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Abstract 
The solution of Poisson’s Equation plays an important role in many areas, in-
cluding modeling high-intensity and high-brightness beams in particle accel-
erators. For the computational domain with a large aspect ratio, the integrated 
Green’s function method has been adopted to solve the 3D Poisson equation 
subject to open boundary conditions. In this paper, we report on the efficient 
implementation of this method, which can save more than a factor of 50 com-
puting time compared with the direct brute force implementation and its im-
provement under certain extreme conditions. 
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1. Introduction 

The solution of the three-dimensional (3D) Poisson equation plays an important 
role in many fields. In particle accelerator research, the nonlinear space-charge 
effects due to Coulomb interactions among charged particles play an important 
role in high-intensity and high-brightness beam physics since such effects can 
cause beam quality degradation, halo formation, and even particle losses. In order 
to study the space-charge effects in the charged particle beam self-consistently, 
one needs to solve the 3D Poisson equation at each time step with the evolving 
particle density distribution. When the beam (e.g. electron beam) energy in-
creases, in the beam frame computational domain, the longitudinal to transverse 
aspect ratio becomes larger and larger due to the relativistic effect. In such a case, 
an integrated Green’s function method was developed and showed to be more 
effective than the standard Green’s function method to solve the 3D Poisson 
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equation subject to open boundary conditions since it does not require resolving 
the variation of the Green’s function through the computational domain [1]. In 
recent years, this method has been adopted in a number of particle accelerator 
beam dynamics codes for the self-consistent simulation of the space-charge effects 
[2]-[11]. However, there is no publication on how this method is implemented. 
Direct implementation of the mathematical expression of the integrated Green’s 
function method can result in substantially more computational cost. In this pa-
per, we report on an efficient implementation method that reduces the computa-
tional cost by more than a factor 50 and alternative expressions that avoid cancel-
lation errors under certain extreme conditions. 

2. Integrated Green’s Function Solution to 3D Poisson’s  
Equation 

The electric potential φ  of the space-charge fields satisfies the following Pois-
son’s Equation: 

 2

0

ρφ∇ = −


 (1) 

where ρ  is the charge density distribution function, and 0  is the permittivity 
in vacuum. The solution of the above Poisson’s Equation subject to the 3D free 
space open boundary condition can be written as: 

 ( ) ( ) ( )
0

1, , , , , , d d d
4

x y z G x x y y z z x y z x y zφ ρ′ ′ ′ ′ ′ ′ ′ ′ ′= − − −
π ∫∫∫

 (2) 

where the Green’s function G is given by: 

 ( )
( ) ( ) ( )2 2 2

1, ,G x x y y z z
x x y y z z

′ ′ ′− − − =
′ ′ ′− + − + −

 (3) 

To compute the above integral numerically, we define a computational domain 
containing the beam with a range of ( )0, xL , ( )0, yL  and ( )0, zL , and discre-
tize each dimension using xN , yN  and zN  grid points. Then, we decompose 
this integral in the entire computational domain as a summation of x y zN N N× ×  
small cell integrals with each grid point located at the center of the cell. 
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G x x y y z z x y z

φ

ρ

′ ′ ′

′ ′ ′− − −
′ ′=

+

=

+

′=

+
′ ′ ′=

π

′ ′ ′ ′ ′ ′× − − −

∑∑∑∫ ∫ ∫  (4) 

where ( )1x x xh L N= − , ( )1y y yh L N= − , and ( )1z x zh L N= − . If we assume 
that the charge density is constant within each cell centered at the grid point 
( ), ,i j kx y z , i.e. ( ) ( ), , , ,i j kx y z x y zρ ρ′ ′ ′ = , from the above equation, the electric 
potential on this grid point can be approximated as: 

 ( ) ( ) ( )
1 1 10

1, , , , , ,
4

yx zNN N

i j k i i j j k k i j k
i j k

x y z G x x y y z z x y zφ ρ′ ′ ′ ′ ′ ′
′ ′ ′= = =

= − − −
π ∑∑∑

 (5) 

where ( )1i xx i h= − , ( )1j yy j h= − , and ( )1k zz k h= − , and the effective Green 
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function G  is given as: 

 
( )

( )2 2 2

2 2 2

, ,

d d d , ,i x j y k z

i x j y k z

i i j j k k

x h x h x h
i j kx h x h x h

G x x y y z z

x y z G x x y y z z′ ′ ′

′ ′ ′

′ ′

+ + +

′

− − −

− − −

′ ′ ′ ′ ′ ′= × − − −∫ ∫ ∫
 (6) 

where xh , yh , and zh  are cell size in each dimension, respectively. The above 
integral can be calculated analytically in a closed form for the Green’s function 
given in Equation (3) as [12]: 
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 (7) 

where 

 
( ) ( ) ( ) ( )

2 2 2

, , ln ln ln

arctan arctan arctan
2 2 2

f x y z yz x r xz y r xy z r

z xy y xz x yz
zr yr xr

= + + + + +

    − − −    
    

 (8) 

where 2 2 2r x y z= + + . With the effective Green’s function G , the summa-
tion of Equation (5) can be computed effectively using the FFT method [1] [13]. 

3. Efficient Implementation 

The effective Green’s function in the above equation involves eight f-function 
evaluations. The range of the variables in the function f covers the range from 

xL−  to xL , yL−  to yL , and zL−  to zL , which suggests two times grid 
points are needed in each dimension for this function. However, a careful check 
of Equation (6) suggests that the effective Green’s function should have the same 
symmetry property as the original Green’s function, i.e., changing the sign of an 
individual variable in Equation (7) will not affect the value of the function. This 
can be seen from Equation (6),  
( ) ( ) ( )3 3 3, , , ,i i j j k k i i j j k k x y z x y zG x x y y z z G x x y y z z h h h O h h h′ ′ ′ ′ ′ ′− − − = − − − +  or  

by using Equation (7) and ( ) ( ) ( )2 2, , , , lnf x y z f x y z yz y z− = − + +  results in 
( ) ( ), , , ,G x y z G x y z− =  for x (same applies to y and z). Hence, only the first 

quadrant of the effective Green’s function is needed. This saves the computational 
cost by about a factor of eight. Furthermore, by computing the f function on one 
corner of the integrated cell for an extended grid (i.e., 1N +  instead of N) 

( ) ( ), , 2 , 2, 2tmp
i x j y k zG i j k f x h y h z h= − − −  for 1, , 1xi N= + ,  

1, , 1yj N= + , and 1, , 1zk N= + , the f function values at the other seven cor-
ners of the cell in the Equation (7) can be obtained from the shift of this function 
on the grid. For example, the f function value at the upper right corner of the cell 
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will be ( ) ( )2, 2, 2 1, 1, 1tmp
i x j y k zf x h y h z h G i j k+ + + = + + +  for  

1, , xi N=  , 1, , yj N=  , and 1, , zk N=  . Only one f function evaluation is 
needed instead of eight function evaluations in Equation (7). This saves the com-
putational cost by another factor of eight. In total, the efficient implementation 
can save the computing time of the effective Green’s function by more than a fac-
tor of 60 compared with the direct brute force implementation. An illustration of 
this implementation in Fortran90 is given in Figure 1. 

 

 
Figure 1. The Fortran90 implementation of the effective Green’s function calculation. 

 
As a test of the practical performance of the above implementation, we meas-

ured the computing time of the above implementation and the computing time of 
the brute force implementation with a variety of problem sizes N N N× × . Fig-
ure 2 shows the speedup of the above implementation as a function of one-di-
mensional grid points in the real application. More than 50 speedup is achieved 
for problem sizes greater than 64 × 64 × 64. 

From the above implementation, it is seen that the variable x, y, z in Equation 
(8) will be less than zero only when 0 1i = , or 0 1j = , or 0 1k = . The negative 
value of the variable could cause cancellation error in the evaluation of x r+ , or 
y r+ , or z r+ . In some extreme applications, e.g., with very high electron beam 

energy, the longitudinal bunch length in the beam frame can be much larger than 
the transverse beam size. This results in the z r  and a large cancellation error 
in z r+  and even overflow of ( )ln z r+  for 0z < . 

The aforementioned cancellation error is due to the subtraction of two close 
real numbers on finite precision digital computers. This numerical cancellation 
error can be mitigated by either increasing the precision of each number on a 
computer or by using the following alternative expressions to replace the original 
summation in the Equation (8) or the Equation (8) itself. 
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Figure 2. The speedup of the efficient implementation as a function of one-dimensional 
grid points. 

 
Firstly, we can declare the variables x, y, z, and r in the above implementation 

as quadruple precision. This substantially increases the accuracy of each variable 
on a digital computer and reduces the cancellation error due to the double-preci-
sion representation of a variable. 

Secondly, by making use of the function relationship  

( ) ( )2arcsinh ln 1x x x= + + , neglecting the terms that do not contribute to the 

field calculation (i.e. ( ) ( ) ( )2 2 2 2 2 21 1 1ln ln ln
2 2 2

yz y z xz x z xy x y+ + + + + ), the 

Equation (8) can be rewritten as: 

 

( )
2 2 2 2

2

2 2

2 2

, , arcsinh arcsinh

arcsinh arctan
2

arctan arctan
2 2

x yf x y z yz xz
y z x z

z z xyxy
zrx y

y xz x yz
yr xr

   
 = +    + +  
    + −     + 
   − −   

  

 (9) 

This equation avoids the sum of two close but opposite sign variables in the 
original equation and the resultant cancellation error. 

Thirdly, one can define a small tolerance number   (e.g. 10−10) and use the 
Taylor expansion to obtain the following approximation: 

 

2 2

2 2

2 2

1 , for
2

1 , for
2

1 , for
2

y zx r x x x r
x

x zy r y y y r
y

x yz r z z x r
z

+
+ = + + + <

+
+ = + + + <

+
+ = + + + <







 (10) 
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The above approximation is used in the natural logarithm function to mitigate 
the cancellation error. 

Fourthly, one can rewrite the expression in the natural logarithm function of 
Equation (8) as: 

 

2 2

2 2

2 2

, for 0

, for 0

, for 0

y zx r x
r x

x zy r y
r y

x yz r z
r z

+
+ = <

−
+

+ = <
−

+
+ = <

−

 (11) 

The above expression turns the original summation of two opposite sign varia-
bles into an expression that includes subtraction of these variables and avoids the 
cancellation error. 

4. A Benchmark Example 

As a test, we used a 100 pC electron beam with a 3D Gaussian density distribution 
and computed the electric fields in the beam frame from all of the above schemes 
and from a semi-analytical solution. The semi-analytical electric potential in the 
rest beam frame for a Gaussian density distribution is given by [14]: 

 ( )
( ) ( ) ( )

( )( )( )

2 2 2 2 2 2

2 2 2 2 2 22 1 2 1 2 1

0 2 2 2 2 2 20

2 e e e, , d
4 1 1 1

x y z

x y z

x y z

Qx y z

λ λ λ

λ σ λ σ λ σ

φ λ
λ σ λ σ λ σ

− − −

+ + +
∞

=
π π + + +

∫
 (12) 

where Q is the total charge of the beam, and xσ , yσ , zσ  are the RMS sizes of 
the beam in each dimension. In this test, we assumed that 0.5x yσ σ= =  mm 
and 1zσ =  mm. We varied electron beam kinetic energy so that the electron 
beam longitudinal bunch length zγσ  in the beam frame increased with the increase 
of beam energy. This increases the longitudinal-to-transverse aspect ratio with the 
increase of beam energy in the beam frame. We used 129 × 129 × 257 grid points to 
solve the Poisson equation using the above integrated Green’s function method in 
the rest beam frame. Electric fields are numerically computed from E φ= −∇  in 
this frame using a second-order finite difference approximation. 

Figure 3 shows horizontal and longitudinal electric fields as a function of lon-
gitudinal coordinate z in the beam frame from the semi-analytical solution and 
from the original integrated Green’s function method at 100 GeV electron beam 
energy. It is seen that the electric fields from the numerical integrated Green’s 
function solution agree with those from the semi-analytical solution very well. 

In order to check the valid regime of the integrated Green’s function method, 
we varied the electron beam kinetic energy from 100 GeV to 100 TeV. This results 
in about 2 × 105 to 2 × 108 longitudinal-to-transverse aspect ratio for the compu-
tational cells in the rest beam frame. Figure 4 shows the maximum horizontal 
relative electric field error and the maximum longitudinal relative electric field 
error as a function of the electron beam kinetic energy using the original double  
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Figure 3. Horizontal electric field Ex (top) and longitudinal electric field Ez (bottom) as a 
function of longitudinal coordinate z in the beam from the semi-analytical solution (ma-
genta) and from the integrated Green’s function method (green) at 100 GeV electron beam 
energy. There are two lines in each plot sitting on top of each other. 

 
precision logarithm integrated Green’s function (IGF), the quadruple precision 
logarithm IGF, the arcsinh IGF, the approximated logarithm IGF, and the rewrit-
ten logarithm IGF. Here, the differences between the numerical solutions from 
the integrated Green’s function method and the semi-analytical solutions were 
calculated on the three-dimensional 33 × 33 × 65 grid points for both the hori-
zontal electric field and the longitudinal electric field. These differences are nor-
malized by the maximum values of the horizontal electric field and the longitudi-
nal field from the semi-analytical model, respectively, to attain the 3D relative 
errors. The maximum relative errors are attained from the relative errors on the 
3D grid. It is seen that all five integrated Green’s function implementations yield 
nearly the same less than 0.1% relative errors up to 50 TeV beam energy. This is  

probably due to the fact that the cancellation error occurs only 
2
zhz = −  and  
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Figure 4. The maximum horizontal relative electric field error (top) and the maximum 
longitudinal relative electric field error (bottom) as a function of the electron beam kinetic 
energy using the original double precision logarithm IGF (plus), the quadruple precision 
logarithm IGF (cross), the arcsinh IGF (star), the approximated logarithm IGF (empty 
square), and the rewritten logarithm IGF (solid square). 

 
has a small contribution to the total 3D summation. At the 100 TeV electron beam 
energy, the original logarithm integrated Green’s function fails due to the cancel-
lation error in the evaluation of z r+  and the resultant overflow of the logarithm 
function. The other four mitigation schemes all work well and yield less than 0.1% 
relative errors. The computational cost of the quadruple precision implementa-
tion of the IGF is the highest (more than 10 times the original IGF) due to the lack 
of direct hardware support for such operations. The computational cost of the 
arcsinh implementation of the IGF is about a factor of two of that of the original 
IGF. The computational costs of the approximated IGF and the rewritten IGF im-
plementations are close to that of the original IGF, while the rewritten IGF imple-
mentation does not need to specify any tolerance number. 
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5. Conclusion 

In this paper, we present an efficient implementation of the integrated Green’s 
function method to solve the 3D Poisson’s Equation in a large aspect ratio com-
putational domain subject to the open boundary conditions. Our implementation 
suggests more than a factor of 50 reduction of computational cost compared with 
the direct brute force implementation. Furthermore, several alternative expres-
sions are proposed to avoid cancellation errors and work well under extreme con-
ditions. This implementation can have applications in many fields, such as high-
brightness beam physics in particle accelerators, plasma physics, and micromag-
netics, where the solution of 3D Poisson equation in the large aspect ratio com-
putational domain is needed. 
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