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Abstract 
In the special theory of relativity, massive particles can travel at neither the speed 
of light c nor faster. Meanwhile, since the photon was quantized, many have 
thought of it as a point particle. How pointed? The idea could be a mathematical 
device or physical simplification. By contrast, the preceding notion of wave-
group duality has two velocities: a group velocity vg and a phase velocity vp. In 
light vp = vg = c; but it follows from special relativity that, in massive particles, 
vp > c. The phase velocity is the product of the two best measured variables, and 
so their product constitutes internal motion that travels, verifiably, faster than 
light. How does vp then appear in Minkowski space? For light, the spatio-tem-
poral Lorentz invariant metric is 2 2 2 2 2 2s c t x y z= − − − , the same in whatever 
frame it is viewed. The space is divided into 3 parts: firstly a cone, symmetric 
about the vertical axis ct > 0 that represents the world line of a stationary particle 
while the conical surface at s = 0 represents the locus for light rays that travel at 
the speed of light c. Since no real thing travels faster than the speed of light c, the 
surface is also a horizon for what can be seen by an observer starting from the 
origin at time t = 0. Secondly, an inverted cone represents, equivalently, time 
past. Thirdly, outside the cones, inaccessible space. The phase velocity vp, group 
velocity vg and speed of light are all equal in free space, vp = vg = c, constant. 
By contrast, for particles, where causality is due to particle interactions having 
rest mass mo > 0, we have to employ the Klein-Gordon equation with 

2 2 2 2 2 2 2 2
os c t x y z m c= − − − + . Now special relativity requires a complication: 

vp.vg = c2 where vg < c and therefore vp > c. In the volume outside the cones, 
causality due to light interactions cannot extend beyond the cones. However, 
since vp > c and even vp >> c when wavelength λ is long, extreme phase velocities 
are then limited in their causal effects by the particle uncertainty σ, i.e. to vgt ± 
σ/ω, where ω is the particle angular frequency. This is the first time the phase 
range has been described for a massive particle.  
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1. Introduction 

The extraordinary facts, that emerge within the properly explained diffraction in 
quasicrystals, support a redefinition of the quantum: it is the consequence of res-
onant harmonies in emission, scattering and measurement [1]-[3]. These special 
harmonies are geometric in long range, while being simultaneously linearly peri-
odic in short range. The diffraction reveals a new Quasi-Bragg law. Its novel fea-
tures have been used to explain quantum collapse [1] that is sometimes called the 
greatest outstanding problem in physics [4]. Partly in view of large effort currently 
directed to instrumentation for quantum computing and for elementary particle 
physics, the proper time has arrived to re-examine not only the quantum, but ef-
fects of internal motion.  

Quantum mechanics has aroused dispute since its inception [5] [6]. For exam-
ple, internal motion in the electron has always been neglected: Dirac gives it only 
the merest mention in his Principles of Quantum Mechanics [7] and it has been 
axiomatized out of existence in the well-known versions that follow Schrodinger 
or Heisenberg [8]. This neglect adds to ambiguities in the notion of the “point-
particle” in atomic data and of “Uncertainty” in wave-particle duality. However, 
the particle that became evident in the early 20th century need not be the “point 
particle” of mathematical theories; the opposite view of the wave-group is closer 
to experimental fact, including everyday physical understanding of transmission 
and scanning electron microscopies [9] and indeed of optical physics [10].  

Typically, our event horizon is wider in phase space than in real Minkowski 
space because vp > c. However, the horizon relates to other phenomena that have 
been mentioned before but which are still intriguing: how can the photon demon-
strate momentum without rest mass? Why is the momentum of a wave-particle 
not proportional to its wavelength, as is its wave velocity? How small is a “point 
particle”? What is an “uncertainty limit”? What physical measurement is instan-
taneous and discontinuous? How is a macroscopically dispersed wave-packet (as 
in Young’s slits) reduced to atomic scales during measurement? These are a few 
of many weird features adopted without explanation in mathematical quantum 
theory. We have, in previous papers, explored physical answers to all of them. 

In truth the “‘point-particle” is computational. Mathematics chooses its axioms; 
Physics falsifies them; Chemistry employs them. Computation is free to follow no 
particular discipline. For this reason, the calculations are neither undeniably true 
nor properly beautiful. 

Heisenberg’s point particle dispersed into his Uncertainty, though Huygens, 
Fraunhofer and Fresnel had preceded him more accurately a hundred years ear-
lier. We take another point: the center of the wave group, and we illustrate it with 
experimental detail. 

Whether quantum theory is mathematics or physics, it is the duty of science to 
know. Where it is computational, it is free to adapt and progress without discipline. 
In Stephen Hawking’s Department of Applied Mathematics and Theoretical Phys-
ics, we were once invited to a seminar series. At one point our host interrupted my 
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question, “Let me understand: you do experiments as well as theory!” I was the only 
researcher present that enjoyed the advantage, designing, building, and measuring 
with instrumentation for light optics and electron optics—including of course, the 
wave packet. I take it that Popper’s schism is outdated: “scientists” will do what they 
individually can in all their variety. 

2. The Photonic Quantum 

After Planck had interpreted the spectrum of black body radiation by supposing 
that the ultraviolet collapse in electromagnetic radiation is quantized, Einstein 
reached the same conclusion in 1905 in the photoelectric effect: when light is ab-
sorbed into a metallic surface, electrons are emitted. The energy states En of these 
electrons depends directly, not on the incident light intensities as had been previ-
ously supposed1, but on the frequency of the light, En = ℏωn, i.e. on angular fre-
quency ω in units of Planck’s reduced constant. The simplest illustration of a free 
quantum, that is consistent with wave-particle duality, is the wave group (Figure 1), 
 

 
Figure 1. Normal wave packet including conservative function (orange) enveloping 
infinite, responsive, elastic, complex wave (red and blue), with uncertainty σ (pink double 
arrow) at time x = 0. The Fourier transform of a Gaussian is Gaussian, so t may represent 
any of the four variables x, kx, t, ω, or t. In massive particles, the group velocity vg < c 
(orange, distance travelled per unit time); the phase velocity vp > c (blue). 
 
specifically the wave function: 

2

2exp
2
XA iXϕ
σ

 
′= ⋅ + 

 
 

with imaginary:  

( )X i t kxω= − ; ( )X i t kxω′ = −                    (1) 
where A is a normalizing constant; σ is proportional to Uncertainty [1]; and t, k 
and x represent respectively time, wave vector and position, in one dimension for 
simplicity2. The imaginary factor X contains mean values that stabilize the normal 
envelope function in free space and X' represents the variables in a plane wave.  

The raw energy of this packet was described in footnote 1, but the mechanics of 

 

 

1 ( )2 22 2 do oE ε µ τ= +∫ E B  with electric field E vertical in Figure 1 and magnetic intensity B hori-

zontal. With quantization, En = ℏωn, owing to harmonic resonance to be described below. 
2 2t σ ω∆ = ; 4ω ω σ∆ = ; 2 xx kσ∆ = ; 4x xk k σ∆ = ; 8tω∆ ⋅ ∆ =  etc. 
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resonant quantization and resonant collapse is now evident in the facts of quasi-
crystal diffraction [1]. With quantization, the packets are counted by integral nu-
meration, and this gave rise, a hundred years ago, to the theory of quantum me-
chanics, including Einstein’s photelectric effect in 1905. Meanwhile, we have to 
compare special relativity and the version of wave-particle duality that is often 
called uncertainty by those who consider the quantized wave as if it must be a 
point-particle.  

In the same year, Einstein discovered that physical laws are invariant in all in-
ertial reference frames. This includes the universal speed of light in free space, c = 
(eo.μo)−1/2, the inverse square root of its electric permittivity times its magnetic per-
meability. From this fact he derived the equivalence between energy E and rela-
tivistic mass, 2 2

oE m c m cγ′= = , i.e. including kinetic energy and the Lorentz fac-
tor ( ) 1 221 gv cγ

−
= − , and furthermore 2 2 2 2 4

oE c m c= +p , where p is the 3-di-
mensional momentum of a particle, having rest mass mo. After applying Planck’s 
law, E = ℏω, and the de Broglie hypothesis in terms of wavevector, p = ℏk, the 
equation yields [1]: 

2 2 2 2 4 2
ok c m cω = +                      (2) 

in one spatial dimension for simplicity. Notice that mo is a wave-particle since 
( )( )2 2 2

om k k kω ω ω= − = − + -the first part oscillating and the second conserv-
ing. By differentiation: 

2d
d

c
k k
ω ω

⋅ = ,                      (3) 

the product of phase velocity (frequency x wavelength or angular-frequency/ 
wavevector) vp = ω/k with group velocity vg = dω/dk, is constant c2 [1]. If the y, z 
motion has cylindrical symmetry normal to the x propagation direction (supposed 
in equation 2) and if the motion is represented in 4-dimensional space-time, the 
2-dimensional transverse plane is conveniently normal to the direction of propa-
gation, the representation becomes conveniently Euclidean. 

3. Uncertainty in Particulate Waves 

Our free wave packet is a closer description of ionization beams from discharge 
tubes (typical of experiments described in the 19th Century) or of electrons from a 
modern microscope gun, than are Schrödinger’s bound states in a hydrogen atom 
or Heisenberg’s operators [x, p] > iℏ/2. Our description has the further advantage 
of being more detailed and more accurate: for example, the uncertainty in time Δt 
that is evident in Figure 1 is the full width half maximum and given in footnote 2. 
After Fourier transform, the corresponding uncertainty in angular frequency Δω is 
found, and the dual uncertainty, Δω. Δt = 8, is sixteen times larger than Heisenberg’s 
“limit”. Besides, our dual uncertainty is experimentally verified in Figure 2, where 
the critical condition in X-ray lithography corresponds to the extreme width of 
Cornu’s theoretical spiral [10] [12] [13] that is used to calculate Fresnel diffraction 
(along with uncertainties [14]) in both photon and electron optics. 
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Figure 2. Simulation of 100 keV electron beam transmitted by a narrow slit. Notice the 
variations from near field to far field imaging in Fresnel diffraction: Δx is minimum at the 
critical condition, with Δpx passing from negative (converging) to positive (diverging). At 
the experimental critical condition, the dual uncertainty is 4× larger than at Heisenberg’s 
“limit” and as much as 20× larger in far field. The critical condition corresponds to the 
extremum width in Cornu’s spiral [9]-[12]. Simulation due to C.B. Boothroyd.  

4. Dispersion Dynamics 

From special relativity, including equations 2 and 3, the derived functions of rel-
ativistic free particles are illustrated in Figure 3. The values are consistent with a 
hundred years of electron microscope usage and are also easily calculated, as be-
low. Meanwhile, by using natural units ℏ = 1 = c, notice firstly the rest mass mo, 
at the extreme left of relativistic mass plotted against k, i.e. 3

om mγ′ = . Secondly as 
k→0, the group velocity is consistent with Newtonian kinetic energy, 2 2o gKE m v≈  
4; but as k increases, vg limits to c by special relativity as is well known5. The nor-
malized phase velocity is its inverse by equation 3, vp/c = c/vg.  

These values and derived properties are simply calculated (Figure 4) using Py-
thagoras’ formula. They can often be found in electron microscope manuals [9]. 
The energy is the sum of electron rest mass energy with the gun energy Ve, meas-
ured and known. This addition gives us ω by Plank’s law. The momentum is the 
vector difference between energy and rest mass. Corresponding values are plotted 
in Figure 5, where, owing to longstanding consistency, they are virtually experi-
mental. These values have moreover been used in many applications starting with 
collision impact factors in elemental microanalysis [15]. Most recently they are 
used to redefine the quantum owing to its multiple properties that have been 

 

 

3 ( )2 2 2 2 21o o g gm m m m v c c c vγ′ = = − = − ; om m′ →  as 0gv → ; gv kc→  as gv c→  per eq 

(1). 

4 ( )2 2 2 2 2 21 11 1 1
2 2o o g o o gKE E m c m c v c m c m vγ  

= − = − ≈ + − 
 

= , as , 0gk v → . 

5From ( )( )1 22 2 21 1 opc kc v c m c
−

= = − −
, rearrange ( ) 12 2 2 2 2 2

oc v k m c
−

− = +  and  

( ) 12 2 2 2
g ov c k m c

−
= − + . 
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systematically demonstrated in quasicrystal diffraction. In particular, whereas the 
claim for its original data was, “A metallic phase with long range order but no 
translational symmetry” [1] [3], in fact quasi-Bloch waves have been observed [16] 
and their diffraction proves to have simultaneous dual translational symmetry, i.e. 
in both linear and logarithmic space [1] [17]. It is not rational to ascribe the mul-
tiple, extraordinary properties to chance occurrence; they must be attributed, in 
any serious understanding, to the fact that [1] [3]:  

All quanta are resonances to emission 
or scattering stimuli and measurement. 

 

 
Figure 3. Functions of relativistic free particles (equations 2 and 3). To avoid unphysical 
singularities when k = moc, the antiparticle is ascribed negative mass, positive velocity and 
negative momentum. The antiparticle travels forward in time, as in cloud chambers and 
bubble chambers. The dynamics of the photon, with mo = 0, are represented by the dash-
dot line, ω = kc. 
 

 
Figure 4. The frequency n and wavelength λ of an electron microscope probe are related 
by Pythagoras’ theorem as in relativity (eq. 2). The probe energy is the electron rest mass 
energy plus the accelerating energy of the gun, Ve. 
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Figure 5. Plots of values calculated for parameters in various electron probes against 
accelerating at voltage/keV, including from top down: the frequency (blue) in SI units; the 
phase velocity vp (green), the group velocity vg (purple); the ratio of phase/group velocities 
(navy blue); the product of phase with group velocities (yellow); and the wavelength (red). 
Notice the systematic relativistic changes when Ve≃moc2≃0.5 MeV, excepting only the 
constant product vp.vg. 
 

The physical quanta have sensible reality that supports their corresponding, nu-
merical equivalent in mathematical physics, namely of integers and irrationals. 
The explanation of the quasicrystal diffraction shows also how wave functions 
collapse during measurement [1]. Collapse is fundamental in wave-particle dual-
ity, particularly in diffraction from Young’s slits. Dispersion Dynamics have been 
variously applied [18]. With this general, affirmative background, we now pro-
gress to consider the horizon and range of phases travelling internally in the elec-
tron, faster than c. 

5. Phase Velocity in Minkowski Space  

Theoretically, Minkowski space is 4-dimensional and represents the spacetime 
of special relativity with inertial reference frames. The dimensions are time in 
the vertical direction in units of ct; space in the direction of particle propagation; 
and two other spatial dimensions in the transverse plane. Since the latter two 
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dimensions are typically similar and comparatively simple, they are most conven-
iently represented together as one dimension of a 3-dimensional diagram (Figures 
6(a) and Figures 6(b)). The defining property of the space is clear by comparison 
with Euclidean space which has the metric 2 2 2 2s x y z= + + . In Minkowski space, 
Lorentz invariance provides, 2 2 2 2 2s ct x y z= − − − . The origin represents pre-
sent time: particle dynamics of position and time are graphed on any plane 
through the origin, for any particular reference frame. The worldline of a station-
ary particle is the vertical axis through the origin. The speed of light is the slope 
of a massless particle that follows a straight line at 45˚ to the vertical. This is shown 
as two red cones in Figure 6(a), with apices at the origin, future time being posi-
tive; past time negative. No massive particle can travel faster than light. The sur-
faces of the red cones represent horizons for causal interaction, having present 
time at t = 0.  

 

   
(a)                                                  (b) 

Figure 6. (a) In Minkowski space, Red cones represent dynamics of light photons from the origin at time t = 0. The conical surface 
with apex semi-angle 45˚ is its horizon limit for causal interaction. Blue cones represent dynamics of massive particles with pc≈moc2. 
The semi angle in the blue cones, where vg≈c/2, is given by tan−1(θ) = vgt/ct≈1/2. When particle propagation proceeds on the 
horizontal line x, the third dimension, half forwards, represents motion in the transverse plane y, z, when cylindrically symmetric. 
Large, black, dashed lines represent negative axes. Small, black,dashed, lines represent the horizontal plane at time t = 0. Positive ct 
values lie in the future; negative values lie in the past. (b) Additional to Figure 6(a), green dashed lines represent phase velocities. 
The ‘angle at furthest reach’ is, in this case, tan−1(θ) = vpt/ct ≈ 3ct/2; but is not reached by the particle outside of its group that is 
determined by the envelope part of equation 1. The phase velocities are only realized within a wavegroup as uncertainties σi about 
both sides of the blue wavegroup spacetime trajectory, i.e. as displacements about the blue wavegroup center. At time t = 0, the 
range corresponds to the green ellipse at the origin corresponding to the uncertainty and adjacent range in green-dashed, parallel 
ranges of phase motions (see text).  
 

The blue cone represents the path in time and space of a particle travelling at 
about half the speed of light from the position of the observer at t = 0. 
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How should we represent phase velocity in Minkowski space? The phase causes 
interference in waves, but it allows for conservation of selected properties, mo, e, ω, 
k, σ, etc. that are realized in complex calculations φ*.φ. The phase is as real as its 
components, ω and λ, as in Figure 5. Besides causing uncertainty, phase requires 
representation on the Minkowski diagram in spite of its high velocity. Figure 6(b) 
shows an imaginary “furthest horizon” that is illustrated by single green lines at an 
angle tan−1(θ) = vpt/ct ≈ 3ct/2. This corresponds to a higher phase velocity than on 
the light horizon on the surfaces of the red cones. However, the “horizon” of the 
phase of the massive particle is restricted by the center of the wave group because 
of the envelope on equation 1. The group is scarcely observable where it is far from 
the group center except by restrictive tunneling that is reminiscent of radioactive 
decay in particles. Short of tunneling, more significant is the uncertainty width σ 
between two dashed green lines that attach to the center of the blue group velocity. 
This green uncertainty is attached to the blue group velocity at its angle tan−1(θ) = 
vgt/ct ≈ 1/2 on a particle traveling at half the speed of light, i.e. at half the angle 
taken by that light horizon on the surface of the red cone. The uncertainty corre-
sponds to the envelope function in equation 1 that limits the range of the phase to 
a region close to the particle center of mass, as illustrated in Figure 1. 

6. Discussion 

The phase velocity of light is the ratio of two of its best-known constants of mo-
tion, ω and k. This ratio is the speed of light, a fundamental constant. In matter, 
since mo > 0, the corresponding constants of motion, in free and inertial objects, 
have an extra degree of freedom (Figures 4 and Figures 5). The constants are 
studied and known in electron microscopy, in X-ray lithography and in other dis-
ciplines. The phase velocity is the ratio E/p (equals σ/k); the group velocity is in-
verted, pc2/E, following equation 3. Whereas it is well known in relativity, that the 
group velocities of massive particles, vg < c; it follows their phase velocities are 
faster, vp > c. This fact is contrary to common opinion in science, presumably 
because of prior influence made by optical physics which is different. 

In near stationary particles, the wavelengths are long, corresponding to short 
wavevectors; angular frequencies are then mostly due to mass and are hardly mo-
tive. Conversely, large momenta accompany large wavevectors, i.e. with short 
wavelengths, and the momenta are principally dynamic. Time dilation, 

2 21 gt t v c′∆ = ∆ − , and space contraction 2 21 gx x v c′∆ = ∆ −  are also asym-
metric. Here, the primes represent measurements made in frame 2; compared 
with others made in the unprimed frame 1. In the direction of propagation, vg = 
vx, and in the relativistic region, pc > mo in Figure 5, the spatio-temporal meas-
urements are more strongly dependent on vg ; but they are weaker in the transverse 
planes when vy and vz and comparatively small, and so less relativistic. This is 
partly why we converge the two axes in the transverse plane into the single axis 
for visual convenience in Figure 6.  

That the phase velocity of a free and massive particle is greater than the speed 
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of light, for reasons that are theoretical and established experimentally, is espe-
cially true in particles with low momentum. However, this fact does not imply 
that the phase velocity is an effective agent for physical properties, including 
momentum and energy that are governed by group properties; in contrast, the 
phase determines interference effects in the wave-particle, including diffraction 
and collapse [1]. In matter, the transport properties depend on the combined 
phase and group, though their individual motions are driven by different veloc-
ities.  

It should not be surprising on reflection, that the “furthest horizon” of the phase 
velocity in a massive particle velocity seems strange. It is faster than the speed of 
the light in vacuo which is limited by the red cone in Figure 6; but nothing is so 
strange as the alternative, “instantaneous” transformations. The phase velocity is 
due to two sources: at low momenta, principally to rest mass with long wavelength 
and slow motion ( om c p ); while at high momenta the phase velocity is due to 
short wavelengths and high, dynamic frequencies ( op m c ). These opposites are 
features we should expect and become used to. In particular, the angles that world 
lines lines make with the vertical axes in Figures 6, signify not particle positions, 
but speeds: the positions are signified in the horizontal plane. 

More generally, Physics that is not mathematical fantasy, is a variation of two 
themes. These are wave and particle: phase and group. They form opposites: mass 
and light; charge and polarization; scattering and superposition; gravitational 
force and metric; conserved properties and annihilations, Fermions and Bosons, 
etc. The duality also forms complementarities: spin; Pauli-exclusions and conden-
sates; with extraordinary similarities in electron and optical microscopies; and in 
electron and optical spectroscopies. The hidden variables that may have not yet 
been measured in a particular experiment (in phase for example) may be tempo-
rarily probable, but the spaceless point is neither wave nor group.  

The early point particle did not explain interference properties in matter. The 
application of harmonic emission and scattering to the wave-group satisfies the 
various requirements of interference. What remains is the core property of quan-
tization. By subtraction, it is the same as matter in Newton’s first law of motion: 
every “quantum” continues in its state of rest or uniform motion in a straight line, 
except in so far as it is compelled by applied external forces to change that state. 
It differs from transmission signals in undersea cables that are indeed distorted by 
external forces. It is remarkable that Newton’s law applies to internal motion as 
well as external motion. 

7. Conclusions 

In massless particles modeled on the free Maxwellian photon, group velocity 
equals the phase velocity: both equal the speed of light, vg = c = vp.  

Because photon optics are principally the same as electron optics (excepting 
polarization in the photon versus mass and charge in the electron), special rela-
tivity shows that the free, massive particle has limited group velocity, less than the 
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speed of light vg < c. Consequently, causality about the particle group lies, conven-
tionally, within the Minkowski light cone as in Figure 6(a). The phase velocity, 
that is calculated and measured to be faster than the speed of light, vp > c, does not 
escape the Minkowski light cones because the envelope (equation 1) on the free 
particle wave function, pins the phase velocity to the center of the group. Uncer-
tainty (σ/ω ) restricts the wave-group envelope to the region about the group cen-
ter (where ωt = kx) that lies on the group velocity boundary (dω/dk = 1/vp in nat-
ural units). The restriction limits causality to the outer parallel phase boundary 
within the Minkowski cones. 
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