

# Identifying microRNA-Target Gene Pairs in Luminal B Breast Cancer Using Integrated Analysis of miRNA and Transcriptome Profiles

Kayalvili Ulaganathan, Raviteja Reddy Alipeddi, Surekha Rani Hanumanth\*

Department of Genetics, Osmania University, Hyderabad, Telangana, India Email: \*surekharanih@osmania.ac.in

How to cite this paper: Ulaganathan, K., Alipeddi, R.R. and Hanumanth, S.R. (2024) Identifying microRNA-Target Gene Pairs in Luminal B Breast Cancer Using Integrated Analysis of miRNA and Transcriptome Profiles. *Advances in Breast Cancer Research*, **13**, 69-100.

https://doi.org/10.4236/abcr.2024.134008

Received: July 25, 2024 Accepted: September 20, 2024 Published: September 23, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

### Abstract

Dysregulation of post-transcriptional regulation of gene expression has been found to influence various human disorders. Aberrant miRNA-based regulation of gene expression has been found to be associated with different cancers, including breast cancers. Very little information is available on the effect of dysregulation of miRNA-mediated regulation on luminal B breast cancer. This study was aimed at comprehending the regulation of gene expression through miRNA in luminal B breast cancers by comprehensive analysis of miRNA and mRNA expression data together. Negatively regulated miRNA-target gene pairs were identified, and the target genes were functionally enriched to identify critical pathways associated with luminal B breast cancer. Further, the prognostic significance of these miRNAs and target gene pairs was assessed to identify genes with prognostic value in luminal B breast cancer. A total of 266 differentially expressed miRNAs and 164 dysregulated miRNA-target gene pairs were identified. Four genes, including SRP9, DSN1, RACGAP1, and SLC10A6, and one miRNA, hsa-mir-421, showed significant influence on the prognosis of patients with luminal B breast cancer. Through additional experimental examination of these findings, a deeper comprehension of miRNAbased post-transcriptional regulation in luminal B breast tumors will be possible.

### **Keywords**

Breast Cancer, Luminal B, miRNA, mRNA, TCGA

## **1. Introduction**

According to GLOBOCAN 2022, female breast cancer accounts for an estimated 11.6% of all cancer cases worldwide, making it the second most common cause of

cancer incidence [1]. Breast cancer most commonly originates from the epithelial cells lining the milk ducts and is of 4 main subtypes: Luminal A, Luminal B, Her2enriched, and Basal-like [2] [3]. Post-transcriptional regulation influences cellspecific expression patterns by controlling RNA processing, localization, translation, and destruction [4] [5]. MicroRNAs are small, non-coding RNAs that have a length of about 21 nucleotides. They play a major role in regulating gene expression post-transcriptionally. Depending on the degree of complementarity with target mRNA sequences in the 3'UTR, the miRNA/mRNA interaction results in either repression of translation or degradation of mRNA [6]. It has been reported that dysregulation of miRNA expression is linked to breast cancer. Tumor suppressor miRNA (tsmiR) or oncogenic miRNA (oncomiR) regulates different biological processes involved in the development of breast cancer, including apoptosis, metastasis, cancer recurrence, and cell proliferation [7] [8].

Luminal B breast cancers are an aggressive and highly proliferative subtype of breast cancer [9]. The miR-99a/let-7c/miR-125b cluster has been identified to be a marker for distinguishing luminal A from luminal B subtype, with a lower expression of this cluster of miRNAs in luminal B breast cancer [10]. Also, the luminal B subtype showed a distinct expression pattern of miR-182-5p, miR-200b-3p, miR-15b-3p, miR-149-5p, miR-193b-3p and miR-342-3p, 5p [11]. While there are a few miRNA-based studies on the luminal B breast cancer subtype, there aren't a lot of studies that analyze both the miRNA and the mRNA expression data together. Comprehending the regulation of gene expression patterns observed in breast cancers. Our earlier analysis concentrated on identifying luminal B specific expression patterns [12]. In this study, we investigated the post-transcriptional regulation of gene expression by analyzing both miRNA and mRNA expression data together to identify critical miRNA-target gene pairs in luminal B breast cancer.

### 2. Methods

#### 2.1. Data Collection

Luminal B breast cancer sample expression data and clinical data were obtained from TCGA (The Cancer Genome Atlas). Both miRNA and mRNA expression data of 164 inflammatory ductal carcinoma luminal B breast cancer samples, including 16 paired normal samples, were retrieved. The samples that had both mRNA expression data and miRNA expression data were only included. cBioPortal was used to obtain the PAM50 subtype classification data (cBioportal. https://www.cbioportal.org/).

### 2.2. Differential Expression of mRNA and miRNA in Luminal B Breast Cancer

The miRNA and mRNA expression data retrieved were used for differential expression analysis. The differential expression of miRNA and mRNA between the luminal B tumor samples and corresponding normal samples was analyzed using DEseq2, a tool that tests for differential expression by use of negative binomial generalized linear models [13]. The count data was imported into DEseq2, normalized, and the differential expression was quantified as log2 fold change (logFC) values. The wald test was used to assess the statistical significance and corrected for by Benjamini & Hochberg method. The miRNA and mRNA that were differentially expressed with a  $|logFC| \ge 1$  and FDR < 0.05 were considered significant. Principal component analysis (PCA) was carried out in R. Heatmaps of top 100 differentially expressed miRNA and mRNA was generated using pheatmap function. Volcano plots were generated using ggplot2.

### 2.3. Identification of Dysregulated miRNA-Target Gene Pairs in Luminal B Breast Cancer

Firstly, miRTarBase, a database that contains experimentally validated target sites of miRNAs, was used to identify all the target mRNAs of miRNAs differentially expressed in luminal B breast cancer [14]. The target mRNAs that were identified to be differentially expressed in luminal B breast cancer in our analysis were only retained. The differentially expressed miRNA and mRNA that showed opposite trends of expression were used to identify miRNA-target gene pairs. These miRNA-mRNA pairs were further analyzed for correlation between normalized mRNA expression values and normalized miRNA expression values using the Spearman correlation method. The miRNA-target gene pairs that showed a negative correlation were only considered. A cutoff of Spearman's correlation coefficient (R) < -0.2 and p < 0.05 was used to identify significant pairs.

#### 2.4. Functional Annotation and miRNA-Target Gene Pair Visualization

The differentially expressed target genes were functionally enriched using Enrichr in R. Enrichr is a web-based tool that is used for functional enrichment analysis of gene sets [15]. The genes were enriched for Gene Ontology (GO) terms and Kyto Encyclopedia of Genes and Genomes (KEGG) pathways. A cut-off of pvalue < 0.05 was used to identify the significant pathways enriched. Also, the significant miRNA-target gene pairs were visualized using cytoscape, a tool for visualization and integration of molecular interaction networks with gene expression data [16].

#### 2.5. Survival Analysis

Kaplan-Meier survival method was used to investigate the correlation between gene expression and overall survival (OS). Survival analysis was carried out in R. Based on median expression value, the samples were divided into high and low expression groups and the log-rank test was used to assess the statistical significance of difference in survival probabilities between the survival curves of low and high expression groups. A p value of <0.05 was used as cut-off to identify the significant associations.

#### 3. Results

#### **3.1. Data Used in the Analysis**

The mRNA and miRNA expression data of 164 inflammatory ductal carcinoma luminal B breast cancer samples, including 16 paired normal samples, were retrieved from TCGA. The clinical details of the patients are shown in **Table 1**.

Table 1. Patient clinicopathological characteristics.

|             | Luminal B,<br>n (%) |
|-------------|---------------------|
| Age (years) |                     |
| <60         | 88 (53.66%)         |
| ≥60         | 76 (46.34%)         |
| Sex         |                     |
| Female      | 164 (100%)          |
| Male        | 0 (0%)              |
| Stage       |                     |
| Ι           | 17 (10.37%)         |
| II          | 89 (54.27%)         |
| III         | 52 (31.70%)         |
| IV          | 4 (2.44%)           |
| N/A         | 2 (1.22%)           |

#### 3.2. Differential mRNA Expression in Luminal B Breast Cancer

Differential expression of mRNA between 164 luminal B breast cancer and 16 paired normal tissue samples identified 5951 significant differentially expressed mRNAs ( $|\log FC| \ge 1$  and FDR < 0.05). Of the 5951 differentially expressed mRNAs, 2972 were down-regulated and 2979 were up-regulated between luminal B breast cancer and corresponding surrounding normal tissue samples. PCA analysis using mRNA expression data showed differential clustering of tumor and normal samples. PCA analysis was carried out on the log2 transformed gene expression data, where the principal component 1 (PC1) accounted for 14% of the total variance and principal component 2 (PC2) accounted for 9% the total variance (**Figure 1(a)**). Heatmap of top 100 differentially expressed genes between luminal B breast cancer tissues and paired normal tissue samples was generated using pheatmap (**Figure 1(b**)) and a volcano plot of differentially expressed mRNAs between the tumor tissue and paired normal tissue samples is shown in **Figure 1(c**).



**Figure 1.** Differential expression of mRNA in luminal B breast cancer. (a) Principal component analysis using mRNA expression data. Blue dots represent luminal B tumor samples; Red dots represent paired normal samples; PC1 represents principal component 1; PC2 represents principal component 2. (b) Heatmap of top 100 differentially expressed genes. LumB represents Luminal B subtype. (c) Volcano plot of differentially expressed mRNA. X axis represents log2 (fold change); Y axis represents –log10 (FDR); Red dots represent genes with significantly differential expression.

#### 3.3. Differential miRNA Expression in Luminal B Breast Cancer

Differential miRNA expression analysis between 164 luminal B breast cancer and 16 paired normal tissue samples identified 266 significant differentially expressed miRNAs. Of the 266 differentially expressed miRNAs, 117 were down-regulated and 149 were up-regulated between luminal B breast cancer and the corresponding surrounding normal tissue samples (Supplementary **Table S1**). PCA analysis using miRNA expression data showed differential clustering of tumor and normal samples. PCA analysis was carried out on the log2 transformed miRNA expression data, where the PC1 accounted for 12% of the total variance and PC2 accounted for 5% the total variance (**Figure 2(a)**). Heatmap of top 100 differentially expressed miRNA between luminal B breast cancer tissues and paired normal tissue samples was generated using pheatmap (**Figure 2(b**)) and a volcano plot of differentially expressed miRNAs between the tumor tissue and paired normal tissue samples is shown in **Figure 2(c)**.

### 3.4. Critical Dysregulated miRNA-Target Gene Pairs

The miRTarBase, containing experimentally validated miRNA target sites, was searched for the identification of target sites of differentially expressed miRNAs. Differentially expressed miRNAs and mRNAs that showed opposite trends of expression were used for identifying the miRNA-mRNA pairs. Further, these



**Figure 2.** Differential expression of miRNA in luminal B breast cancer. (a) Principal component analysis using miRNA expression data. The Blue dots represent luminal B tumor samples; Red dots represent paired normal samples; PC1 represents principal component 1; PC2 represents principal component 2. (b) Heatmap of top 100 differentially expressed miRNAs. LumB represents Luminal B subtype. (c) Volcano plot of differentially expressed miRNA. X axis represents log<sub>2</sub> (fold change); Y axis represents –log<sub>10</sub> (FDR); Red dots represent genes with significantly differential expression.

miRNAs and targets were analyzed for correlation using the Spearman correlation method. The miRNA-target gene pairs that showed a negative correlation with Spearman's correlation coefficient R < -0.2 and p-value < 0.05 were considered significant. This led to the identification of 164 significant miRNA-target gene pairs, which include 31 miRNAs and 154 mRNAs (Supplementary Table S2; Supplementary Table S3). The miRNA-mRNA regulatory pairs were visualized using cytoscape (Figure 3).

#### 3.5. Functional Enrichment of Target mRNAs

The differentially expressed target genes were enriched for pathways using Enrichr in R. Using a p value cut-off of 0.05, genes were enriched for GO terms and KEGG pathways (**Figure 4**). The top KEGG pathways enriched among the target genes were pathways in cancer, the Ras signaling pathway, focal adhesion, and the PI3K-Akt signaling pathway. The top GO molecular function terms enriched were transcription regulatory region DNA binding, regulatory region DNA binding, and transmembrane receptor protein kinase activity. The top GO biological process terms enriched were positive regulation of nucleic acid-templated transcription, regulation of transcription from the RNA polymerase II promoter, regulation of transcription, DNA templated, and positive regulation of gene expression.



**Figure 3.** Network of miRNA-target gene interactions in luminal B breast cancer. The circle nodes represent mRNAs. The triangle nodes represent miRNAs; Purple colour represents over-expression and green colour represents low expression; edges represent the correlation between the miRNA and mRNA expression.





**Figure 4.** Functional enrichment analysis of 154 target genes (a) KEGG pathway, (b) GO molecular function and (c) GO Biological process terms enriched.

#### **3.6. Survival Analysis**

To further elucidate the roles of 164 miRNA target gene pairs, the miRNAs and target genes identified were analyzed using the Kaplan-Meier method to investigate the association of expression with survival time. This resulted in the identification of five genes, including miR-421, DSN1 (DSN1 Component Of MIS12 Kinetochore Complex), SRP9 (Signal Recognition Particle 9), RACGAP1 (Rac GTPase Activating Protein 1), and SLC10A6 (Solute Carrier Family 10 Member 6), that had prognostic value. Expression of miRNA hsa-mir-421 was found to be up-regulated in luminal B breast cancers, and was negatively correlated with its target gene CBX7. Higher expression of this miRNA in luminal B breast cancers was associated with poor survival. Target genes DSN1, SRP9 and RACGAP1 were found to be overexpressed in luminal B breast cancers, and their expression was significantly negatively correlated with the expression of miRNA hsa-mir-5683. The upregulation of DSN1, SRP9 and RACGAP1 was found to be associated with poor survival. Expression of genes SLC10A6 was down-regulated in luminal B breast cancers, and was significantly negatively correlated with the expression of hsamir-940. Lower expression of this gene was found to be associated with poor survival. Survival plots showing survival curves of low and high expression groups, and scatter plots of Spearman correlation analysis for the prognostic genes are shown in Figure 5 and Figure 6, respectively.



**Figure 5.** Survival analysis of luminal B breast cancer patients. Kaplan-Meier survival curves showing association between expression of (a) DSN1, (b) SRP9, (c) RACGAP1, (d) SLC10A6, (e) hsa-mir-421 and overall survival.



**Figure 6.** Spearman's correlation analysis of miRNA-target gene pairs in luminal B breast cancer patients. Scatter plots showing correlation between prognostic target genes ((a)-(d)) and miRNAs that target them, (a) DSN1, (b) SRP9, (c) RACGAP1, and (d) SLC10A6. (e) Scatter plot showing correlation between prognostic microRNA hsa-mir-421 with its target gene CBX7. X axis represents normalized expression values of miRNA; Y axis represents normalized expression values of mcNA. R is Spearman's correlation coefficient.

### 4. Discussion

Post-transcriptional regulation involves the binding of mature miRNAs mainly with the 3'UTR of target mRNAs at miRNA binding regions, resulting in the inhibition of translation or degradation of the transcript [17]. One miRNA is capable of targeting many genes, and multiple miRNAs can target the same gene [18]. Identifying the correct miRNA-mRNA pairs is necessary to understand the role of post-transcriptional regulation in the pathophysiology of luminal B breast cancer. In breast cancer, dysregulation of miRNAs is observed. In this study, we profiled differentially expressed mRNAs and miRNAs in luminal B breast cancers using TCGA data and identified significantly negatively regulated miRNA-target gene pairs.

The target genes were enriched for important pathways like the Ras signaling pathway and the PI3K-Akt signaling pathway. The PI3K/Akt pathway regulates cell growth, proliferation, and the cell cycle, and its dysregulation is associated with various cancers, including luminal B breast cancer. Aberrant post-transcriptional

regulation by miRNA contributes to impairment of this pathway, promoting cancer and drug resistance in various cancers, including breast cancer [19]-[21].

Further, miRNAs and corresponding target genes were investigated for the association of gene expression with survival, thus, identifying five genes, including miR-421, DSN1, SRP9, RACGAP1, and SLC10A6, with prognostic significance.

In our study, miR-421 was predicted to target Chromobox protein 7 (CBX7), and over-expression of miR-421 was significantly correlated with low expression of CBX7. According to Wang *et al.*, the expression of miR-421 was found to be up-regulated in breast cancer tissues, and knockdown of miR-421 inhibited breast cancer cell proliferation, invasiveness, and migration [22]. Consistent with our findings, miR-421 was reported to directly target the 3'UTR of CBX7, leading to its downregulation in ovarian cancer cells [23]. Similarly, in gastric cancer, inhibition of miR-421 was found to correlate with upregulation of the CBX7 gene [24].

In this study, the genes DSN1, SRP9 and RACGAP1 were predicted to be targeted by hsa-mir-5683. DSN1, a kinetochore protein, is a subunit of MTS12 kinetochore complex. It is involved in kinetochore assembly, accurate spindle microtubule attachment, and segregation of chromosomes during mitosis [25] [26]. DSN1 was found to be overexpressed in breast cancer [27]. Overexpression of DSN1 was found to be oncogenic and acts as a driver in HER2 (human epidermal growth factor receptor 2) negative breast cancers [28]. SRP9 is a protein subunit of signal recognition particle (SRP) complex. SRP9, along with SRP14 (Signal Recognition Particle 14), is involved in pausing the elongation of secretory and membrane proteins, and the SRP complex then targets the nascent polypeptide to the endoplasmic reticulum, where the resumption of translation occurs [29]. The expression of SRP9 was found to be upregulated in breast cancer [30]. RACGAP1 was found to play a role in cytokinesis and cell proliferation [31]. In breast cancer cells, overexpression of RACGAP1 contributes to mitochondrial-induced metastasis [32]. Overall survival was found to be poor in breast cancer patients with high RACGAP1 expression [33].

SLC10A6, also called SOAT (sodium-dependent organic anion transporter), is involved in the transport of all sulfated steroid hormones, including estrone-3sulfate (E1S), and plays a role in fertility and the regulation of lipid metabolism [34]. In our study, we have observed that lower expression of SLC10A6 in luminal B breast cancer was strongly correlated with a lower probability of overall survival.

Overall, this work has resulted in identification of differential expressed miR-NAs and associated pathways in luminal B breast cancers. It also resulted in identification of critical miRNA-target gene pairs and five genes of prognostic value in luminal B breast cancers. Further experimental analysis of these results may lead to better understanding of miRNA based post-transcriptional regulation in luminal B breast cancers.

#### **Author Contributions**

KU was associated with Conceptualization, Data curation, Formal Analysis, Investigation, Methodology and writing original draft of the study. RRA was associated with Formal Analysis. SRH was associated with Conceptualization, Project administration, Supervision and writing review & editing. All authors read and approved the final manuscript.

#### Funding

This research received no external funding.

### **Institutional Review Board Statement**

Not applicable.

#### **Informed Consent Statement**

Not applicable.

#### **Data Availability Statement**

Publicly available datasets were analyzed in this study. This data can be found through <u>https://www.cancer.gov/ccg/research/genome-sequencing/tcga</u>.

### **Conflicts of Interest**

The authors declare no conflict of interest.

#### References

- Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., *et al.* (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA: A Cancer Journal for Clinicians*, **74**, 229-263. <u>https://doi.org/10.3322/caac.21834</u>
- [2] Prat, A., Carey, L.A., Adamo, B., Vidal, M., Tabernero, J., Cortés, J., et al. (2014) Molecular Features and Survival Outcomes of the Intrinsic Subtypes within HER2-Positive Breast Cancer. *JNCI: Journal of the National Cancer Institute*, **106**, dju152. <u>https://doi.org/10.1093/jnci/dju152</u>
- [3] Liu, J., Huang, B., Rao, Y., Guo, L., Cai, C., Gao, D., *et al.* (2024) Intraductal Photothermal Ablation: A Noninvasive Approach for Early Breast Cancer Treatment and Prevention. *Theranostics*, 14, 3997-4013. <u>https://doi.org/10.7150/thno.97968</u>
- [4] Qiu, C., Goldstrohm, A.C. and Tanaka Hall, T.M. (2019) Preparation of Cooperative RNA Recognition Complexes for Crystallographic Structural Studies. In: *Methods in Enzymology*, Elsevier, 1-22. <u>https://doi.org/10.1016/bs.mie.2019.04.001</u>
- [5] Corbett, A.H. (2018) Post-Transcriptional Regulation of Gene Expression and Human Disease. *Current Opinion in Cell Biology*, 52, 96-104. https://doi.org/10.1016/j.ceb.2018.02.011
- [6] Filipowicz, W., Bhattacharyya, S.N. and Sonenberg, N. (2008) Mechanisms of Post-Transcriptional Regulation by MicroRNAs: Are the Answers in Sight? *Nature Reviews Genetics*, 9, 102-114. <u>https://doi.org/10.1038/nrg2290</u>
- [7] Loh, H., Norman, B.P., Lai, K., Rahman, N.M.A.N.A., Alitheen, N.B.M. and Osman, M.A. (2019) The Regulatory Role of MicroRNAs in Breast Cancer. *International Journal of Molecular Sciences*, 20, e4940. <u>https://doi.org/10.3390/ijms20194940</u>
- [8] Xu, Y., Gong, M., Wang, Y., Yang, Y., Liu, S. and Zeng, Q. (2023) Global Trends and

Forecasts of Breast Cancer Incidence and Deaths. *Scientific Data*, **10**, Article No. 334. <u>https://doi.org/10.1038/s41597-023-02253-5</u>

- [9] Ades, F., Zardavas, D., Bozovic-Spasojevic, I., Pugliano, L., Fumagalli, D., de Azambuja, E., *et al.* (2014) Luminal B Breast Cancer: Molecular Characterization, Clinical Management, and Future Perspectives. *Journal of Clinical Oncology*, **32**, 2794-2803. <u>https://doi.org/10.1200/jco.2013.54.1870</u>
- Søkilde, R., Persson, H., Ehinger, A., Pirona, A.C., Fernö, M., Hegardt, C., *et al.* (2019) Refinement of Breast Cancer Molecular Classification by miRNA Expression Profiles. *BMC Genomics*, 20, Article No. 503. <u>https://doi.org/10.1186/s12864-019-5887-7</u>
- [11] Arun, R.P., Cahill, H.F. and Marcato, P. (2022) Breast Cancer Subtype-Specific miR-NAs: Networks, Impacts, and the Potential for Intervention. *Biomedicines*, 10, Article No. 651. <u>https://doi.org/10.3390/biomedicines10030651</u>
- [12] Ulaganathan, K., Puranam, K., Mukta, S. and Hanumanth, S.R. (2023) Expression Profiling of Luminal B Breast Tumor in Indian Women. *Journal of Cancer Research* and Clinical Oncology, **149**, 13645-13664. https://doi.org/10.1007/s00432-023-05195-y
- [13] Love, M.I., Huber, W. and Anders, S. (2014) Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. *Genome Biology*, **15**, Article No. 550. <u>https://doi.org/10.1186/s13059-014-0550-8</u>
- [14] Huang, H., Lin, Y., Cui, S., Huang, Y., Tang, Y., Xu, J., *et al.* (2021) miRTarBase Update 2022: An Informative Resource for Experimentally Validated MiRNA-Target Interactions. *Nucleic Acids Research*, **50**, D222-D230. <u>https://doi.org/10.1093/nar/gkab1079</u>
- [15] Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., et al. (2016) Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Research, 44, W90-W97. https://doi.org/10.1093/nar/gkw377
- [16] Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., et al. (2003) Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. *Genome Research*, 13, 2498-2504. <u>https://doi.org/10.1101/gr.1239303</u>
- [17] O'Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. *Frontiers in Endocrinology*, 9, Article No. 402. <u>https://doi.org/10.3389/fendo.2018.00402</u>
- [18] Peter, M.E. (2010) Targeting of mRNAs by Multiple mRNAs: The Next Step. Oncogene, 29, 2161-2164. <u>https://doi.org/10.1038/onc.2010.59</u>
- [19] Rascio, F., Spadaccino, F., Rocchetti, M.T., Castellano, G., Stallone, G., Netti, G.S., *et al.* (2021) The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. *Cancers*, **13**, Article No. 3949. https://doi.org/10.3390/cancers13163949
- [20] Shi, X., Wang, J., Lei, Y., Cong, C., Tan, D. and Zhou, X. (2019) Research Progress on the PI3K/AKT Signaling Pathway in Gynecological Cancer (Review). *Molecular Medicine Reports*, 19, 4529-4535. <u>https://doi.org/10.3892/mmr.2019.10121</u>
- [21] Katoh, M. (2010) Genetic Alterations of FGF Receptors: An Emerging Field in Clinical Cancer Diagnostics and Therapeutics. *Expert Review of Anticancer Therapy*, 10, 1375-1379. <u>https://doi.org/10.1586/era.10.128</u>
- [22] Wang, Y., Liu, Z. and Shen, J. (2018) MicroRNA-421-Targeted PDCD4 Regulates Breast Cancer Cell Proliferation. *International Journal of Molecular Medicine*, 43, 267-275. <u>https://doi.org/10.3892/ijmm.2018.3932</u>

- [23] Zhang, Y., Tedja, R., Millman, M., Wong, T., Fox, A., Chehade, H., et al. (2023) Adipose-Derived Exosomal Mir-421 Targets CBX7 and Promotes Metastatic Potential in Ovarian Cancer Cells. *Journal of Ovarian Research*, 16, Article No. 233. https://doi.org/10.1186/s13048-023-01312-0
- [24] Jiang, Z., Guo, J., Xiao, B., Miao, Y., Huang, R., Li, D., et al. (2009) Increased Expression of miR-421 in Human Gastric Carcinoma and Its Clinical Association. Journal of Gastroenterology, 45, 17-23. <u>https://doi.org/10.1007/s00535-009-0135-6</u>
- [25] Watanabe, R., Hirano, Y., Hara, M., Hiraoka, Y. and Fukagawa, T. (2022) Mobility of Kinetochore Proteins Measured by FRAP Analysis in Living Cells. *Chromosome Re*search, **30**, 43-57. <u>https://doi.org/10.1007/s10577-021-09678-x</u>
- [26] Zhou, X., Zheng, F., Wang, C., Wu, M., Zhang, X., Wang, Q., et al. (2017) Phosphorylation of CENP-C by Aurora B Facilitates Kinetochore Attachment Error Correction in Mitosis. Proceedings of the National Academy of Sciences, 114, E10667-E10676. <u>https://doi.org/10.1073/pnas.1710506114</u>
- [27] Peng, Q., Wen, T., Liu, D., Wang, S., Jiang, X., Zhao, S., *et al.* (2021) DSN1 Is a Prognostic Biomarker and Correlated with Clinical Characterize in Breast Cancer. *International Immunopharmacology*, **101**, Article ID: 107605. <u>https://doi.org/10.1016/j.intimp.2021.107605</u>
- [28] Ng, C.K., Martelotto, L.G., Gauthier, A., Wen, H., Piscuoglio, S., Lim, R.S., et al. (2015) Intra-Tumor Genetic Heterogeneity and Alternative Driver Genetic Alterations in Breast Cancers with Heterogeneous HER2 Gene Amplification. Genome Biology, 16, Article No. 107. <u>https://doi.org/10.1186/s13059-015-0657-6</u>
- [29] Akopian, D., Shen, K., Zhang, X. and Shan, S. (2013) Signal Recognition Particle: An Essential Protein-Targeting Machine. *Annual Review of Biochemistry*, 82, 693-721. <u>https://doi.org/10.1146/annurev-biochem-072711-164732</u>
- [30] Erdoğan, G., Trabulus, D.C., Talu, C.K. and Güven, M. (2021) Investigation of SRP9 Protein Expression in Breast Cancer. *Molecular Biology Reports*, 49, 531-537. <u>https://doi.org/10.1007/s11033-021-06910-z</u>
- [31] Hirose, K., Kawashima, T., Iwamoto, I., Nosaka, T. and Kitamura, T. (2001) MgcRac-GAP Is Involved in Cytokinesis through Associating with Mitotic Spindle and Midbody. *Journal of Biological Chemistry*, 276, 5821-5828. <u>https://doi.org/10.1074/jbc.m007252200</u>
- [32] Ren, K., Zhou, D., Wang, M., Li, E., Hou, C., Su, Y., *et al.* (2021) RACGAP1 Modulates ECT2-Dependent Mitochondrial Quality Control to Drive Breast Cancer Metastasis. *Experimental Cell Research*, **400**, Article ID: 112493. <u>https://doi.org/10.1016/j.yexcr.2021.112493</u>
- [33] Pliarchopoulou, K., Kalogeras, K.T., Kronenwett, R., Wirtz, R.M., Eleftheraki, A.G., Batistatou, A., *et al.* (2012) Prognostic Significance of RACGAP1 mRNA Expression in High-Risk Early Breast Cancer: A Study in Primary Tumors of Breast Cancer Patients Participating in a Randomized Hellenic Cooperative Oncology Group Trial. *Cancer Chemotherapy and Pharmacology*, **71**, 245-255. https://doi.org/10.1007/s00280-012-2002-z
- [34] Karakus, E., Schmid, A., Leiting, S., Fühler, B., Schäffler, A., Jakob, T., *et al.* (2022) Role of the Steroid Sulfate Uptake Transporter Soat (Slc10a6) in Adipose Tissue and 3T3-L1 Adipocytes. *Frontiers in Molecular Biosciences*, 9, Article ID: 863912. https://doi.org/10.3389/fmolb.2022.863912

# **Supplementary Materials**

Table S1. Differentially expressed miRNAs in luminal B breast cancers when compared to paired normal samples ( $|logFC| \ge 1$ ; FDR < 0.05).

|                | baseMean  | log2FoldChange | lfcSE                           | stat       | p-value   | padj      |
|----------------|-----------|----------------|---------------------------------|------------|-----------|-----------|
| hsa-mir-486-1  | 402.09502 | -5.5992831     | 0.4883122                       | -11.466605 | 1.94E-30  | 2.53E-28  |
| hsa-mir-486-2  | 400.72936 | -5.5963788     | 0.4931908                       | -11.347288 | 7.65E-30  | 8.56E-28  |
| hsa-mir-4732   | 1.678313  | -4.3656044     | 0.8544777                       | -5.1090911 | 3.24E-07  | 2.15E-06  |
| hsa-mir-451a   | 1471.0801 | -4.3519348     | 0.4736035                       | -9.1889838 | 3.97E-20  | 1.48E-18  |
| hsa-mir-204    | 9.1679416 | -4.3184841     | 0.4911169                       | -8.793189  | 1.45E-18  | 4.38E-17  |
| hsa-mir-144    | 289.3198  | -4.1317836     | 0.4001404                       | -10.325834 | 5.38E-25  | 3.01E-23  |
| hsa-mir-139    | 178.06392 | -3.4733478     | 0.2674525                       | -12.986786 | 1.45E-38  | 5.69E-36  |
| hsa-mir-6507   | 0.36804   | -3.3320522     | 0.934781                        | -3.564527  | 0.0003645 | 0.0012973 |
| hsa-mir-5683   | 24.479438 | -3.1356124     | 0.5105627                       | -6.1414837 | 8.18E-10  | 9.02E-09  |
| hsa-mir-1258   | 3.7869247 | -3.1064665     | 0.4651514                       | -6.6783994 | 2.42E-11  | 3.10E-10  |
| hsa-mir-452    | 83.951499 | -3.0661116     | 0.3200866                       | -9.5790076 | 9.80E-22  | 4.04E-20  |
| hsa-mir-6499   | 0.2518401 | -2.9955008     | -2.9955008 1.2792924 -2.3415294 |            | 0.0192049 | 0.0444895 |
| hsa-mir-133b   | 1.0426853 | -2.9345684     | -2.9345684 0.8467618 -3.4656364 |            | 0.000529  | 0.0018235 |
| hsa-mir-6715a  | 0.8742895 | -2.9269317     | 0.6853255                       | -4.2708636 | 1.95E-05  | 9.71E-05  |
| hsa-mir-99a    | 1571.1035 | -2.9236587     | 0.2716027                       | -10.764467 | 5.07E-27  | 3.61E-25  |
| hsa-mir-145    | 4531.6336 | -2.9218705     | 0.2174404                       | -13.437569 | 3.64E-41  | 2.85E-38  |
| hsa-mir-125b-1 | 895.36333 | -2.7080958     | 0.2410073                       | -11.236571 | 2.70E-29  | 2.35E-27  |
| hsa-mir-125b-2 | 924.39469 | -2.6946571     | 0.2386078                       | -11.293248 | 1.42E-29  | 1.39E-27  |
| hsa-mir-337    | 95.814563 | -2.6741037     | 0.2609667                       | -10.246915 | 1.22E-24  | 6.38E-23  |
| hsa-let-7c     | 4563.8277 | -2.6657936     | 0.2523765                       | -10.562765 | 4.43E-26  | 2.67E-24  |
| hsa-mir-934    | 1.0848851 | -2.6376624     | 0.6582157                       | -4.007292  | 6.14E-05  | 0.0002672 |
| hsa-mir-511    | 22.988378 | -2.6195397     | 0.31138                         | -8.4126788 | 4.01E-17  | 1.01E-15  |
| hsa-mir-100    | 6770.8633 | -2.5006717     | 0.2476823                       | -10.096287 | 5.74E-24  | 2.64E-22  |
| hsa-mir-665    | 1.153046  | -2.4735475     | 0.3456823                       | -7.1555522 | 8.33E-13  | 1.28E-11  |
| hsa-mir-205    | 5452.1479 | -2.4533337     | 0.5098277                       | -4.8120836 | 1.49E-06  | 8.60E-06  |
| hsa-mir-607    | 0.9443823 | -2.4485692     | 0.4933442                       | -4.9632068 | 6.93E-07  | 4.27E-06  |
| hsa-mir-483    | 13.180753 | -2.4249812     | 0.3313186                       | -7.3191827 | 2.49E-13  | 4.25E-12  |
| hsa-mir-133a-2 | 7.5623179 | -2.4024777     | 0.5595407                       | -4.2936603 | 1.76E-05  | 8.94E-05  |
| hsa-mir-585    | 1.5288913 | -2.3990911     | 0.44057                         | -5.4454259 | 5.17E-08  | 3.71E-07  |

| Continued      |           |            |                                   |            |           |           |
|----------------|-----------|------------|-----------------------------------|------------|-----------|-----------|
| hsa-mir-133a-1 | 8.3418292 | -2.3776798 | 0.5605568                         | -4.2416398 | 2.22E-05  | 0.0001086 |
| hsa-mir-551b   | 4.2851515 | -2.3749172 | 172 0.3318399 -7.1568157 8.26E-13 |            | 1.28E-11  |           |
| hsa-mir-584    | 85.565416 | -2.3228587 | 0.2671677 -8.6943829 3.49E-18     |            | 1.01E-16  |           |
| hsa-mir-6746   | 0.2895719 | -2.2400447 | 0.7770778 -2.8826515 0.0039434    |            | 0.0113793 |           |
| hsa-mir-378d-1 | 0.3647113 | -2.2391925 | 0.5538497                         | -4.0429604 | 5.28E-05  | 0.0002348 |
| hsa-mir-378a   | 637.23703 | -2.2252757 | 0.2017619                         | -11.029217 | 2.76E-28  | 2.16E-26  |
| hsa-mir-6513   | 0.3329167 | -2.2215997 | 0.6615388                         | -3.3582307 | 0.0007844 | 0.0025807 |
| hsa-mir-10b    | 221264.84 | -2.2010546 | 0.2783316                         | -7.9080303 | 2.61E-15  | 5.12E-14  |
| hsa-mir-1247   | 97.391629 | -2.097876  | 0.4527959                         | -4.6331608 | 3.60E-06  | 1.97E-05  |
| hsa-mir-378d-2 | 0.4306209 | -2.0770332 | 0.5294013                         | -3.9233622 | 8.73E-05  | 0.0003716 |
| hsa-mir-3199-1 | 0.7402999 | -2.0500343 | 0.4003676                         | -5.1203803 | 3.05E-07  | 2.06E-06  |
| hsa-mir-329-2  | 0.9684998 | -2.0487001 | 0.3626569                         | -5.6491416 | 1.61E-08  | 1.34E-07  |
| hsa-mir-378c   | 9.4502551 | -2.046353  | 0.2267849                         | -9.023321  | 1.82E-19  | 6.21E-18  |
| hsa-mir-224    | 69.355501 | -2.0320418 | 0.4588992                         | -4.4280785 | 9.51E-06  | 5.06E-05  |
| hsa-mir-329-1  | 0.6884448 | -2.00735   | 0.4266703                         | -4.7046867 | 2.54E-06  | 1.43E-05  |
| hsa-mir-7976   | 0.3503034 | -2.0043497 | 0.6566987                         | -3.0521603 | 0.002272  | 0.006816  |
| hsa-mir-3199-2 | 1.8436855 | -1.9620287 | 0.2838771                         | -6.9115429 | 4.79E-12  | 6.95E-11  |
| hsa-mir-6820   | 1.2918154 | -1.9400861 | 0.3469019                         | -5.5926069 | 2.24E-08  | 1.79E-07  |
| hsa-mir-4524a  | 0.3692785 | -1.9289392 | 0.6824392                         | -2.8265362 | 0.0047054 | 0.0133009 |
| hsa-mir-129-2  | 3.0914926 | -1.925563  | 0.4468628                         | -4.30907   | 1.64E-05  | 8.39E-05  |
| hsa-mir-495    | 15.76173  | -1.9158719 | 0.212708                          | -9.0070513 | 2.12E-19  | 6.91E-18  |
| hsa-mir-223    | 221.99261 | -1.863759  | 0.2227777                         | -8.3660028 | 5.96E-17  | 1.46E-15  |
| hsa-mir-140    | 1336.9093 | -1.8556488 | 0.1535445                         | -12.085418 | 1.26E-33  | 2.47E-31  |
| hsa-mir-6510   | 11.664277 | -1.8492038 | 0.668622                          | -2.7656939 | 0.0056802 | 0.0156605 |
| hsa-mir-433    | 2.4542096 | -1.8293461 | 0.2649465                         | -6.9045865 | 5.03E-12  | 7.17E-11  |
| hsa-mir-494    | 3.5821229 | -1.8089136 | 0.2917317                         | -6.2006072 | 5.62E-10  | 6.29E-09  |
| hsa-mir-376a-2 | 0.8098465 | -1.8043181 | 0.4444626                         | -4.0595499 | 4.92E-05  | 0.0002225 |
| hsa-mir-6720   | 0.7139041 | -1.7782397 | 0.460535                          | -3.8612477 | 0.0001128 | 0.0004674 |
| hsa-mir-432    | 11.798501 | -1.7416987 | 0.2257058                         | -7.7166783 | 1.19E-14  | 2.12E-13  |
| hsa-mir-1-1    | 6.8951249 | -1.7410601 | 0.4923356                         | -3.536328  | 0.0004057 | 0.001431  |
| hsa-mir-377    | 6.4125792 | -1.7010712 | 0.2191166                         | -7.7633168 | 8.27E-15  | 1.51E-13  |
| hsa-mir-1-2    | 7.744016  | -1.6985119 | 0.4643349                         | -3.6579461 | 0.0002542 | 0.0009608 |

| Continued      |           |            |           |            |           |           |
|----------------|-----------|------------|-----------|------------|-----------|-----------|
| hsa-mir-335    | 277.84375 | -1.6910593 | 0.2477821 | -6.8247843 | 8.81E-12  | 1.21E-10  |
| hsa-mir-944    | 2.277033  | -1.684255  | 0.4457249 | -3.7786872 | 0.0001577 | 0.0006235 |
| hsa-mir-1262   | 1.3944442 | -1.6426683 | 0.4491916 | -3.6569433 | 0.0002552 | 0.0009608 |
| hsa-mir-195    | 108.92029 | -1.6165908 | 0.2033469 | -7.9499176 | 1.87E-15  | 3.75E-14  |
| hsa-mir-381    | 50.375039 | -1.5681606 | 0.211392  | -7.4182575 | 1.19E-13  | 2.06E-12  |
| hsa-mir-365b   | 322.83769 | -1.5668955 | 0.1951496 | -8.0292026 | 9.81E-16  | 2.08E-14  |
| hsa-mir-6892   | 8.2133205 | -1.5639456 | 0.28462   | -5.4948543 | 3.91E-08  | 2.94E-07  |
| hsa-mir-365a   | 324.7972  | -1.5558726 | 0.1953663 | -7.9638746 | 1.67E-15  | 3.44E-14  |
| hsa-mir-4491   | 0.6484421 | -1.5528886 | 0.6117487 | -2.5384419 | 0.0111347 | 0.0273307 |
| hsa-mir-299    | 6.6797129 | -1.5505203 | 0.2543703 | -6.0955249 | 1.09E-09  | 1.17E-08  |
| hsa-mir-654    | 40.960674 | -1.5363505 | 0.2203801 | -6.9713678 | 3.14E-12  | 4.64E-11  |
| hsa-mir-1295a  | 1.9631271 | -1.4952316 | 0.3939937 | -3.7950653 | 0.0001476 | 0.0005867 |
| hsa-mir-379    | 1359.208  | -1.4917966 | 0.2376766 | -6.2765824 | 3.46E-10  | 4.04E-09  |
| hsa-mir-3926-1 | 1.4021725 | -1.4763144 | 0.3522423 | -4.1911901 | 2.77E-05  | 0.0001309 |
| hsa-mir-218-2  | 38.739212 | -1.4431992 | 0.1735151 | -8.3174274 | 8.99E-17  | 2.13E-15  |
| hsa-mir-376c   | 9.5934551 | -1.4387935 | 0.2358669 | -6.1000225 | 1.06E-09  | 1.15E-08  |
| hsa-mir-497    | 70.687982 | -1.4345677 | 0.2270825 | -6.3173858 | 2.66E-10  | 3.16E-09  |
| hsa-mir-6716   | 2.0471718 | -1.4304212 | 0.2688288 | -5.3209367 | 1.03E-07  | 7.22E-07  |
| hsa-mir-758    | 35.176244 | -1.4237498 | 0.2546949 | -5.5900208 | 2.27E-08  | 1.79E-07  |
| hsa-mir-143    | 85641.998 | -1.407558  | 0.2459538 | -5.7228546 | 1.05E-08  | 9.43E-08  |
| hsa-mir-218-1  | 40.290029 | -1.401627  | 0.1779843 | -7.8750034 | 3.41E-15  | 6.51E-14  |
| hsa-mir-675    | 109.78128 | -1.3851782 | 0.3604845 | -3.8425453 | 0.0001218 | 0.0004966 |
| hsa-mir-656    | 1.4412364 | -1.3631296 | 0.390629  | -3.4895761 | 0.0004838 | 0.0016761 |
| hsa-mir-605    | 1.4451132 | -1.3605147 | 0.4634516 | -2.9356135 | 0.0033289 | 0.0097507 |
| hsa-mir-485    | 8.9037422 | -1.3595666 | 0.2406802 | -5.6488506 | 1.62E-08  | 1.34E-07  |
| hsa-mir-1468   | 14.817091 | -1.3586537 | 0.3356995 | -4.0472323 | 5.18E-05  | 0.0002319 |
| hsa-mir-487b   | 9.9815635 | -1.357503  | 0.2318963 | -5.8539232 | 4.80E-09  | 4.76E-08  |
| hsa-mir-129-1  | 2.6944645 | -1.3161205 | 0.462013  | -2.8486655 | 0.0043903 | 0.0125004 |
| hsa-mir-3926-2 | 1.8357309 | -1.3086125 | 0.3510385 | -3.7278314 | 0.0001931 | 0.0007486 |
| hsa-mir-326    | 36.906898 | -1.3060986 | 0.3624045 | -3.6039806 | 0.0003134 | 0.001136  |
| hsa-mir-487a   | 2.7984448 | -1.2933369 | 0.2777136 | -4.6570885 | 3.21E-06  | 1.77E-05  |
| hsa-mir-6803   | 0.5734836 | -1.2932686 | 0.4626084 | -2.7956013 | 0.0051803 | 0.0143967 |
| hsa-mir-655    | 4.7897022 | -1.2876925 | 0.2874926 | -4.4790455 | 7.50E-06  | 4.02E-05  |
| hsa-mir-190a   | 9.8607254 | -1.2817773 | 0.2342274 | -5.4723621 | 4.44E-08  | 3.25E-07  |

| hsa-mir-411    | 11.03217  | -1.278277  | 0.2303751                            | -5.5486761 | 2.88E-08  | 2.23E-07  |
|----------------|-----------|------------|--------------------------------------|------------|-----------|-----------|
| hsa-mir-6802   | 1.4582584 | -1.2751502 | 0.2982265                            | -4.2757777 | 1.90E-05  | 9.56E-05  |
| hsa-mir-676    | 1.9718384 | -1.2675675 | 675675 0.3209776 -3.9490843 7.85E-05 |            | 7.85E-05  | 0.0003394 |
| hsa-mir-130a   | 175.25575 | -1.2471321 | 0.2388364                            | -5.2217001 | 1.77E-07  | 1.23E-06  |
| hsa-mir-154    | 14.672667 | -1.1965624 | 0.2135484                            | -5.603238  | 2.10E-08  | 1.70E-07  |
| hsa-mir-126    | 9214.6322 | -1.1915089 | 0.205058                             | -5.8105957 | 6.23E-09  | 5.94E-08  |
| hsa-mir-29a    | 9057.9605 | -1.158914  | 0.1727306                            | -6.7093741 | 1.95E-11  | 2.59E-10  |
| hsa-mir-431    | 22.95481  | -1.141606  | 0.2441096                            | -4.6766116 | 2.92E-06  | 1.62E-05  |
| hsa-mir-3157   | 0.8226011 | -1.1393032 | 0.412737                             | -2.7603611 | 0.0057738 | 0.0157521 |
| hsa-mir-550a-3 | 3.64957   | -1.138771  | 0.3600684                            | -3.1626517 | 0.0015634 | 0.0048194 |
| hsa-mir-376b   | 3.0911758 | -1.126789  | 0.3134812                            | -3.5944385 | 0.0003251 | 0.0011623 |
| hsa-mir-320c-1 | 1.1200069 | -1.113048  | 0.4145657                            | -2.684853  | 0.0072562 | 0.0187697 |
| hsa-mir-6503   | 0.8519098 | -1.0985206 | 0.4337047                            | -2.5328769 | 0.0113131 | 0.0276817 |
| hsa-mir-1228   | 3.2982382 | -1.0891062 | 0.2695065                            | -4.0411127 | 5.32E-05  | 0.000235  |
| hsa-mir-323a   | 8.1561404 | -1.0654165 | 0.2579785                            | -4.1298653 | 3.63E-05  | 0.0001672 |
| hsa-mir-376a-1 | 2.6338564 | -1.0630068 | 0.3199134                            | -3.3227957 | 0.0008912 | 0.0029075 |
| hsa-mir-1271   | 8.4607772 | -1.0519377 | 0.2603706                            | -4.0401561 | 5.34E-05  | 0.000235  |
| hsa-mir-5187   | 0.8577444 | -1.0433276 | 0.3862216                            | -2.7013705 | 0.0069054 | 0.0179633 |
| hsa-mir-574    | 263.03563 | -1.0290342 | 0.1914664                            | -5.3744893 | 7.68E-08  | 5.47E-07  |
| hsa-mir-193a   | 1275.3023 | -1.0129813 | 0.2003742                            | -5.0554488 | 4.29E-07  | 2.73E-06  |
| hsa-mir-5010   | 1.8422211 | -1.0126616 | 0.3145516                            | -3.2193815 | 0.0012847 | 0.004056  |
| hsa-mir-369    | 18.336588 | -1.0089761 | 0.2089231                            | -4.8294147 | 1.37E-06  | 8.06E-06  |
| hsa-mir-4746   | 8.5648571 | 1.0014182  | 0.3422699                            | 2.9258146  | 0.0034356 | 0.0099631 |
| hsa-mir-15b    | 781.52829 | 1.0136852  | 0.2807298                            | 3.6108926  | 0.0003051 | 0.0011165 |
| hsa-mir-3678   | 2.4604492 | 1.0315012  | 0.4303483                            | 2.3968982  | 0.0165345 | 0.0392319 |
| hsa-mir-181b-2 | 417.77498 | 1.0532627  | 0.2625167                            | 4.0121738  | 6.02E-05  | 0.0002632 |
| hsa-mir-128-2  | 125.36257 | 1.0799044  | 0.2019114                            | 5.3484082  | 8.87E-08  | 6.26E-07  |
| hsa-mir-153-2  | 94.401054 | 1.0930262  | 0.3971377                            | 2.7522604  | 0.0059185 | 0.0159801 |
| hsa-mir-3917   | 3.2664687 | 1.1088028  | 0.4067737                            | 2.7258465  | 0.0064137 | 0.0170234 |
| hsa-mir-340    | 66.948502 | 1.1232094  | 0.1873446                            | 5.9954198  | 2.03E-09  | 2.15E-08  |
| hsa-mir-3200   | 15.729962 | 1.1397358  | 0.3500437                            | 3.2559816  | 0.00113   | 0.0036262 |
| hsa-mir-3928   | 6.7152949 | 1.1475131  | 0.3404641                            | 3.3704383  | 0.0007505 | 0.00249   |
| hsa-mir-671    | 23.29653  | 1.1692315  | 0.1987674                            | 5.8824113  | 4.04E-09  | 4.11E-08  |
| hsa-mir-130b   | 70.490573 | 1.2067833  | 0.206822                             | 5.8348875  | 5.38E-09  | 5.27E-08  |

| Continued      |           |           |           |           |           |           |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| hsa-mir-181b-1 | 486.95576 | 1.2155052 | 0.2589523 | 4.6939349 | 2.68E-06  | 1.50E-05  |
| hsa-mir-548e   | 1.4325244 | 1.2284337 | 0.5098814 | 2.4092538 | 0.0159852 | 0.0380438 |
| hsa-mir-628    | 111.94896 | 1.2382649 | 0.2539657 | 4.8757173 | 1.08E-06  | 6.43E-06  |
| hsa-mir-149    | 636.8323  | 1.2391683 | 0.3244591 | 3.8191818 | 0.0001339 | 0.0005432 |
| hsa-mir-659    | 3.8297918 | 1.2513507 | 0.3177915 | 3.9376462 | 8.23E-05  | 0.000354  |
| hsa-mir-493    | 26.163156 | 1.2575993 | 0.2451146 | 5.1306574 | 2.89E-07  | 1.97E-06  |
| hsa-mir-4677   | 26.158883 | 1.2594943 | 0.2014037 | 6.2535813 | 4.01E-10  | 4.62E-09  |
| hsa-mir-5003   | 1.7666079 | 1.2689819 | 0.5530758 | 2.2944085 | 0.021767  | 0.0497125 |
| hsa-mir-1180   | 37.177841 | 1.2749449 | 0.3473661 | 3.6703202 | 0.0002422 | 0.0009208 |
| hsa-mir-92b    | 374.88802 | 1.2762793 | 0.3050507 | 4.1838261 | 2.87E-05  | 0.0001344 |
| hsa-mir-3190   | 1.3821664 | 1.2775048 | 0.5530873 | 2.3097706 | 0.0209009 | 0.0479923 |
| hsa-mir-32     | 68.37118  | 1.2864935 | 0.2194329 | 5.8628101 | 4.55E-09  | 4.57E-08  |
| hsa-mir-191    | 3600.9051 | 1.294533  | 0.2288373 | 5.6570012 | 1.54E-08  | 1.31E-07  |
| hsa-mir-345    | 78.85085  | 1.2954632 | 0.2947004 | 4.3958653 | 1.10E-05  | 5.84E-05  |
| hsa-mir-7-1    | 116.64772 | 1.2994342 | 0.2548949 | 5.0979209 | 3.43E-07  | 2.26E-06  |
| hsa-mir-421    | 6.821849  | 1.3280115 | 0.3148889 | 4.217397  | 2.47E-05  | 0.000118  |
| hsa-mir-651    | 6.5527581 | 1.3336776 | 0.3272334 | 4.0756155 | 4.59E-05  | 0.0002089 |
| hsa-mir-887    | 41.324838 | 1.3572844 | 0.3483161 | 3.8967027 | 9.75E-05  | 0.0004083 |
| hsa-mir-3150b  | 8.1362897 | 1.3596496 | 0.4644834 | 2.9272299 | 0.00342   | 0.0099548 |
| hsa-mir-1307   | 4081.0067 | 1.37424   | 0.2373037 | 5.7910599 | 6.99E-09  | 6.52E-08  |
| hsa-mir-142    | 6877.4725 | 1.3894628 | 0.2782906 | 4.9928481 | 5.95E-07  | 3.70E-06  |
| hsa-mir-1254-2 | 1.5203154 | 1.400673  | 0.5342434 | 2.6217884 | 0.008747  | 0.0220221 |
| hsa-mir-3940   | 3.442979  | 1.4236549 | 0.4298656 | 3.3118608 | 0.0009268 | 0.0030111 |
| hsa-mir-6777   | 1.9191851 | 1.4297281 | 0.5364216 | 2.6653068 | 0.0076918 | 0.0197581 |
| hsa-mir-188    | 7.2544601 | 1.4403146 | 0.3308722 | 4.353084  | 1.34E-05  | 6.91E-05  |
| hsa-mir-454    | 40.813627 | 1.4518643 | 0.2506854 | 5.7915788 | 6.97E-09  | 6.52E-08  |
| hsa-mir-4728   | 12.1208   | 1.4555583 | 0.4959617 | 2.9348198 | 0.0033374 | 0.0097507 |
| hsa-mir-3655   | 0.6146392 | 1.4641832 | 0.6014032 | 2.4346114 | 0.0149078 | 0.0359163 |
| hsa-mir-1254-1 | 1.5347473 | 1.4684048 | 0.5327166 | 2.7564467 | 0.0058433 | 0.0158865 |
| hsa-mir-4726   | 0.9534172 | 1.5212695 | 0.5962119 | 2.5515585 | 0.0107242 | 0.0264059 |
| hsa-mir-4791   | 1.172677  | 1.5300713 | 0.5500166 | 2.781864  | 0.0054048 | 0.0149538 |
| hsa-mir-2277   | 3.4943187 | 1.5483148 | 0.4120611 | 3.7574882 | 0.0001716 | 0.0006686 |
| hsa-mir-200b   | 1624.7809 | 1.5567247 | 0.2461301 | 6.324805  | 2.54E-10  | 3.05E-09  |
| hsa-mir-192    | 1469.6734 | 1.5589765 | 0.2754402 | 5.6599454 | 1.51E-08  | 1.30E-07  |

| Continued      |           |                     |           |           |           |           |
|----------------|-----------|---------------------|-----------|-----------|-----------|-----------|
| hsa-mir-508    | 28.949204 | 1.5610572           | 0.4748114 | 3.2877419 | 0.0010099 | 0.0032677 |
| hsa-mir-342    | 1466.4074 | 1.5717775 0.2862268 |           | 5.4913712 | 3.99E-08  | 2.97E-07  |
| hsa-mir-3150a  | 0.6304385 | 1.5876974           | 0.612987  | 2.5900995 | 0.0095948 | 0.0240024 |
| hsa-mir-3174   | 0.7027517 | 1.5948961           | 0.5999618 | 2.6583295 | 0.0078529 | 0.0200259 |
| hsa-mir-3117   | 1.1553233 | 1.6004333           | 0.5810469 | 2.7543963 | 0.0058801 | 0.0159311 |
| hsa-mir-1284   | 1.1407519 | 1.6009184           | 0.5825224 | 2.7482522 | 0.0059914 | 0.0161212 |
| hsa-mir-5695   | 1.1546705 | 1.6039895           | 0.6036203 | 2.657282  | 0.0078774 | 0.0200259 |
| hsa-mir-200c   | 29060.541 | 1.617704            | 0.1885213 | 8.581013  | 9.40E-18  | 2.54E-16  |
| hsa-mir-4443   | 0.8817248 | 1.6299798           | 0.6353229 | 2.5655928 | 0.0103    | 0.0255218 |
| hsa-mir-33a    | 55.270662 | 1.6390064           | 0.292117  | 5.6107876 | 2.01E-08  | 1.64E-07  |
| hsa-mir-1537   | 0.737654  | 1.6422797           | 0.6183568 | 2.655877  | 0.0079102 | 0.0200444 |
| hsa-mir-1276   | 0.5150502 | 1.6464775           | 0.6384312 | 2.5789427 | 0.0099103 | 0.0247127 |
| hsa-mir-3127   | 31.568717 | 1.6518007           | 0.2840036 | 5.8161264 | 6.02E-09  | 5.82E-08  |
| hsa-mir-514a-1 | 2.3547124 | 1.6613531           | 0.673698  | 2.4660205 | 0.0136624 | 0.0331196 |
| hsa-mir-4442   | 0.7940265 | 1.6760927           | 0.6431355 | 2.606127  | 0.0091572 | 0.0229812 |
| hsa-mir-639    | 1.5173041 | 1.6763994           | 0.5413423 | 3.0967457 | 0.0019566 | 0.005938  |
| hsa-mir-615    | 49.520772 | 1.6875565           | 0.3766197 | 4.4807974 | 7.44E-06  | 4.02E-05  |
| hsa-mir-148b   | 649.33419 | 1.6944818           | 0.197679  | 8.571885  | 1.02E-17  | 2.66E-16  |
| hsa-mir-935    | 20.572243 | 1.7164173           | 0.6140348 | 2.7953093 | 0.005185  | 0.0143967 |
| hsa-mir-3652   | 2.092463  | 1.7301788           | 0.5108944 | 3.3865681 | 0.0007077 | 0.0023581 |
| hsa-mir-877    | 5.973361  | 1.7309915           | 0.4094693 | 4.2274021 | 2.36E-05  | 0.0001143 |
| hsa-mir-4444-2 | 1.8782265 | 1.7385126           | 0.4923853 | 3.5307968 | 0.0004143 | 0.0014547 |
| hsa-mir-6501   | 1.4267307 | 1.7843693           | 0.6804444 | 2.6223587 | 0.0087323 | 0.0220221 |
| hsa-mir-4784   | 1.5369185 | 1.7963029           | 0.5582256 | 3.2178799 | 0.0012914 | 0.004061  |
| hsa-mir-6798   | 1.1108443 | 1.8032359           | 0.6378251 | 2.8271634 | 0.0046962 | 0.0133009 |
| hsa-mir-7-2    | 4.0426703 | 1.8116381           | 0.6038145 | 3.0003223 | 0.0026969 | 0.0080293 |
| hsa-mir-4638   | 4.7189462 | 1.8132807           | 0.4132728 | 4.3876114 | 1.15E-05  | 5.98E-05  |
| hsa-mir-940    | 19.49345  | 1.8282389           | 0.3549739 | 5.1503467 | 2.60E-07  | 1.79E-06  |
| hsa-mir-203a   | 12496.575 | 1.9009597           | 0.3747564 | 5.0725203 | 3.93E-07  | 2.54E-06  |
| hsa-mir-7974   | 0.8034344 | 1.9009722           | 0.7132812 | 2.6651092 | 0.0076963 | 0.0197581 |
| hsa-mir-1224   | 6.1559971 | 1.9335091           | 0.6300641 | 3.0687501 | 0.0021496 | 0.0064735 |
| hsa-mir-3690-1 | 1.4211261 | 1.9383949           | 0.6110464 | 3.1722547 | 0.0015126 | 0.0046999 |
| hsa-mir-1301   | 49.23123  | 1.9419054           | 0.2483454 | 7.8193743 | 5.31E-15  | 9.90E-14  |
| hsa-mir-9-2    | 1710.1567 | 1.9566892           | 0.5205485 | 3.7588986 | 0.0001707 | 0.0006681 |

| Continued      |           |           |                 |           |           |           |
|----------------|-----------|-----------|-----------------|-----------|-----------|-----------|
| hsa-mir-3609   | 1.2756874 | 1.9580325 | 0.8544799       | 2.2914904 | 0.0219351 | 0.0499278 |
| hsa-mir-9-1    | 1711.192  | 1.9811668 | 8 0.5200133 3.8 |           | 0.0001391 | 0.0005555 |
| hsa-mir-9-3    | 1723.3757 | 1.9869663 | 0.5206257       | 3.8164967 | 0.0001354 | 0.0005439 |
| hsa-mir-4326   | 25.497004 | 2.0001833 | 0.4147482       | 4.8226448 | 1.42E-06  | 8.28E-06  |
| hsa-mir-5684   | 2.0404031 | 2.0244386 | 0.5168539       | 3.916849  | 8.97E-05  | 0.0003797 |
| hsa-mir-4668   | 17.931526 | 2.0586947 | 0.3721219       | 5.5323122 | 3.16E-08  | 2.43E-07  |
| hsa-mir-556    | 2.2265754 | 2.0593368 | 0.6172007       | 3.3365758 | 0.0008482 | 0.0027787 |
| hsa-mir-7706   | 6.2067987 | 2.0762716 | 0.36429         | 5.6995027 | 1.20E-08  | 1.05E-07  |
| hsa-mir-6854   | 2.3788626 | 2.0997995 | 0.4989254       | 4.2086439 | 2.57E-05  | 0.0001219 |
| hsa-mir-3187   | 1.2252649 | 2.1157341 | 0.6166776       | 3.4308593 | 0.0006017 | 0.0020306 |
| hsa-mir-1277   | 3.5964211 | 2.1287277 | 0.4348801       | 4.8949764 | 9.83E-07  | 5.92E-06  |
| hsa-mir-301a   | 71.189087 | 2.1390784 | 0.3122654       | 6.850193  | 7.38E-12  | 1.03E-10  |
| hsa-mir-3614   | 16.609324 | 2.1489317 | 0.4288585       | 5.010818  | 5.42E-07  | 3.40E-06  |
| hsa-mir-4640   | 0.8494643 | 2.1540014 | 0.5933302       | 3.6303583 | 0.000283  | 0.0010546 |
| hsa-mir-21     | 580260.95 | 2.1549576 | 0.2022222       | 10.656383 | 1.63E-26  | 1.06E-24  |
| hsa-mir-4675   | 1.1349113 | 2.1599507 | 0.9101269       | 2.3732412 | 0.0176327 | 0.0412433 |
| hsa-mir-200a   | 2259.243  | 2.1599869 | 0.2491628       | 8.6689784 | 4.36E-18  | 1.22E-16  |
| hsa-mir-182    | 104572.93 | 2.200502  | 0.248791        | 8.8447807 | 9.17E-19  | 2.87E-17  |
| hsa-mir-3619   | 1.6264388 | 2.2016167 | 0.5941509       | 3.705484  | 0.000211  | 0.0008108 |
| hsa-mir-4714   | 2.4291421 | 2.2038305 | 0.7013232       | 3.1423893 | 0.0016758 | 0.0051254 |
| hsa-mir-3176   | 0.81665   | 2.2041273 | 0.68999         | 3.1944337 | 0.0014011 | 0.0043881 |
| hsa-mir-503    | 55.723256 | 2.2084052 | 0.3535234       | 6.2468427 | 4.19E-10  | 4.75E-09  |
| hsa-mir-2114   | 2.5871486 | 2.2238264 | 0.6775979       | 3.2819263 | 0.001031  | 0.0033221 |
| hsa-mir-4680   | 1.0308286 | 2.2777101 | 0.7185074       | 3.1700578 | 0.0015241 | 0.0047168 |
| hsa-mir-3677   | 52.426063 | 2.2994318 | 0.3485839       | 6.5964942 | 4.21E-11  | 5.32E-10  |
| hsa-mir-5694   | 3.4974724 | 2.3760376 | 0.6907293       | 3.4398967 | 0.0005819 | 0.0019725 |
| hsa-mir-4758   | 0.9944876 | 2.376604  | 0.6430147       | 3.696034  | 0.000219  | 0.0008364 |
| hsa-mir-1910   | 1.5046284 | 2.4076585 | 0.6498069       | 3.705191  | 0.0002112 | 0.0008108 |
| hsa-mir-429    | 287.81234 | 2.4460055 | 0.2710352       | 9.0246777 | 1.80E-19  | 6.21E-18  |
| hsa-mir-203b   | 136.27092 | 2.4541576 | 0.5605937       | 4.3777828 | 1.20E-05  | 6.22E-05  |
| hsa-mir-187    | 63.910204 | 2.4625125 | 0.5773194       | 4.2654249 | 2.00E-05  | 9.89E-05  |
| hsa-mir-141    | 4904.4781 | 2.4695679 | 0.2117873       | 11.660604 | 2.03E-31  | 3.17E-29  |
| hsa-mir-3156-2 | 1.0068944 | 2.469967  | 1.0124368       | 2.4396258 | 0.0147025 | 0.035531  |
| hsa-mir-3065   | 194.1868  | 2.6722265 | 0.466008        | 5.7342932 | 9.79E-09  | 9.02E-08  |

| Continued      |           |           |                                     |           |           |           |
|----------------|-----------|-----------|-------------------------------------|-----------|-----------|-----------|
| hsa-mir-7156   | 2.9362456 | 2.6897926 | 0.8438436                           | 3.1875486 | 0.0014348 | 0.004476  |
| hsa-mir-3662   | 2.1014578 | 2.6983715 | 0.656894                            | 4.1077734 | 3.99E-05  | 0.0001829 |
| hsa-mir-4446   | 2.0919794 | 2.7451863 | 451863 0.6566598 4.1805306 2.91E-05 |           | 0.0001355 |           |
| hsa-mir-96     | 94.122746 | 2.8487537 | 0.2984195                           | 9.5461382 | 1.35E-21  | 5.27E-20  |
| hsa-mir-3664   | 3.0183011 | 2.925689  | 0.5991985                           | 4.8826711 | 1.05E-06  | 6.26E-06  |
| hsa-mir-4756   | 1.5154464 | 2.9370098 | 0.7484983                           | 3.9238697 | 8.71E-05  | 0.0003716 |
| hsa-mir-33b    | 27.096283 | 2.9473853 | 0.4101897                           | 7.1854199 | 6.70E-13  | 1.07E-11  |
| hsa-mir-301b   | 5.4643352 | 2.9940638 | 0.5238337                           | 5.7156768 | 1.09E-08  | 9.72E-08  |
| hsa-mir-760    | 14.67738  | 3.0452155 | 0.4764883                           | 6.3909557 | 1.65E-10  | 2.02E-09  |
| hsa-mir-3610   | 3.5277704 | 3.0726743 | 0.5606211                           | 5.4808395 | 4.23E-08  | 3.13E-07  |
| hsa-mir-183    | 45458.422 | 3.0857932 | 0.2409641                           | 12.806028 | 1.52E-37  | 3.96E-35  |
| hsa-mir-937    | 14.601024 | 3.0987091 | 0.520384                            | 5.9546584 | 2.61E-09  | 2.69E-08  |
| hsa-mir-4664   | 3.5072935 | 3.1943344 | 0.5846401                           | 5.4637616 | 4.66E-08  | 3.38E-07  |
| hsa-mir-7-3    | 4.0323959 | 3.2720805 | 0.6805728                           | 4.807833  | 1.53E-06  | 8.72E-06  |
| hsa-mir-375    | 69032.074 | 3.3010072 | 0.3985204                           | 8.2831571 | 1.20E-16  | 2.76E-15  |
| hsa-mir-210    | 2316.5797 | 3.3420528 | 0.329561                            | 10.140924 | 3.64E-24  | 1.78E-22  |
| hsa-mir-196a-2 | 1498.9541 | 3.4204973 | 0.479967                            | 7.1265261 | 1.03E-12  | 1.55E-11  |
| hsa-mir-7705   | 3.6540236 | 3.5305883 | 0.5393149                           | 6.5464314 | 5.89E-11  | 7.32E-10  |
| hsa-mir-4652   | 2.1866127 | 3.5469799 | 0.9294273                           | 3.8163069 | 0.0001355 | 0.0005439 |
| hsa-mir-190b   | 74.86657  | 3.5515278 | 0.3619959                           | 9.8109614 | 1.01E-22  | 4.39E-21  |
| hsa-mir-196a-1 | 1287.1559 | 3.5550906 | 0.4884056                           | 7.2789722 | 3.36E-13  | 5.49E-12  |
| hsa-mir-147b   | 3.4595148 | 3.8580574 | 0.6738046                           | 5.7257808 | 1.03E-08  | 9.37E-08  |
| hsa-mir-4501   | 5.3061953 | 3.8741146 | 0.7602908                           | 5.0955696 | 3.48E-07  | 2.27E-06  |
| hsa-mir-449c   | 3.5868192 | 4.0610001 | 1.1560968                           | 3.5126817 | 0.0004436 | 0.0015506 |
| hsa-mir-592    | 14.645961 | 4.1646147 | 0.5088097                           | 8.185014  | 2.72E-16  | 5.92E-15  |
| hsa-mir-184    | 98.86697  | 4.1782731 | 0.7004144                           | 5.9654304 | 2.44E-09  | 2.55E-08  |
| hsa-mir-1251   | 5.2776275 | 4.1854343 | 0.9762677                           | 4.2871788 | 1.81E-05  | 9.14E-05  |
| hsa-mir-767    | 12.299696 | 4.5122213 | 1.2908321                           | 3.4955912 | 0.000473  | 0.0016461 |
| hsa-mir-4724   | 8.4668685 | 4.7239329 | 0.6955226                           | 6.7919184 | 1.11E-11  | 1.49E-10  |
| hsa-mir-449b   | 8.2158557 | 4.894992  | 0.9674178                           | 5.0598531 | 4.20E-07  | 2.69E-06  |
| hsa-mir-105-2  | 22.126731 | 5.666011  | 1.2381268                           | 4.5762768 | 4.73E-06  | 2.57E-05  |
| hsa-mir-105-1  | 22.393353 | 5.785696  | 1.132057                            | 5.1107816 | 3.21E-07  | 2.15E-06  |
| hsa-mir-1269b  | 11.678364 | 5.7910783 | 1.319335                            | 4.3893917 | 1.14E-05  | 5.97E-05  |
| hsa-mir-449a   | 23.345357 | 6.6957718 | 0.9186087                           | 7.2890362 | 3.12E-13  | 5.20E-12  |
| hsa-mir-1269a  | 201.18322 | 8.4834144 | 1.0283411                           | 8.2496114 | 1.59E-16  | 3.56E-15  |

| miRNA        | miRNA-expression | Gene     | Gene-expression | Spearman's_correlation_coefficient (R) | p-value   |
|--------------|------------------|----------|-----------------|----------------------------------------|-----------|
| hsa-mir-5683 | down             | SRP9     | up              | -0.3672128                             | 3.97E-07  |
| hsa-mir-665  | down             | PDCL3    | up              | -0.3642548                             | 4.99E-07  |
| hsa-mir-665  | down             | SPC24    | up              | -0.3608442                             | 6.49E-07  |
| hsa-mir-944  | down             | YWHAZ    | up              | -0.3440701                             | 2.25E-06  |
| hsa-mir-665  | down             | CALR     | up              | -0.3372896                             | 3.66E-06  |
| hsa-mir-665  | down             | SLC25A22 | up              | -0.3348415                             | 4.34E-06  |
| hsa-mir-5683 | down             | KIF21A   | up              | -0.3345275                             | 4.44E-06  |
| hsa-mir-665  | down             | SNRNP25  | up              | -0.3342616                             | 4.52E-06  |
| hsa-mir-665  | down             | CENPM    | up              | -0.3267832                             | 7.56E-06  |
| hsa-mir-5683 | down             | MTFR1    | up              | -0.3191654                             | 1.26E-05  |
| hsa-mir-934  | down             | PMAIP1   | up              | -0.3181198                             | 1.35E-05  |
| hsa-mir-665  | down             | NR2F6    | up              | -0.3124445                             | 1.95E-05  |
| hsa-mir-665  | down             | NACC1    | up              | -0.3033006                             | 3.49E-05  |
| hsa-mir-665  | down             | EIF4A3   | up              | -0.3022335                             | 3.73E-05  |
| hsa-mir-665  | down             | BCAS4    | up              | -0.3021408                             | 3.75E-05  |
| hsa-mir-665  | down             | PGAM5    | up              | -0.2998268                             | 4.33E-05  |
| hsa-mir-665  | down             | SYNGR2   | up              | -0.2995249                             | 4.41E-05  |
| hsa-mir-5683 | down             | CCNB1    | up              | -0.2957081                             | 5.57E-05  |
| hsa-mir-1258 | down             | PACSIN1  | up              | -0.2951285                             | 5.77E-05  |
| hsa-mir-665  | down             | NECAB3   | up              | -0.2947845                             | 5.89E-05  |
| hsa-mir-5683 | down             | DSN1     | up              | -0.2930242                             | 6.55E-05  |
| hsa-mir-665  | down             | TPM3     | up              | -0.2903635                             | 7.69E-05  |
| hsa-mir-665  | down             | SYAP1    | up              | -0.2864156                             | 9.70E-05  |
| hsa-mir-665  | down             | ZNF695   | up              | -0.281877                              | 0.0001264 |
| hsa-mir-665  | down             | HJURP    | up              | -0.2817984                             | 0.0001269 |
| hsa-mir-665  | down             | PTRH2    | up              | -0.2801275                             | 0.0001397 |
| hsa-mir-665  | down             | PSMC4    | up              | -0.2757109                             | 0.0001796 |
| hsa-mir-1258 | down             | ZNF281   | up              | -0.2698214                             | 0.0002493 |
| hsa-mir-934  | down             | ASB16    | up              | -0.2669101                             | 0.0002924 |
| hsa-mir-5683 | down             | GPR141   | up              | -0.2630908                             | 0.0003594 |
| hsa-mir-5683 | down             | MORF4L2  | up              | -0.2569629                             | 0.0004974 |
| hsa-mir-5683 | down             | POLQ     | up              | -0.2568022                             | 0.0005016 |
| hsa-mir-665  | down             | CENPN    | up              | -0.2508178                             | 0.0006836 |

| Table S2. Critical miRNA-target gene pairs identified by spearman's correlation analysis ( $R < -0.2$ and p-value $< 0.05$ | ;). |
|----------------------------------------------------------------------------------------------------------------------------|-----|
|----------------------------------------------------------------------------------------------------------------------------|-----|

#### Continued

| hsa-mir-665  | down | RFC2     | up   | -0.2506172 | 0.0006906 |
|--------------|------|----------|------|------------|-----------|
| hsa-mir-1262 | down | CERS2    | up   | -0.2498418 | 0.0007185 |
| hsa-mir-1262 | down | AGMAT    | up   | -0.2425888 | 0.001034  |
| hsa-mir-665  | down | RRM2     | up   | -0.2414188 | 0.001095  |
| hsa-mir-944  | down | TSPAN13  | up   | -0.2407357 | 0.001133  |
| hsa-mir-326  | down | MAz      | up   | -0.2353943 | 0.001468  |
| hsa-mir-665  | down | GNG3     | up   | -0.2352009 | 0.001482  |
| hsa-mir-5683 | down | RACGAP1  | up   | -0.2330957 | 0.001638  |
| hsa-mir-665  | down | PRIM1    | up   | -0.2311795 | 0.001794  |
| hsa-mir-665  | down | RAD21    | up   | -0.2304525 | 0.001856  |
| hsa-mir-665  | down | TCEA3    | up   | -0.2293112 | 0.001958  |
| hsa-mir-378c | down | DCTPP1   | up   | -0.2271472 | 0.002166  |
| hsa-mir-5683 | down | MTHFD2   | up   | -0.2251345 | 0.002377  |
| hsa-mir-5683 | down | PMAIP1   | up   | -0.2246175 | 0.002434  |
| hsa-mir-665  | down | DNA2     | up   | -0.2218089 | 0.002767  |
| hsa-mir-665  | down | AP1S3    | up   | -0.220575  | 0.002926  |
| hsa-mir-665  | down | BPNT1    | up   | -0.2185803 | 0.0032    |
| hsa-mir-451a | down | HELLS    | up   | -0.2172289 | 0.00346   |
| hsa-mir-665  | down | BRI3BP   | up   | -0.2150804 | 0.003737  |
| hsa-mir-326  | down | RBM47    | up   | -0.2143822 | 0.003854  |
| hsa-mir-1262 | down | PTK6     | up   | -0.2137454 | 0.003963  |
| hsa-mir-934  | down | SERPINC1 | up   | -0.211244  | 0.004419  |
| hsa-mir-665  | down | ZNF623   | up   | -0.2062482 | 0.005473  |
| hsa-mir-665  | down | MRPL12   | up   | -0.2061883 | 0.005487  |
| hsa-mir-326  | down | РКМ      | up   | -0.2058233 | 0.005573  |
| hsa-mir-326  | down | CD9      | up   | -0.203674  | 0.0061    |
| hsa-mir-665  | down | KCNK6    | up   | -0.2032562 | 0.006208  |
| hsa-mir-429  | up   | QKI      | down | -0.4347583 | 1.57E-09  |
| hsa-mir-429  | up   | CDC14B   | down | -0.4206447 | 5.82E-09  |
| hsa-mir-375  | up   | EMP1     | down | -0.4182187 | 7.23E-09  |
| hsa-mir-190b | up   | KLF6     | down | -0.3900902 | 6.19E-08  |
| hsa-mir-429  | up   | ACSL4    | down | -0.3865243 | 1.07E-07  |
| hsa-mir-429  | up   | ZEB2     | down | -0.3733593 | 3.02E-07  |
| hsa-mir-4501 | up   | ITGB8    | down | -0.3670988 | 4.00E-07  |
|              |      |          |      |            | -         |

| Continued |
|-----------|
| Commuca   |

| hsa-mir-429   | up | ZFPM2    | down | -0.3607663 | 7.82E-07  |
|---------------|----|----------|------|------------|-----------|
| hsa-mir-190b  | up | DAB2     | down | -0.3544191 | 1.05E-06  |
| hsa-mir-190b  | up | GPC5     | down | -0.3523811 | 1.23E-06  |
| hsa-mir-375   | up | KIT      | down | -0.3522784 | 1.46E-06  |
| hsa-mir-421   | up | CBX7     | down | -0.3509502 | 1.36E-06  |
| hsa-mir-429   | up | ANKRD33B | down | -0.3479079 | 1.99E-06  |
| hsa-mir-429   | up | TCF7L2   | down | -0.3466486 | 2.18E-06  |
| hsa-mir-3662  | up | MYOCD    | down | -0.3430709 | 2.42E-06  |
| hsa-mir-375   | up | F3       | down | -0.3416484 | 3.09E-06  |
| hsa-mir-375   | up | YAP1     | down | -0.339243  | 3.66E-06  |
| hsa-mir-375   | up | MAP3K8   | down | -0.3325843 | 5.77E-06  |
| hsa-mir-429   | up | IGF2     | down | -0.3270286 | 8.37E-06  |
| hsa-mir-429   | up | TCF7L1   | down | -0.3224606 | 1.13E-05  |
| hsa-mir-190b  | up | CYGB     | down | -0.3167686 | 1.48E-05  |
| hsa-mir-190b  | up | IGF1     | down | -0.3154332 | 1.61E-05  |
| hsa-mir-4326  | up | TXNIP    | down | -0.3146926 | 1.69E-05  |
| hsa-mir-375   | up | ZFP36L2  | down | -0.3126845 | 2.12E-05  |
| hsa-mir-1269a | up | H6PD     | down | -0.3117793 | 2.04E-05  |
| hsa-mir-4784  | up | HAP1     | down | -0.3103257 | 2.24E-05  |
| hsa-mir-940   | up | PER2     | down | -0.3036045 | 3.43E-05  |
| hsa-mir-3652  | up | PRKCA    | down | -0.2999963 | 4.29E-05  |
| hsa-mir-5694  | up | ANTXR2   | down | -0.2985284 | 4.69E-05  |
| hsa-mir-375   | up | CELF2    | down | -0.293507  | 6.85E-05  |
| hsa-mir-3662  | up | PTPN14   | down | -0.290054  | 7.83E-05  |
| hsa-mir-375   | up | TNS1     | down | -0.2894266 | 8.70E-05  |
| hsa-mir-375   | up | SH3D19   | down | -0.2888155 | 9.02E-05  |
| hsa-miR-592   | up | AKAP12   | down | -0.2843705 | 0.0001094 |
| hsa-mir-375   | up | ACSL4    | down | -0.2810766 | 0.0001405 |
| hsa-mir-3609  | up | ADAMTS9  | down | -0.2807031 | 0.0001352 |
| hsa-mir-429   | up | AVPR1A   | down | -0.2803296 | 0.0001465 |
| hsa-mir-375   | up | GATA6    | down | -0.2760682 | 0.000186  |
| hsa-mir-375   | up | AKAP7    | down | -0.2759715 | 0.000187  |
| hsa-mir-429   | up | KLF11    | down | -0.2738521 | 0.0002102 |
| hsa-mir-3652  | up | SIK2     | down | -0.2734481 | 0.0002039 |

#### Continued

| hsa-mir-4784 | up | WFIKKN2 | down | -0.2719226 | 0.0002219 |
|--------------|----|---------|------|------------|-----------|
| hsa-mir-449a | up | MET     | down | -0.2714277 | 0.0002281 |
| hsa-miR-592  | up | CCL16   | down | -0.2659841 | 0.0003075 |
| hsa-mir-3662 | up | ETS2    | down | -0.2650204 | 0.0003239 |
| hsa-mir-190b | up | PCDHB11 | down | -0.2645826 | 0.0003317 |
| hsa-mir-940  | up | NPR1    | down | -0.2634869 | 0.0003519 |
| hsa-mir-940  | up | OLFML2A | down | -0.262919  | 0.0003628 |
| hsa-mir-3652 | up | ABCA6   | down | -0.2615974 | 0.0003893 |
| hsa-mir-429  | up | JUN     | down | -0.2612797 | 0.0004134 |
| hsa-mir-375  | up | FAM89A  | down | -0.2570923 | 0.0005141 |
| hsa-mir-3652 | up | PTGIS   | down | -0.2557748 | 0.0005292 |
| hsa-mir-3662 | up | SLC35G2 | down | -0.2545139 | 0.0005651 |
| hsa-mir-375  | up | SAMD4A  | down | -0.2495571 | 0.0007548 |
| hsa-mir-4326 | up | TNS1    | down | -0.2495448 | 0.0007294 |
| hsa-mir-449a | up | TXNIP   | down | -0.2463247 | 0.0008583 |
| hsa-mir-7705 | up | CYGB    | down | -0.245438  | 0.0008973 |
| hsa-mir-940  | up | CDC14B  | down | -0.2446813 | 0.0009318 |
| hsa-mir-7705 | up | KLHL3   | down | -0.2409715 | 0.00112   |
| hsa-mir-940  | up | EPHA2   | down | -0.2385039 | 0.001263  |
| hsa-mir-1276 | up | ACVR2A  | down | -0.2379292 | 0.001299  |
| hsa-mir-3609 | up | KLF6    | down | -0.2375235 | 0.001325  |
| hsa-mir-5695 | up | CHST3   | down | -0.2370087 | 0.001358  |
| hsa-mir-429  | up | WASF3   | down | -0.2364764 | 0.001432  |
| hsa-miR-1284 | up | RCAN2   | down | -0.2360124 | 0.001425  |
| hsa-mir-190b | up | PM20D2  | down | -0.2353593 | 0.00147   |
| hsa-mir-7705 | up | CYP27C1 | down | -0.2335649 | 0.001602  |
| hsa-mir-375  | up | PIK3IP1 | down | -0.2328055 | 0.001703  |
| hsa-mir-940  | up | TLN1    | down | -0.2312545 | 0.001788  |
| hsa-mir-940  | up | FOXC1   | down | -0.2311928 | 0.001793  |
| hsa-mir-940  | up | SLC10A6 | down | -0.2299449 | 0.001901  |
| hsa-mir-5695 | up | BACH2   | down | -0.2288609 | 0.002     |
| hsa-mir-375  | up | LDHB    | down | -0.2283033 | 0.0021    |
| hsa-mir-5695 | up | SOX17   | down | -0.2277192 | 0.002109  |
| hsa-mir-375  | up | SYT15   | down | -0.2276243 | 0.002167  |

| Continued     |    |         |      |            |          |
|---------------|----|---------|------|------------|----------|
| hsa-mir-3662  | up | ADAMTS1 | down | -0.2240943 | 0.002493 |
| hsa-mir-449a  | up | FOXN3   | down | -0.2239901 | 0.002505 |
| hsa-mir-147b  | up | MITF    | down | -0.2232909 | 0.002587 |
| hsa-mir-7705  | up | LAMA4   | down | -0.2226293 | 0.002666 |
| hsa-mir-1269b | up | H6PD    | down | -0.2213294 | 0.002828 |
| hsa-mir-3652  | up | MYH11   | down | -0.2208941 | 0.002884 |
| hsa-mir-3662  | up | SH3TC2  | down | -0.2203975 | 0.002949 |
| hsa-mir-5695  | up | SLC22A3 | down | -0.2182073 | 0.003254 |
| hsa-miR-592   | up | EMCN    | down | -0.2179502 | 0.003291 |
| hsa-mir-449a  | up | CLIC5   | down | -0.2173743 | 0.003377 |
| hsa-mir-449a  | up | UST     | down | -0.2173198 | 0.003385 |
| hsa-mir-940   | up | ADD2    | down | -0.2168689 | 0.003453 |
| hsa-mir-5695  | up | ITGA9   | down | -0.2160662 | 0.003578 |
| hsa-mir-375   | up | PRKCA   | down | -0.2160478 | 0.003644 |
| hsa-mir-3662  | up | SEMA6D  | down | -0.2141494 | 0.003893 |
| hsa-mir-449a  | up | NOTCH1  | down | -0.2120725 | 0.004263 |
| hsa-mir-4326  | up | AMOTL1  | down | -0.210992  | 0.004468 |
| hsa-mir-3652  | up | FBXO40  | down | -0.2108282 | 0.004499 |
| hsa-mir-3652  | up | OMD     | down | -0.2097977 | 0.004704 |
| hsa-miR-1284  | up | HOXA9   | down | -0.2095338 | 0.004757 |
| hsa-mir-1276  | up | AKAP6   | down | -0.2086087 | 0.00495  |
| hsa-mir-3652  | up | TSHZ2   | down | -0.2082591 | 0.005025 |
| hsa-mir-375   | up | NCOA7   | down | -0.2069097 | 0.005397 |
| hsa-mir-940   | up | PDE7B   | down | -0.2058106 | 0.005576 |
| hsa-mir-760   | up | ETS1    | down | -0.2053226 | 0.005692 |
| hsa-mir-940   | up | NPY4R   | down | -0.2047089 | 0.005841 |
| hsa-mir-3662  | up | ACSL4   | down | -0.2032589 | 0.006207 |
| hsa-mir-5695  | up | PDE1A   | down | -0.2024794 | 0.006412 |
| hsa-miR-592   | up | EPHA4   | down | -0.2005619 | 0.006943 |

 Table S3. Differentially expressed target genes in luminal B breast cancer.

| gene_id                | gene_name | baseMean | log2FoldChange | lfcSE    | stat     | p-value  | padj     |
|------------------------|-----------|----------|----------------|----------|----------|----------|----------|
| ENSG00000133392.18     | MYH11     | 4182.333 | -4.73722       | 0.263733 | -17.9622 | 3.85E-72 | 8.36E-70 |
| ENSG00000169418.10     | NPR1      | 994.8141 | -4.40846       | 0.222879 | -19.7796 | 4.46E-87 | 3.33E-84 |
| <br>ENSG00000157404.16 | KIT       | 2759.348 | -4.29016       | 0.382646 | -11.2118 | 3.57E-29 | 1.05E-27 |

DOI: 10.4236/abcr.2024.134008

#### Continued ENSG00000204174.8 NPY4R 1.131372 -4.248080.666555 -6.37318 1.85E-10 1.21E-09 ENSG00000275152.5 CCL16 6.107794 -3.6132 0.39113 -9.23786 2.51E-20 4.17E-19 ENSG00000154262.13 ABCA6 526.0594 -3.598070.267015 -13.47522.19E-41 1.25E-39 ENSG00000163833.8 FBXO40 0.49209 6.79E-13 2.115284 -3.53501 -7.18366 5.80E-12 ENSG0000182463.16 TSHZ2 1015.632 -3.46184 0.221596 -15.6223 5.13E-55 5.70E-53 ENSG0000017427.17 IGF1 146.2573 -3.43134 0.305261 -11.24072.57E-29 7.61E-28 ENSG0000079308.19 TNS1 13105.78 -3.429720.158007 -21.70621.79E-104 4.19E-101 ENSG00000146477.6 SLC22A3 125.967 -3.30656 0.394025 -8.39175 4.79E-17 5.97E-16 ENSG00000131016.17 AKAP12 2643.414 -3.26625 0.236728 -13.7975 1.66E-41 2.64E-43 ENSG00000154734.16 ADAMTS1 -10.609 2.71E-26 3428.261 -3.263330.3076 6.63E-25 ENSG0000164736.6 SOX17 205.1572 -3.120870.203069 -15.3686 2.66E-53 2.71E-51 ENSG0000054598.9 FOXC1 425.2381 -3.03671 0.232089 -13.08434.05E-39 2.07E-37 ENSG00000141052.18 MYOCD 49.80311 -2.95209 0.423622 -6.9687 3.20E-12 2.53E-11 ENSG00000164035.10 EMCN 1083.569 -2.807750.193672 -14.49741.26E-47 9.43E-46 ENSG0000105976.16 MET 1435.458 -2.775590.357854 -7.75628.75E-15 8.92E-14 ENSG00000170145.5 SIK2 3313.581 -2.77356 0.176112 -15.74887.00E-56 8.43E-54 ENSG00000134531.10 EMP1 11291.44 -2.745740.208157 -13.19079.93E-40 5.19E-38 ENSG00000124212.6 PTGIS 1898.959 -2.720320.337166 -8.06819 7.13E-16 8.00E-15 ENSG00000117525.14 F3 1222.6 -2.71613 0.312218 -8.69948 3.33E-18 4.59E-17 ENSG0000182118.8 FAM89A 394.7037 -2.711040.402906 -6.72871 1.71E-11 1.26E-10 ENSG00000145283.8 SLC10A6 41.70076 -2.641080.323546 -8.16293 3.27E-16 3.78E-15 ENSG00000137872.17 SEMA6D 476.5353 -2.61329 0.323742 -8.07216 6.91E-16 7.76E-15 ENSG00000169247.14 SH3TC2 102.764 -2.609060.271145 -9.62237 6.43E-22 1.19E-20 ENSG0000048740.18 CELF2 2009.801 -2.541040.237201 -10.71268.88E-27 2.24E-25 ENSG0000168917.9 SLC35G2 212.4747 -2.538430.226704 -11.1971 4.21E-29 1.23E-27 ENSG0000081377.17 CDC14B 722.5051 -2.49492 0.224796 -11.09861.27E-28 3.59E-27 ENSG00000132970.14 WASF3 391.7932 -2.46931 0.347207 -7.11193 1.14E-12 9.54E-12 ENSG00000122863.6 CHST3 1141.86 -2.418790.222482 -10.87181.57E-27 4.14E-26 ENSG0000265972.6 TXNIP 41624.99 -2.40691 -10.87411.53E-27 0.221344 4.05E-26 ENSG00000152284.5 TCF7L1 1180.151 -2.405030.277114 -8.67886 4.00E-18 5.45E-17 ENSG00000152104.12 PTPN14 3239.542 -2.38320.202184 -11.78734.54E-32 1.56E-30 ENSG00000173805.16 HAP1 77.31086 -5.03704-2.366330.469786 4.73E-07 1.94E-06 ENSG0000020577.14 SAMD4A 944.5597 -2.326620.218535 -10.64641.81E-26 4.49E-25 ENSG00000112782.19 CLIC5 483.722 -2.326260.304194 -7.64732.05E-14 2.03E-13

DOI: 10.4236/abcr.2024.134008

| Continued          |          |          |          |          |          |          |          |
|--------------------|----------|----------|----------|----------|----------|----------|----------|
| ENSG00000204176.14 | SYT15    | 21.12648 | -2.30239 | 0.249285 | -9.23597 | 2.56E-20 | 4.24E-19 |
| ENSG00000112182.15 | BACH2    | 257.1657 | -2.26902 | 0.256459 | -8.84749 | 8.95E-19 | 1.29E-17 |
| ENSG00000177606.8  | JUN      | 11479.81 | -2.26689 | 0.228937 | -9.90181 | 4.09E-23 | 8.22E-22 |
| ENSG00000109686.19 | SH3D19   | 4541.498 | -2.24316 | 0.170627 | -13.1466 | 1.78E-39 | 9.21E-38 |
| ENSG00000171408.14 | PDE7B    | 172.8577 | -2.23779 | 0.204487 | -10.9435 | 7.14E-28 | 1.93E-26 |
| ENSG00000154229.12 | PRKCA    | 429.3344 | -2.17213 | 0.219209 | -9.90898 | 3.81E-23 | 7.68E-22 |
| ENSG00000163297.17 | ANTXR2   | 2568.571 | -2.17205 | 0.215654 | -10.0719 | 7.35E-24 | 1.57E-22 |
| ENSG00000142627.13 | EPHA2    | 776.7399 | -2.15179 | 0.190524 | -11.2941 | 1.40E-29 | 4.21E-28 |
| ENSG00000157557.13 | ETS2     | 2737.954 | -2.14215 | 0.169751 | -12.6193 | 1.65E-36 | 7.13E-35 |
| ENSG00000100307.13 | CBX7     | 1545.103 | -2.07287 | 0.209027 | -9.91675 | 3.52E-23 | 7.15E-22 |
| ENSG00000167244.21 | IGF2     | 115.9528 | -2.06731 | 0.319724 | -6.46592 | 1.01E-10 | 6.80E-10 |
| ENSG00000146281.6  | PM20D2   | 570.7357 | -2.05834 | 0.375368 | -5.48351 | 4.17E-08 | 1.99E-07 |
| ENSG00000166025.18 | AMOTL1   | 2390.428 | -2.04661 | 0.251772 | -8.12879 | 4.34E-16 | 4.97E-15 |
| ENSG00000163638.13 | ADAMTS9  | 778.2113 | -2.03456 | 0.186902 | -10.8857 | 1.35E-27 | 3.59E-26 |
| ENSG00000151320.11 | AKAP6    | 264.7078 | -2.01836 | 0.279149 | -7.23039 | 4.82E-13 | 4.20E-12 |
| ENSG00000161544.10 | CYGB     | 603.7304 | -2.01109 | 0.225797 | -8.90663 | 5.26E-19 | 7.75E-18 |
| ENSG00000111912.20 | NCOA7    | 2513.176 | -1.98953 | 0.209973 | -9.47517 | 2.66E-21 | 4.71E-20 |
| ENSG00000164236.12 | ANKRD33B | 267.3435 | -1.95984 | 0.253401 | -7.73414 | 1.04E-14 | 1.06E-13 |
| ENSG00000144668.12 | ITGA9    | 989.5649 | -1.92159 | 0.213808 | -8.98743 | 2.53E-19 | 3.83E-18 |
| ENSG00000173714.8  | WFIKKN2  | 5.471032 | -1.91422 | 0.571935 | -3.34692 | 0.000817 | 0.001955 |
| ENSG00000169554.22 | ZEB2     | 2546.417 | -1.90165 | 0.199745 | -9.52041 | 1.73E-21 | 3.09E-20 |
| ENSG00000115252.18 | PDE1A    | 234.1435 | -1.89086 | 0.195606 | -9.66667 | 4.18E-22 | 7.80E-21 |
| ENSG00000152518.8  | ZFP36L2  | 5244.958 | -1.87946 | 0.223518 | -8.40853 | 4.15E-17 | 5.21E-16 |
| ENSG0000078399.19  | HOXA9    | 138.6752 | -1.87249 | 0.45164  | -4.14598 | 3.38E-05 | 0.000104 |
| ENSG00000053254.16 | FOXN3    | 3115.684 | -1.85297 | 0.175675 | -10.5477 | 5.20E-26 | 1.26E-24 |
| ENSG0000067082.15  | KLF6     | 11675.17 | -1.73614 | 0.171046 | -10.1502 | 3.31E-24 | 7.22E-23 |
| ENSG00000112769.20 | LAMA4    | 6728.366 | -1.72278 | 0.204349 | -8.43058 | 3.44E-17 | 4.34E-16 |
| ENSG00000148737.17 | TCF7L2   | 1593.452 | -1.70318 | 0.226376 | -7.52366 | 5.33E-14 | 5.10E-13 |
| ENSG00000111962.8  | UST      | 607.7603 | -1.68847 | 0.351058 | -4.80965 | 1.51E-06 | 5.74E-06 |
| ENSG00000172348.15 | RCAN2    | 704.8905 | -1.68334 | 0.185449 | -9.0771  | 1.12E-19 | 1.74E-18 |
| ENSG00000105855.10 | ITGB8    | 1433.504 | -1.66527 | 0.411121 | -4.05055 | 5.11E-05 | 0.000152 |
| ENSG00000127083.7  | OMD      | 867.1152 | -1.65735 | 0.412603 | -4.01681 | 5.90E-05 | 0.000173 |
| ENSG0000068366.20  | ACSL4    | 2179.473 | -1.65119 | 0.21483  | -7.68603 | 1.52E-14 | 1.52E-13 |
| ENSG00000107968.10 | MAP3K8   | 790.9698 | -1.62605 | 0.268341 | -6.05964 | 1.36E-09 | 7.98E-09 |

#### Continued ENSG00000172059.11 KLF11 1572.929 -1.62369 0.154556 -10.5055 8.15E-26 ENSG00000169946.14 ZFPM2 457.4484 -1.598020.267775 -5.967772.41E-09 ENSG00000146021.15 KLHL3 442.0001 -1.566 0.256042 -6.11618 9.58E-10 ENSG00000112531.17 QKI 5172.184 -1.564910.17405 -8.99115 2.45E-19 ENSG0000179399.15 GPC5 6.517002 -1.564480.48903 -3.19915 0.001378 ENSG0000166148.4 AVPR1A 512.6131 -1.522040.329728 -4.61604 3.91E-06 ENSG00000187098.17 MITF 1058.335 -1.52040.239991 -6.335222.37E-10 ENSG00000116106.12 EPHA4 743.7578 -1.483050.349354 -4.245122.18E-05 ENSG0000075340.23 ADD2 227.8462 -1.459920.343043 -4.25582.08E-05 ENSG00000132326.12 PER2 -10.03571.06E-23 2618.643 -1.449580.144443 ENSG00000137693.14 YAP1 5476.509 -1.401840.199666 -7.020942.20E-12 ENSG00000153071.15 DAB2 4863.07 -1.391530.207863 -6.694472.16E-11 ENSG00000134954.14 ETS1 5635.614 -1.37916 0.191642 -7.19655 6.18E-13 ENSG0000186684.14 CYP27C1 22.23172 -1.360.343668 -3.957327.58E-05 ENSG00000197479.7 PCDHB11 122.8965 -1.33616 0.363511 -3.67570.000237 ENSG0000049239.13 H6PD 5899.722 -1.303080.126274 -10.3195 5.76E-25 ENSG00000185585.20 OLFML2A 3008.681 -1.292050.203804 -6.33965 2.30E-10 ENSG00000141448.11 GATA6 -1.28394-5.19285 2.07E-07 252.49 0.247251 ENSG00000111716.14 LDHB -1.25185 0.000195 258.771 0.336054 -3.72514ENSG00000148400.12 NOTCH1 2767.299 -1.214220.147763 -8.217382.08E-16 ENSG00000100100.13 PIK3IP1 2570.633 -1.150210.157226 -7.315642.56E-13 ENSG00000121989.15 ACVR2A 833.1735 -1.111460.176357 -6.30234 2.93E-10 ENSG00000137076.21 TLN1 24040.19 -1.01220.142752 -7.090641.33E-12 ENSG00000118507.17 AKAP7 442.2442 -1.009690.209109 -4.828521.38E-06 ENSG0000067225.18 PKM 63589.19 1.003789 0.14141 7.098408 1.26E-12 ENSG0000010278.15 CD9 27313.29 1.03073 0.174172 5.917889 3.26E-09 ENSG00000162813.18 BPNT1 3818.101 1.032864 0.138539 7.455396 8.96E-14

DOI: 10.4236/abcr.2024.134008

ENSG00000179218.14

ENSG00000162702.8

ENSG0000204219.11

ENSG0000013275.8

ENSG00000115539.14

ENSG00000163694.15

ENSG00000143742.14

CALR

**ZNF281** 

TCEA3

PSMC4

PDCL3

RBM47

SRP9

47750.32

3935.303

4844.245

6371.815

1999.501

10668.08

17143.41

1.056944

1.056971

1.060776

1.073648

1.076507

1.107651

1.162208

0.159821

0.178739

0.194272

0.113419

0.122667

0.148473

0.147817

6.613301

5.913478

5.460249

9.466174

8.775874

7.460285

7.862505

Advances in Breast Cancer Research

3.76E-11

3.35E-09

4.75E-08

2.90E-21

1.70E-18

8.63E-14

3.77E-15

1.95E-24

1.36E-08

5.73E-09

3.72E-18

0.003163

1.39E-05

1.53E-09

6.94E-05

6.64E-05

2.24E-22

1.77E-11

1.58E-10

5.31E-12

0.000218

0.000626

1.31E-23

1.49E-09

8.96E-07

0.000525

2.45E-15

2.31E-12

1.87E-09

1.11E-11

5.25E-06

1.05E-11

1.81E-08

8.46E-13

2.66E-10

1.85E-08

2.25E-07

5.11E-20

2.38E-17

8.17E-13

3.93E-14

| Continued          |          |          |          |          |          |          |          |
|--------------------|----------|----------|----------|----------|----------|----------|----------|
| ENSG00000247077.7  | PGAM5    | 3686.237 | 1.162817 | 0.123098 | 9.446263 | 3.51E-21 | 6.13E-20 |
| ENSG0000049541.11  | RFC2     | 2610.376 | 1.18846  | 0.128301 | 9.263053 | 1.99E-20 | 3.32E-19 |
| ENSG00000152056.17 | AP1S3    | 382.8773 | 1.188634 | 0.195606 | 6.076678 | 1.23E-09 | 7.23E-09 |
| ENSG00000141543.12 | EIF4A3   | 9157.783 | 1.193752 | 0.143133 | 8.34013  | 7.42E-17 | 9.08E-16 |
| ENSG00000123562.18 | MORF4L2  | 25317.37 | 1.220208 | 0.165276 | 7.382856 | 1.55E-13 | 1.43E-12 |
| ENSG00000198056.15 | PRIM1    | 516.0286 | 1.253897 | 0.163747 | 7.657537 | 1.90E-14 | 1.88E-13 |
| ENSG00000183309.12 | ZNF623   | 5290.028 | 1.258205 | 0.178412 | 7.052244 | 1.76E-12 | 1.44E-11 |
| ENSG00000164924.18 | YWHAZ    | 97012.07 | 1.308363 | 0.190907 | 6.853413 | 7.21E-12 | 5.51E-11 |
| ENSG00000169895.6  | SYAP1    | 12361.49 | 1.323317 | 0.190062 | 6.96254  | 3.34E-12 | 2.64E-11 |
| ENSG00000141378.15 | PTRH2    | 2313.839 | 1.344021 | 0.234938 | 5.720745 | 1.06E-08 | 5.49E-08 |
| ENSG00000139116.19 | KIF21A   | 2617.672 | 1.371612 | 0.182837 | 7.501817 | 6.29E-14 | 6.00E-13 |
| ENSG00000117601.14 | SERPINC1 | 14.6167  | 1.380024 | 0.344103 | 4.010498 | 6.06E-05 | 0.000178 |
| ENSG00000143549.21 | TPM3     | 35311.88 | 1.394759 | 0.115391 | 12.08724 | 1.23E-33 | 4.62E-32 |
| ENSG00000179958.10 | DCTPP1   | 3178.149 | 1.480657 | 0.169935 | 8.713072 | 2.96E-18 | 4.08E-17 |
| ENSG0000066855.16  | MTFR1    | 3421.341 | 1.490422 | 0.209157 | 7.125854 | 1.03E-12 | 8.67E-12 |
| ENSG00000160113.5  | NR2F6    | 4102.62  | 1.508661 | 0.190579 | 7.916191 | 2.45E-15 | 2.61E-14 |
| ENSG00000164754.15 | RAD21    | 35872.35 | 1.521572 | 0.199188 | 7.638873 | 2.19E-14 | 2.17E-13 |
| ENSG00000143418.20 | CERS2    | 13470.45 | 1.53076  | 0.167388 | 9.144967 | 5.96E-20 | 9.50E-19 |
| ENSG00000160877.6  | NACC1    | 5695.161 | 1.571444 | 0.160161 | 9.811627 | 1.00E-22 | 1.96E-21 |
| ENSG00000108639.8  | SYNGR2   | 21865.43 | 1.573168 | 0.222722 | 7.063368 | 1.63E-12 | 1.33E-11 |
| ENSG00000166451.13 | CENPN    | 525.2235 | 1.582459 | 0.165603 | 9.555762 | 1.23E-21 | 2.23E-20 |
| ENSG00000103495.14 | MAZ      | 1324.477 | 1.584558 | 0.153138 | 10.34727 | 4.31E-25 | 9.90E-24 |
| ENSG00000149636.16 | DSN1     | 2614.142 | 1.608786 | 0.148041 | 10.86716 | 1.65E-27 | 4.34E-26 |
| ENSG00000116771.6  | AGMAT    | 199.9316 | 1.623433 | 0.269733 | 6.018662 | 1.76E-09 | 1.01E-08 |
| ENSG00000184992.13 | BRI3BP   | 3135.055 | 1.627688 | 0.138192 | 11.77842 | 5.04E-32 | 1.72E-30 |
| ENSG00000262814.8  | MRPL12   | 266.1392 | 1.630506 | 0.356902 | 4.568502 | 4.91E-06 | 1.72E-05 |
| ENSG00000177542.11 | SLC25A22 | 2302.414 | 1.642046 | 0.18744  | 8.760402 | 1.95E-18 | 2.72E-17 |
| ENSG00000187037.8  | GPR141   | 79.99273 | 1.700932 | 0.380754 | 4.46727  | 7.92E-06 | 2.70E-05 |
| ENSG0000099337.5   | KCNK6    | 4163.652 | 1.716541 | 0.229608 | 7.475959 | 7.66E-14 | 7.28E-13 |
| ENSG00000161664.7  | ASB16    | 156.6078 | 1.727263 | 0.299618 | 5.764878 | 8.17E-09 | 4.31E-08 |
| ENSG0000065911.13  | MTHFD2   | 5783.556 | 1.727698 | 0.17727  | 9.746149 | 1.92E-22 | 3.67E-21 |
| ENSG00000161981.11 | SNRNP25  | 3015.774 | 1.782309 | 0.174774 | 10.1978  | 2.03E-24 | 4.47E-23 |
| ENSG00000125967.17 | NECAB3   | 3696.475 | 1.989247 | 0.23244  | 8.558109 | 1.15E-17 | 1.51E-16 |
| ENSG00000141682.12 | PMAIP1   | 1307.21  | 2.065221 | 0.314488 | 6.566933 | 5.14E-11 | 3.58E-10 |

| Continued          |         |          |          |          |          |           |           |
|--------------------|---------|----------|----------|----------|----------|-----------|-----------|
| ENSG00000138346.15 | DNA2    | 816.1066 | 2.106384 | 0.174439 | 12.07518 | 1.43E-33  | 5.34E-32  |
| ENSG00000119969.15 | HELLS   | 1568.739 | 2.154497 | 0.174916 | 12.31732 | 7.31E-35  | 2.89E-33  |
| ENSG0000106537.8   | TSPAN13 | 27275.54 | 2.184523 | 0.232017 | 9.415377 | 4.71E-21  | 8.18E-20  |
| ENSG00000162188.6  | GNG3    | 6.381731 | 2.274225 | 0.428108 | 5.312272 | 1.08E-07  | 4.87E-07  |
| ENSG00000101213.7  | PTK6    | 1491.814 | 2.443841 | 0.269593 | 9.064913 | 1.25E-19  | 1.93E-18  |
| ENSG00000161800.13 | RACGAP1 | 4784.994 | 2.580521 | 0.149218 | 17.29362 | 5.25E-67  | 8.61E-65  |
| ENSG00000124243.17 | BCAS4   | 2761.958 | 2.611711 | 0.240577 | 10.85604 | 1.87E-27  | 4.89E-26  |
| ENSG00000134057.15 | CCNB1   | 4642.506 | 3.105306 | 0.163561 | 18.98566 | 2.24E-80  | 9.30E-78  |
| ENSG00000100162.15 | CENPM   | 740.1221 | 3.221654 | 0.234838 | 13.71861 | 7.86E-43  | 4.76E-41  |
| ENSG00000051341.14 | POLQ    | 792.2459 | 3.224711 | 0.188866 | 17.07406 | 2.32E-65  | 3.66E-63  |
| ENSG00000124507.11 | PACSIN1 | 401.357  | 3.395711 | 0.328254 | 10.34476 | 4.42E-25  | 1.02E-23  |
| ENSG00000161888.11 | SPC24   | 910.7969 | 3.459886 | 0.198499 | 17.43026 | 4.86E-68  | 8.49E-66  |
| ENSG00000197472.15 | ZNF695  | 125.6736 | 3.480798 | 0.354153 | 9.828508 | 8.49E-23  | 1.66E-21  |
| ENSG00000123485.12 | HJURP   | 1205.887 | 4.037869 | 0.176764 | 22.8433  | 1.70E-115 | 7.95E-112 |
| ENSG00000171848.16 | RRM2    | 5165.332 | 4.254322 | 0.224536 | 18.94716 | 4.66E-80  | 1.85E-77  |