]. 

Additional models can be used to facilitate identifying the SNPs which are 
closely associated with the phenotype of interest. Once SNPs have been identi-
fied, the location of the gene(s) which control the observed phenotype can be 
determined. Li et al. (2022) used GWAS and bulked segregant analysis to iden-
tify loci which control growth-habit related traits among a group of 103 acces-
sions of the U.S. mini-core collection [5]. However, more studies are needed to 
better understand the genetics of plant growth habit in peanuts. The objective 
of this study was to conduct a genome-wide association study for plant growth 
habit in peanuts using the available United State Department of Agriculture 
public data.  

2. Materials and Methods 
2.1. Plant Materials and Phenotyping 

A total of 775 USDA peanut accessions were phenotyped for growth habit using a 
binary score 1: spreading, score 2: bunch, and score 3: erect, with the data obtained 
from the USDA GRIN public data available at  
https://npgsweb.ars-grin.gov/gringlobal/search.  

2.2. Genotyping, Population Structure, Genome-Wide Association 
Study, and Candidate Gene Search 

The Arachis_Axiom2 SNP array was used to genotype the peanut accessions, and 
this data was made available at https://agdatacommons.nal.usda.gov/ [24]. In the 
study a total of 13,306 SNPs were used to genotype theaccessions. STRUCTURE 
2.3.4 was used to conduct population structure analysis [20]. A total of 10 
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independent runs, with the Markov Chain Monte Carlo (MCMC) length of burn-
in period set to 50,000 and the number of MCMC iterations was 50,000, were con-
ducted to infer population structure (K). The algorithm, developed by Evanno et 
al. (2005), which STRUCTURE Harvester was established from, was used to iden-
tify the optimal K value [25] [26]. Each genotype was assigned to a Q-group using 
a Q-matrix which contained K-vectors corresponding to the optimal K value with a 
cutoff probability of 0.55. STURCTURE PLOT in STRUCTURE 2.3.4 and the op-
tion “Sort by Q” was used to analyze the population structure [20]. 

Prior to conducting GWAS, SNPs were filtered based on the following criteria: 
heterozygosity <10%, missing data <10%, and minor allele frequency >5%. After 
filtering, a total of 13,306 SNPs were used for GWAS analysis in TASSEL 5 [27]. A 
total of five GWAS models were used for this analysis. The first model used was a 
single-marker regression model (SMR). The second model was the generalized lin-
ear model with principal component (PCA) was added as a covariate (GLM_PCA). 
The third model used was the generalized linear model with the Q matrix, from the 
population structure analysis, added as a covariate (GLM_Q). A mixed linear 
model with Kinship (K) was added to the GLM_PCA model (MLM_PCA+K) as 
the fourth model. For the last model, a mixed linear model with population strat-
ification being controlled by the Q matrix and Kinship (K) (MLM_Q+K) was 
used. TASSEL 5’s in-built functions were used to estimate both K and PCs. A LOD 
threshold of > 3.5 was used to identify SNPs significantly associated with plant 
growth habit phenotype [28]. A candidate gene search was then conducted within 
a 10-kb region containing a significant SNP and conducted using Peanut Base 
(https://www.peanutbase.org/taxa/arachis/). 

2.3. Genomic-Estimated Breeding Values (GEBVs) and Genomic  
Selection-Accuracy Assessment 

A ridge regression best linear unbiased predictor (rrBLUP) model was then used 
to compute the genomic-estimated breeding values (GEBVs) [29]. The package 
“rrBLUP” was used to run the model in R, and the rrBLUP equation was: 

γ = WGβ + ℇ 

where the y vector phenotype, W the incidence matrix relating the genotype to 
the phenotype, G the genetic matrix, B the marker effect with ( )2~ 0,N I zββ σ , 
and e the random error. The solution of this equation was: 

β˄ = (ZTZ + Iℷ)−11ZTy 

where Z = WG. The ridge parameter was defined as ℷ = 2 2
e βσ σ , with 2

βσ  as the 
marker-effect variance and 2

eσ  as the residual variance. 
The effect of the training population size on genomic selection accuracy was 

evaluated using a 2-fold, 3-fold, 4-fold, 5-fold, and 6-fold cross-validation which 
corresponded to population sizes of 388, 517, 581, 620, and 646 individuals. A 
total of 100 replications were used for each cross-validation. Then the accuracy of 
genomic selection was assessed using Pearson’s correlation coefficient between 
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the observed phenotypes in the population and GEBVs [30]. 

3. Results 
3.1. Single Marker Regression (SMR) 

Table 1 shows the significant SNPs associated with peanut growth habit using the 
SMR model. Results from the SMR model indicated that there were 181 SNPs sig-
nificant to peanut growth habit. These SNPs were located on chromosome A01-
A10 and B01-B10, with the majority found on chromosomes B06 and B04. LOD 
values ranged from 5.43 to 7.65, and the R-square values ranged from 2.74% to 
4.46%, indicating that plant growth habit can be controlled by multiple genes with 
minor effects. The top 10 SNPs with the highest LOD values were AX-147227941 
(LOD = 6.9, R2 = 4.0%), AX-176811670 (LOD = 6.9, R2 = 4.0%), AX-176822503 
(LOD = 6.9, R2 = 3.6%), AX-176822914 (LOD = 7.0, R2 = 3.6%), AX-176820260 
(LOD = 7.1, R2 = 4.1%), AX-176820577 (LOD = 7.2, R2 = 4.2%), AX-176808560 
(LOD = 7.2, R2 = 3.7%), AX-176823020 (LOD = 7.3, R2 = 4.2%), AX-176821681 
(LOD = 7.6, R2 = 4.0%), and AX-176806956 (LOD = 7.7, R2 = 4.5%). These SNPs 
are located on chromosomes A07 (18,840,166 bp), A06 (95,180,807 bp), B06 
(29,039,075 bp), B06 (39,793,516 bp), B06 (108,518,747 bp), B06 (129,766,082 bp), 
B03 (53,474,187 bp), B03 (122,608,001 bp), B06 (122,581,860 bp), and A06 
(96,492,176 bp), respectively (Table 1).  
 

Table 1. List of SNP markers associated with growth habit in peanuts using different models. 

GWAS_models SNP Chromosome Position (bp) LOD R2 (%) 

Single Marker Regression 

AX-147207638 A01 231,463 5.5 3.3 

AX-176794931 A01 2,479,559 5.6 3.3 

AX-147208618 A01 4,679,934 5.5 3.2 

AX-176811779 A01 96,556,402 5.6 3.3 

AX-147212768 A02 2,937,660 5.9 3.5 

AX-176809518 A02 54,392,732 5.6 3.3 

AX-176814138 A02 69,522,218 5.9 3.4 

AX-176799357 A02 76,275,147 6.7 3.9 

AX-176814184 A02 80,367,821 5.5 3.2 

AX-176802161 A02 88,588,260 5.5 3.2 

AX-176815434 A02 93,648,223 6.2 3.6 

AX-147215334 A03 1,008,880 6.0 3.5 

AX-176795390 A03 32,267,174 5.5 3.2 

AX-147217771 A03 121,816,921 5.8 2.9 

AX-147218175 A03 128,328,312 5.8 3.4 

AX-147218177 A03 128,328,611 5.9 3.5 

AX-147218726 A03 134,513,642 6.0 3.1 
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Continued 

Single Marker Regression 

AX-176802330 A04 23,929,426 6.3 3.2 

AX-147219869 A04 33,608,076 6.2 3.6 

AX-176795482 A04 40,982,318 5.5 3.2 

AX-176814816 A04 53,108,353 5.5 3.2 

AX-147220151 A04 76,469,234 5.7 3.4 

AX-147220157 A04 76,790,192 5.8 3.4 

AX-147220160 A04 76,792,848 5.8 3.4 

AX-147220161 A04 76,877,659 5.5 3.2 

AX-147220163 A04 77,270,553 5.6 3.3 

AX-147220164 A04 77,271,279 5.5 3.2 

AX-147220178 A04 78,282,221 5.6 3.3 

AX-147220181 A04 78,282,956 5.5 3.2 

AX-147220186 A04 78,283,551 5.7 3.4 

AX-176792134 A04 78,283,966 5.6 3.3 

AX-176801575 A04 78,395,478 6.4 3.7 

AX-147220191 A04 79,285,408 5.5 3.2 

AX-147220195 A04 79,638,203 6.2 3.6 

AX-147220197 A04 80,024,591 5.8 3.4 

AX-147220198 A04 80,638,497 5.9 3.5 

AX-147220204 A04 81,064,626 6.0 3.5 

AX-176794930 A04 81,067,724 6.3 3.7 

AX-147220210 A04 81,397,986 5.5 3.2 

AX-147220214 A04 82,029,524 6.0 3.5 

AX-147220222 A04 82,272,796 5.9 3.5 

AX-147220225 A04 82,451,216 6.0 3.5 

AX-147220235 A04 83,252,974 6.0 3.5 

AX-176810634 A04 90,906,795 6.2 3.6 

AX-176818527 A04 101,124,999 5.5 3.3 

AX-147248062 A04 104,619,670 5.5 3.2 

AX-176808360 A04 118,900,581 5.6 3.3 

AX-147221136 A04 119,296,024 5.4 3.2 

AX-147223211 A05 91,855,042 5.4 3.2 

AX-176801332 A05 92,527,458 5.5 3.2 

AX-147223291 A05 94,152,944 5.9 3.0 

AX-176799087 A05 101,330,393 5.8 3.4 

AX-147223546 A05 101,331,168 5.8 3.4 

AX-176807288 A06 1,982,008 6.1 3.6 
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Continued 

Single Marker Regression 

AX-176807751 A06 2,763,696 6.2 3.6 

AX-176805464 A06 3,491,388 5.7 3.3 

AX-176806115 A06 4,493,236 6.2 3.7 

AX-176819343 A06 6,960,258 5.8 2.9 

AX-176798197 A06 16,318,885 6.1 3.6 

AX-176805389 A06 31,663,747 6.6 3.8 

AX-176811670 A06 95,180,807 6.9 4.0 

AX-176806956 A06 96,492,176 7.7 4.5 

AX-147226321 A06 105,425,114 6.3 3.7 

AX-176803972 A07 4,062,405 5.5 3.2 

AX-147254806 A07 6,489,131 6.1 3.1 

AX-177638761 A07 7,143,266 5.4 3.2 

AX-147227941 A07 18,840,166 6.9 4.0 

AX-147227943 A07 18,840,306 6.0 3.5 

AX-176794097 A07 23,213,115 5.6 2.8 

AX-176792467 A08 1,732,429 6.6 3.9 

AX-177641461 A08 8,340,010 5.5 2.8 

AX-147230402 A08 24,455,849 5.7 3.3 

AX-147230403 A08 24,455,877 5.9 3.5 

AX-176815394 A08 46,505,791 5.8 2.9 

AX-147231998 A08 48,974,813 5.5 2.8 

AX-147233030 A09 19,151,716 6.1 3.5 

AX-147233034 A09 19,152,263 6.4 3.3 

AX-176797333 A09 20,677,308 5.7 3.4 

AX-176795424 A09 87,680,085 5.6 3.3 

AX-147235074 A10 3,387,632 6.2 3.6 

AX-176815545 A10 67,325,207 5.5 2.8 

AX-147264290 A10 84,919,598 5.6 3.3 

AX-176804084 A10 96,704,596 5.9 3.0 

AX-176802196 A10 100,552,153 5.8 3.4 

AX-147236793 A10 103,589,072 5.5 3.2 

AX-147238152 B01 16,824,177 5.5 3.2 

AX-176824168 B01 129,944,418 5.5 3.2 

AX-176796979 B02 61,364,179 5.5 3.2 

AX-176820720 B02 83,222,769 5.6 3.3 

AX-176808560 B03 53,474,187 7.2 3.7 

AX-176823020 B03 122,608,001 7.3 4.2 
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Continued 

Single Marker Regression 

AX-176821735 B04 16,211,778 5.6 2.8 

AX-176823480 B04 19,520,056 5.9 3.0 

AX-176822544 B04 27,486,400 6.2 3.6 

AX-176821529 B04 75,330,522 5.8 3.4 

AX-147247704 B04 78,493,772 5.7 3.3 

AX-147247734 B04 82,325,476 5.8 3.4 

AX-147247737 B04 82,843,790 5.5 3.2 

AX-147247739 B04 82,846,208 5.9 3.5 

AX-147247740 B04 82,847,279 6.0 3.5 

AX-147247742 B04 83,847,194 5.5 3.2 

AX-147247744 B04 85,231,477 5.8 3.4 

AX-147247746 B04 85,261,373 6.2 3.6 

AX-147247748 B04 86,383,208 5.8 3.4 

AX-176811428 B04 87,059,163 6.1 3.6 

AX-147247750 B04 87,330,221 5.6 3.3 

AX-147247752 B04 88,398,643 5.7 3.4 

AX-147247757 B04 89,248,043 5.8 3.4 

AX-147247761 B04 89,275,438 5.8 3.4 

AX-176791800 B04 96,900,854 5.6 3.3 

AX-176819114 B04 96,903,250 6.3 3.2 

AX-176820215 B04 100,494,295 6.7 3.9 

AX-176823894 B04 103,717,442 6.3 3.7 

AX-176823955 B04 107,283,159 6.2 3.6 

AX-176809313 B04 113,476,152 6.0 3.5 

AX-147248158 B04 115,634,391 5.9 3.4 

AX-176801426 B04 123,159,927 5.6 3.3 

AX-176807388 B04 124,286,278 5.5 2.7 

AX-176821570 B05 130,262,106 5.6 2.8 

AX-176820650 B06 49,613 5.8 3.0 

AX-176819459 B06 1,080,498 5.7 3.3 

AX-147251757 B06 3,180,468 6.2 3.7 

AX-147251899 B06 4,986,179 5.5 3.2 

AX-176798574 B06 6,107,339 5.5 2.8 

AX-176798149 B06 6,762,762 5.8 2.9 

AX-176822704 B06 9,163,091 6.7 3.9 

AX-176823525 B06 11,994,229 5.5 3.2 

AX-176819407 B06 13,057,095 6.4 3.7 
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Continued 

Single Marker Regression 

AX-176817527 B06 16,400,617 5.7 3.4 

AX-176795178 B06 16,470,676 5.8 3.4 

AX-147252588 B06 22,822,411 6.2 3.2 

AX-176808697 B06 23,490,357 5.7 3.3 

AX-176822251 B06 24,151,926 6.0 3.1 

AX-176791527 B06 24,429,699 6.0 3.5 

AX-147252688 B06 27,999,213 6.1 3.6 

AX-176822503 B06 29,039,075 6.9 3.6 

AX-176822914 B06 39,793,516 7.0 3.6 

AX-176819708 B06 45,645,879 5.8 3.4 

AX-176824221 B06 65,129,981 6.7 3.9 

AX-147252963 B06 87,676,700 5.6 3.3 

AX-176823191 B06 102,807,076 5.6 3.3 

AX-176806012 B06 107,609,402 5.5 3.2 

AX-176820260 B06 108,518,747 7.1 4.1 

AX-147253348 B06 118,070,034 6.6 3.8 

AX-147253437 B06 121,537,744 6.7 3.4 

AX-176806377 B06 122,321,048 6.8 3.5 

AX-176821681 B06 122,581,860 7.6 4.0 

AX-176820088 B06 123,275,218 5.9 3.5 

AX-176817763 B06 124,102,491 5.9 3.5 

AX-176823541 B06 124,127,763 6.2 3.2 

AX-176808872 B06 124,127,763 5.9 3.4 

AX-176823574 B06 125,992,228 6.8 4.0 

AX-176822130 B06 127,448,206 6.2 3.6 

AX-147253739 B06 128,287,517 5.6 3.3 

AX-176823068 B06 129,570,003 6.1 3.6 

AX-176820577 B06 129,766,082 7.2 4.2 

AX-147254401 B07 1,449,271 5.7 3.3 

AX-177640154 B07 5,225,213 5.6 3.3 

AX-177640156 B07 6,132,665 6.0 3.5 

AX-177638049 B07 9,189,209 5.5 3.2 

AX-176821319 B07 100,308,848 5.5 2.8 

AX-147256082 B07 105,738,821 5.5 2.8 

AX-177639265 B07 110,494,666 5.8 3.4 

AX-147257104 B08 1,880,289 5.8 3.4 

AX-177644329 B08 2,240,041 5.7 3.4 
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Continued 

Single Marker Regression 

AX-177644360 B08 117,912,559 5.9 3.4 

AX-177643206 B09 10,735,371 5.9 3.5 

AX-176823357 B09 115,312,168 5.6 3.3 

AX-177637732 B10 35,189,192 5.6 2.9 

AX-177639197 B10 53,567,565 5.5 2.8 

AX-176823701 B10 53,790,724 5.6 2.8 

AX-176821687 B10 108,714,201 5.8 3.4 

AX-177638968 B10 109,488,824 5.5 3.2 

AX-176821864 B10 114,106,756 5.7 3.3 

AX-177640459 B10 119,790,764 5.9 3.0 

AX-177638504 B10 121,949,032 5.7 3.4 

AX-177638497 B10 127,108,018 5.4 3.2 

AX-177637369 B10 127,616,318 5.7 3.4 

AX-176821433 B10 128,094,475 5.6 2.8 

AX-176822190 B10 131,571,730 5.5 3.2 

AX-147237240 B10 134,914,334 6.5 3.8 

Generalized Linear Model (PCA) AX-176821681 B06 122,581,860 7.1 3.6 

Generalized Linear Model (Q) 

AX-176814138 A02 69,522,218 5.5 3.2 

AX-176799357 A02 76,275,147 7.0 4.1 

AX-176815434 A02 93,648,223 5.7 3.3 

AX-147215334 A03 1,008,880 6.0 3.5 

AX-147218175 A03 128,328,312 5.7 3.3 

AX-147218177 A03 128,328,611 5.9 3.5 

AX-147218726 A03 134,513,642 5.8 2.9 

AX-176802330 A04 23,929,426 6.2 3.2 

AX-147219869 A04 33,608,076 6.3 3.7 

AX-147220151 A04 76,469,234 5.7 3.3 

AX-147220157 A04 76,790,192 5.9 3.5 

AX-147220160 A04 76,792,848 5.6 3.2 

AX-147220164 A04 77,271,279 5.5 3.2 

AX-147220178 A04 78,282,221 5.5 3.2 

AX-147220181 A04 78,282,956 5.4 3.2 

AX-147220186 A04 78,283,551 5.7 3.3 

AX-176792134 A04 78,283,966 5.6 3.3 

AX-176801575 A04 78,395,478 6.3 3.7 

AX-147220195 A04 79,638,203 6.2 3.6 

AX-147220197 A04 80,024,591 5.8 3.4 
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Continued 

Generalized Linear Model (Q) 

AX-147220198 A04 80,638,497 6.0 3.5 

AX-147220204 A04 81,064,626 5.9 3.5 

AX-176794930 A04 81,067,724 6.3 3.7 

AX-147220210 A04 81,397,986 5.4 3.2 

AX-147220214 A04 82,029,524 5.8 3.4 

AX-147220222 A04 82,272,796 5.9 3.4 

AX-147220225 A04 82,451,216 5.8 3.4 

AX-147220235 A04 83,252,974 5.8 3.4 

AX-176810634 A04 90,906,795 6.4 3.7 

AX-176808360 A04 118,900,581 5.6 3.2 

AX-147223291 A05 94,152,944 5.5 2.7 

AX-176799087 A05 101,330,393 5.7 3.4 

AX-147223546 A05 101,331,168 5.8 3.4 

AX-176807288 A06 1,982,008 6.2 3.6 

AX-176807751 A06 2,763,696 6.3 3.7 

AX-176806115 A06 4,493,236 6.5 3.8 

AX-176798197 A06 16,318,885 6.0 3.5 

AX-176805389 A06 31,663,747 6.9 4.0 

AX-176811670 A06 95,180,807 7.0 4.1 

AX-176806956 A06 96,492,176 7.9 4.6 

AX-147226321 A06 105,425,114 6.5 3.8 

AX-147254806 A07 6,489,131 6.0 3.0 

AX-147227941 A07 18,840,166 7.0 4.1 

AX-147227943 A07 18,840,306 5.9 3.4 

AX-176792467 A08 1,732,429 6.9 4.0 

AX-147230402 A08 24,455,849 5.6 3.3 

AX-147230403 A08 24,455,877 5.8 3.4 

AX-147233030 A09 19,151,716 6.0 3.5 

AX-147233034 A09 19,152,263 6.3 3.2 

AX-147235074 A10 3,387,632 6.3 3.6 

AX-176804084 A10 96,704,596 5.5 2.8 

AX-176802196 A10 100,552,153 5.6 3.3 

AX-176808560 B03 53,474,187 7.1 3.6 

AX-176823020 B03 122,608,001 6.8 4.0 

AX-176823480 B04 19,520,056 5.5 2.8 

AX-176822544 B04 27,486,400 6.2 3.6 

AX-176821529 B04 75,330,522 5.6 3.3 
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Continued 

Generalized Linear Model (Q) 

AX-147247704 B04 78,493,772 5.5 3.2 

AX-147247734 B04 82,325,476 5.8 3.4 

AX-147247739 B04 82,846,208 5.9 3.4 

AX-147247740 B04 82,847,279 5.9 3.4 

AX-147247744 B04 85,231,477 5.7 3.3 

AX-147247746 B04 85,261,373 6.2 3.6 

AX-147247748 B04 86,383,208 5.6 3.3 

AX-176811428 B04 87,059,163 6.1 3.6 

AX-147247750 B04 87,330,221 5.4 3.2 

AX-147247752 B04 88,398,643 5.7 3.3 

AX-147247757 B04 89,248,043 5.7 3.3 

AX-147247761 B04 89,275,438 5.7 3.3 

AX-176791800 B04 96,900,854 5.5 3.2 

AX-176819114 B04 96,903,250 6.2 3.2 

AX-176820215 B04 100,494,295 6.6 3.8 

AX-176823894 B04 103,717,442 6.4 3.7 

AX-176823955 B04 107,283,159 6.3 3.7 

AX-176809313 B04 113,476,152 5.8 3.4 

AX-147248158 B04 115,634,391 5.5 3.2 

AX-176819459 B06 1,080,498 5.5 3.2 

AX-147251757 B06 3,180,468 6.4 3.7 

AX-176822704 B06 9,163,091 7.1 4.1 

AX-176819407 B06 13,057,095 6.6 3.9 

AX-176795178 B06 16,470,676 5.8 3.4 

AX-147252588 B06 22,822,411 6.0 3.0 

AX-176822251 B06 24,151,926 5.7 2.9 

AX-176791527 B06 24,429,699 5.8 3.4 

AX-147252688 B06 27,999,213 5.9 3.5 

AX-176822503 B06 29,039,075 7.1 3.6 

AX-176822914 B06 39,793,516 7.2 3.7 

AX-176824221 B06 65,129,981 7.0 4.1 

AX-176820260 B06 108,518,747 7.0 4.0 

AX-147253348 B06 118,070,034 6.9 4.0 

AX-147253437 B06 121,537,744 6.3 3.2 

AX-176806377 B06 122,321,048 6.5 3.3 

AX-176821681 B06 122,581,860 7.9 4.1 

AX-176820088 B06 123,275,218 5.6 3.2 
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Continued 

Generalized Linear Model (Q) 

AX-176823541 B06 124,127,763 5.8 2.9 

AX-176808872 B06 124,127,763 5.5 3.2 

AX-176823574 B06 125,992,228 7.4 4.3 

AX-176822130 B06 127,448,206 6.4 3.7 

AX-147253739 B06 128,287,517 5.5 3.2 

AX-176823068 B06 129,570,003 6.2 3.6 

AX-176820577 B06 129,766,082 7.4 4.3 

AX-147254401 B07 1,449,271 5.5 3.2 

AX-177640156 B07 6,132,665 5.8 3.4 

AX-177644360 B08 117,912,559 5.5 3.2 

AX-177643206 B09 10,735,371 5.7 3.3 

AX-176823357 B09 115,312,168 5.5 3.2 

AX-177640459 B10 119,790,764 5.5 2.8 

AX-147237240 B10 134,914,334 6.4 3.7 

Mixed Linear Model (PCA=K) AX-176821681 B06 122,581,860 5.6 2.9 

Mixed Linear Model (Q + K) 

AX-176800551 A01 69,524,629 3.1 1.9 

AX-176807751 A06 2,763,696 3.2 1.9 

AX-176806956 A06 96,492,176 3.4 2.0 

AX-147241123 B02 23,631,160 3.4 2.0 

AX-176808560 B03 53,474,187 3.9 1.9 

AX-147253437 B06 121,537,744 3.5 1.7 

AX-176806377 B06 122,321,048 3.8 1.9 

AX-176821681 B06 122,581,860 4.9 2.5 

AX-176813106 B06 13,430,0181 3.6 2.1 

AX-177642631 B08 39,306,016 3.2 1.9 

 

Figure 1(A) and Figure 1(B) show the Manhattan and QQ plot for the SMR 
model. A total of 85 significant SNPs were found on the A genome, and 96 signif-
icant SNPs were found on the B genome. For the A genome, the chromosomes 
A01, A02, A03, A04, A05, A06, A07, A08, A09, A10 have 4, 7, 6, 31, 5, 10, 6, 6, 2, 
and 6 SNPs, respectively (Table 1). For the B genome, the chromosomes B01, B02, 
B03, B04, B05, B06, B07, B08, B09, and B10 have 2, 2, 2, 27, 1, 37, 7, 3, 2, and 13 
SNPs, respectively (Figures 1-5, Table 1).  

Figure 1(A) shows clusters of significant SNPs located on the following chro-
mosomes: A04 (76,469,234 bp to 119,296,024 bp), A05 (91,855,042 bp to 
101,331,168 bp), A06 (1,982,008 bp to 6,960,258 bp and 9,5180,807 bp to 
105,425,114 bp), A08 (1,732,429 bp to 24,455,877 bp), A09 (19,151,716 bp to 
20,677,308 bp), B04 (16,211,778 bp to 27,486,400 bp, 75,330,522 bp to 96,903,250 
bp, and 100,494,295 bp to 124,286,278 bp), B06 (916,391 bp to 45,645,879 bp and  
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Figure 1. Manhattan and QQ plots using the SMR model. 
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Figure 2. Manhattan and QQ plots using the GLM (PCA) model. 
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Figure 3. Manhattan and QQ plots using the GLM (Q) model. 

https://doi.org/10.4236/ajps.2024.159052


A. Manley et al. 
 

 

DOI: 10.4236/ajps.2024.159052 827 American Journal of Plant Sciences 
 

 

 

Figure 4. Manhattan and QQ plots using the MLM (PCA + K) model. 
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Figure 5. Manhattan and QQ plots using the MLM (Q + K) model. 
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102,807,076 bp to 129,766,082 bp), and B10 (108,714,204 bp to 134,914,334 bp). 
The genomic regions where SNP clusters are found suggest that a quantitative trait 
locus affecting plant growth habit can be found in these areas. 

3.2. Generalized Linear Model PCA (GLM_PCA) 

Results from the GLM PCA model identified one SNP, AX-176821681, as signifi-
cantly associated with peanut growth habit. This SNP is located on chromosome 
B06 (122,581,860 bp), has a LOD score of 7.1, and an R-square value of 3.6%. 

3.3. Generalized Linear Model Q (GLM_Q) 

The GLM Q model identified 108 SNPs as significantly associated with peanut 
growth habit. The SNPS were located on chromosomes A02-A10, B03-B04, and 
B06-B10, most frequently occurring on chromosomes A04, B04, and B06. LOD 
values ranged from 5.4-7.9, and R-Square values ranged from 2.7% to 4.6%. The 
ten SNPS with the highest LOD values are AX-176799357 on A02 (76,275,147 bp, 
LOD = 7.0, and R2 = 4.1%), AX-14722704 on A07 (18,840,166 bp, LOD = 7.0, and 
R2 = 4.1%), AX-176822704 on B06 (9,163,091 bp, LOD = 7.1, and R2 = 4.1%), AX-
176808560 on B03 (53,474,187 bp, LOD = 7.1, and R2 = 3.6%), AX-17682250 on 
B06 (29,039,075 bp, LOD = 7.1, and R2 = 3.6%), AX-176822914 on B06 (39,793,516 
bp, LOD = 7.2, and R2 = 3.7%), AX-176820577 on B06 (129,766,082, LOD = 7.4, 
and R2 = 4.3%), AX-176823574 on B06 (125,992,228 bp, LOD = 7.4, and R2 = 
4.3%), AX-176806956 on A06 (96,492,176 bp, LOD = 7.9, and R2 = 4.6%), and AX-
176821681 on B06 (122,581,860 bp, LOD = 7.9, and R2 = 4.1%). Of the SNPS iden-
tified, 52 were located on the A genome and 56 were located on the B genome. For 
the A genome, the chromosomes A02, A03, A04, A05, A06, A07, A08, A09, A10 
had 3, 4, 23, 3, 8, 3, 3, 2, and 3 SNPS respectively. For the B genome, the chromo-
somes B03, B04, B06, B07, B08, B09, and B10 had 2, 22, 25, 2, 1, 2, and 2 respec-
tively. 

Clusters of SNPs significantly associated with plant growth habit were found 
on the following chromosomes: A03 (128,328,312 bp to 134,513,642 bp), A04 
(76,790,192 bp to 118,900,581 bp), A08 (24,455,849 bp to 24,455,877 bp), B04 
(75,330,522 bp to 115,634,391 bp), B06 (22,822,411 bp to 29,039,075 bp and 
108,518,747 bp to 129,766,082 bp), and B10 (119,790,764 bp to 134,914,334 bp). 

3.4. Mixed Linear Model PCA (MLM_PCA + K) 

The MLM PCA found one SNP (AX-176821681) to be significantly associated 
with peanut growth habit on chromosome B06 (122,581,860 bp) with an LOD 
score of 5.6 and R2 square of 2.9%. 

3.5. Mixed Linear Model Q (MLM_Q + K) 

The MLM Q model found 10 SNPs to be significantly associated with peanut 
growth habit. Located on chromosomes A01 and A06, and B03, B06, and B08, the 
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ten SNPS identified are AX-176800551 on A01 (69,524,629 bp, LOD = 3.1, and 
R2 = 1.9%), AX-177642631 B08 (39,306,016 bp, LOD = 3.2, and R2 = 1.9%), AX-
176807751 on A06 (2,763,696 bp, LOD = 3.2, and R2 = 1.9%), AX-176806956 
on A06 (96,492,176 bp, LOD = 3.4, and R2 = 2.0%), AX-147241123 on B02 
(23,631,160 bp, LOD = 3.4, and R2 = 2.0%), AX-147253437 on B06 (12,153,774 
bp) (LOD = 3.5, and R2 = 1.7%), AX-176813106 B06 (134,300,181 bp) (LOD = 
3.6, and R2 = 2.1%), AX-176806377 B06 (122,321,048 bp, LOD = 3.8, and R2 = 
1.9%), AX-176808560 on B03 (53,474,187 bp, LOD = 3.9, and R2 = 1.9%), AX-
176821681 B06 (122,581,860 bp, LOD = 4.9, and R2 = 2.5%).  

Only a single cluster of SNPs significantly associated with plant growth habit 
was found on chromosome B06 from 121,537,744 bp to 134,300,181 bp. 

3.6. Genomic Selection 

Figure 6 shows the genomic selection accuracy of plant growth habit using differ-
ent training population sizes. The results indicated that a larger training popula-
tion provided better genomic selection accuracy. The highest accuracy (r = 0.61) 
was obtained for the training population 646, whereas the lowest accuracy was 
recorded for the training population size 388 (r = 0.23). These results demon-
strates that genomic prediction can be used as a selection tool for plant growth 
habits in peanuts. 
 

 

Figure 6. Accuracy of genomic selection using different training population sizes (388, 517, 
581, 620, and 646). 

4. Discussion 

Plant growth habit in peanuts is used for botanical classification purposes, affects 
agronomic practices, and overall crop yield. Plants which are erect with small 
branch angles can be densely planted, unlike those with large branch angles [5]. 
Researchers disagreed whether inheritance of the growth habit trait is nuclear or 
cytoplasmic and if branch angle inheritance was under polygenic or monogenic 
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control [6]-[8]. Fonceka et al. (2012) used a chromosomal segment substitution 
line population and found several quantitative trait loci (QTLs) control the growth 
habit trait in peanuts [9]. However, a bulk segregant analysis with sequencing re-
sults revealed a major QTL for the growth habit trait in peanuts on chromosome 
B05 by Kayam et al. [8]. 

In this study, we used GWAS to identify SNP markers associated with the plant 
growth habit trait utilizing a publicly available dataset. Significantly associated 
SNPs were identified in both the A and B sub-genomes. All the SNPs identified 
had a low R-square value which indicates that plant growth habit is controlled by 
a small-effect QTL. Previously, GWAS and bulk segregant analysis were used to 
identify QTL associated with five plant growth habit traits in peanuts. Li et al. [5] 
reported a total of 91 significant SNPs. These SNPs were associated with lateral 
branch angle (19), main stem height (38), lateral branch height (12), index of plant 
type (6), and extent radius (16) among the 103 accessions evaluated. These SNPs 
were distributed among 15 chromosomes, and some were identified for more than 
one trait. A SNP on chromosome B06 was identified for LBA (lateral branch an-
gle) and ER (extent radius) growth habit traits. These results indicate that chro-
mosome B06 is a good location to identify SNPs related to peanut plant growth 
habit. Additional research groups have found GWAS to be powerful when seeking 
which molecular markers are associated with a specific trait of interest [5] [31] 
[32]. Different GWAS models were tested to identify SNPs which were strongly 
associated with peanut plant growth habit and could be used to screen future pea-
nut genotypes. A single SNP, AX-176821681, on chromosome B06 was consistent 
across the five models tested. The single-marker regression and generalized linear 
models were not as strict as the mixed linear models used. The AX-176821681 
SNP had the highest LOD value under each model and overall resulting LOD 
scores were reduced in the stricter mixed linear models. The closest annotated 
gene to AX-176821681, using the Arachis ipaenis K30076 1.0 data source, was 
Araip.0F3YM (2,485 bp upstream of this SNP) which encodes for a peptidyl-prolyl 
cis-trans isomerase. Peptidyl-prolyl cis-trans isomerases and foldases catalyze 
protein isomerization between trans and cis forms of peptide bonds associated 
with the polypeptide structure by the 180o rotation around the prolyl bond. The 
isomerase acts as a timer causing protein structure changes to regulate molecular 
interactions and enzymatic reactions in various pathological and physiological 
processes [33]. The overexpression of FKBP-like peptidyl-prolyl cis-trans isomer-
ase in Arabidopsis could enhance tolerance to drought, ABA, and heat and salt 
stress [34]. Plants under drought stress have their growth stunted, affecting the 
plant growth habit of a peanut genotype. Thus, Araip.0F3YM could be a candidate 
gene for plant growth habit in peanuts. Results also suggest that genomic selection 
can achieve an accuracy of 61% depending on the training population size being 
used for the prediction. This indicates that genomic selection can be implemented 
in a peanut breeding program to predict and select plant growth habits. A similar 
accuracy was found for genomic selection for sting nematode resistance in peanuts 
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[31] and soybean cyst nematode in soybean [34]. However, the data should be 
optimized by exploring additional genomic selection models.  

5. Conclusion 

To the best of our knowledge, this is the first report on identifying molecular 
markers associated with growth habit in peanut genotypes from the USDA 
germplasm collection. A total of 181, 1, and 1 SNPs were found associated with 
growth habit in peanuts using the singe-marker regression, mixed linear model, 
and generalized linear model, respectively. One SNP was consistently found in all 
three models, resulting in a molecular marker that can be used to screen for plant 
growth habit.  
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