
Journal of Service Science and Management, 2024, 17, 401-411 
https://www.scirp.org/journal/jssm 

ISSN Online: 1940-9907 
ISSN Print: 1940-9893 

 

DOI: 10.4236/jssm.2024.175022  Sep. 4, 2024 401 Journal of Service Science and Management 
 

 
 
 

Contour Approach for Analysis of Minimum 
Regions for the Economic Statistical Design of 
X-Bar Control Charts 

Santiago-Omar Caballero-Morales1, Abdur Rahim2* 

1Department of Logistics and Supply Chain Management, Universidad Popular Autonoma del Estado de Puebla, UPAEP,  
Puebla, Mexico  
2Faculty of Business Administration, University of New Brunswick, Fredericton, Canada 

 
 
 

Abstract 
Visualization of the patterns or behaviors of complex functions is an im-
portant approach to identifying their solution spaces. This approach can lead 
to improving the design of search algorithms for optimization purposes. This 
paper presents a 2D visualization method based on minimum cost scores 
(MCS) to identify the most likely regions to find optimal values for the eco-
nomic statistical design of X-bar control charts. Uniform sampling was con-
sidered for the analysis of the cost function of Rahim and Banerjee (1993). El-
liptical regions were found to model the minimum regions defined by MCS 
values estimated for this cost function through different values of sample size 
(n), length of the sampling interval (h) and coefficient of the control chart’s 
limits (L). This method was assessed by finding the optimal set of n and h 
values within these elliptical regions. Optimal values reported in the literature 
with Genetic Algorithms (GA) were considered for this case. It was observed 
that the optimal values were located within the boundaries of the elliptical re-
gions and were associated with sub-regions with the highest MCS values. This 
confirms the suitability of this approach to obtain the a-priori estimation of 
the solution space. 
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1. Introduction 

Visualization is an important approach to understanding the complex relation-
ships between variables and objective functions to improve data analysis (Wang 
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et al., 2010; Goel et al., 2001; Wang & Saunders, 1999). For combinatorial prob-
lems, visualization can improve the understanding of the static and dynamic 
characteristics of their solution spaces (Caballero-Morales, 2014; Caballe-
ro-Morales & Rahim, 2015). Consequently, visualization can be applied to un-
derstand the search mechanisms of solving algorithms and improve their per-
formance (Halim et al., 2006; Halim & Yap, 2007; Pérez et al., 2013). 

In this work, the economic statistical design (ESD) problem for X-bar control 
charts is considered. A control chart is defined by three main parameters: the 
sample size (n), the length of the sampling interval (h) and the coefficient of the 
chart’s control limits (L). The ESD combinatorial problem consists in finding the 
optimal values for n, h and L, that globally minimize costs (modeled by a cost func-
tion) considering economic and statistical restrictions (Rahim & Banerjee, 1993). 

Previously, full three-dimensional (3D) visualizations were performed to un-
derstand the dynamics of cost function models with general failure distribution 
(Caballero-Morales, 2014) and non-normality (Caballero-Morales & Rahim, 
2015) for the ESD problem. In this work, a general contour approach is pro-
posed to identify bi-dimensional (2D) minimum regions for the ESD problem. 
The estimation of minimum cost scores (MCS) is defined to obtain the 2D visu-
alization of the minimum regions. It is expected that this approach can lead to 
improvements in the search mechanisms of solving algorithms to obtain the opti-
mal chart parameters. In contrast to a 3D visualization (Caballero-Morales, 2014; 
Caballero-Morales & Rahim, 2015) the proposed MCS 2D visualization can be 
computed faster, improving its practical use. 

The present paper is structured as follows: in Section 2 an overview of the cost 
function model for the ESD of X-bar control charts is presented. This overview 
includes a description of reference data sets for the assessment of the MCS 2D 
visualization approach which is described in Section 2. Then, in Section 3 the 
contour-based MCS 2D visualizations are presented and discussed for each refer-
ence data set. Finally, in Section 4 the conclusions and future work are presented. 

2. Materials and Methods 

In this work the cost function model of Rahim and Banerjee (Rahim & Banerjee, 
1993) with Gamma failure distribution and uniform sampling was considered. The 
objective function of this cost model consists of minimizing F(n, h, L) = 
E(C)/E(T), where E(T) is the Expected Cycle Length, and E(C) is the total Ex-
pected Cost per Cycle (Rahim & Banerjee, 1993; Chih et al., 2011). These costs 
are defined as follows: 
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where ( )2 Lα = φ −  and ( ) ( )1 n L n L β = − φ δ − + φ −δ −  . If αU and pL rep-
resent the maximum and minimum values for the type I and type II error prob-
abilities respectively, the minimization of F(n, h, L) is subject to the following 
restrictions: α ≤ αU, 1 − β ≥ pL, n ≥ 1, h ≥ 0 and L ≥ 0. Constant elements of the 
cost function identify time and economic costs that are described as follows 
(Rahim & Banerjee, 1993; Chih et al., 2011): 
● Z0 is the expected search time associated with a false alarm (false positive de-

tection of the “out-of-control” state) while Z1 is the expected search and re-
pairing time associated with a true alarm. 

● a and b are the fixed cost per sample and the cost per unit sample respectively. 
● D0 is the expected production cost (per hour) of nonconforming items if the 

process is “in control” state. D1 is the expected production cost of noncon-
forming items if the process is in an “out-of-control” state (D1 > D0). 

● W is the expected cost of searching and repairing an assignable cause of fail-
ure (restoring the process to an “in control” state). Y is the expected cost of a 
false alarm (false positive detection of the “out-of-control” state). 

● Finally, δ is the detected shift size of the process and λ is the scale parameter 
of the failure distribution which (in this case) is Gamma (λ, 2). 

Reference Data Sets 

As presented in (1) and (2) the cost model considers a total of 12 independent 
variables: Z0, Z1, D0, D1, W, Y, a, b, δ, αU, pL, and λ. To obtain a general overview 
of the behaviour of the cost function model, sets of value levels for these varia-
bles were considered. These value levels were selected according to the data pre-
sented in (Chih et al., 2011) where representative combinations of these levels 
were defined by an L27 orthogonal array. Table 1 presents the value levels de-
fined for each independent variable while Table 2 presents the L27 orthogonal 
array (Chih et al., 2011). 
 
Table 1. Value levels for the independent variables of the cost function model. 

Variable Level 1 Level 2 Level 3 

Z0 0.025 0.25 0.5 

Z1 0.1 1.0 10 

D0 25 50 100 

D1 475 950 1900 

W 550 1100 2200 

Y 250 500 1000 

a 10 20 40 

b 2.11 4.22 8.44 

δ 0.25 0.50 1.00 

αU 0.01 0.05 0.1 

pL 0.85 0.9 0.95 

λ 0.025 0.05 0.1 
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In (Chih et al., 2011), the assessment of PSO (Particle Swarm Optimization) 
was presented as a promising method for solving the ESD problem for X-bar 
control charts under (1) and (2). The performance of GA (Genetic Algorithms) 
was presented for comparison purposes. This was important for the present 
work as the results reported in (Chih et al., 2011) could be used for assessment of 
the regions described by the proposed 2D visualization method. Hence, Table 2 
includes the best n, h, and L values estimated by the GA method for each com-
bination of the L27 orthogonal array (Chih et al., 2011). These reference data 
sets are the basis for the discussion presented in Section 3. 

 
Table 2. Orthogonal array and best parameters for the control chart with genetic algorithms (data obtained from Chih et al., 2011). 

Trial Z0 Z1 D0 D1 W Y a b δ αU 1 − β λ n h L E(C)/E(T) 

1 0.025 0.1 25 475 550 250 10 2.11 0.25 0.01 0.85 0.025 209 12.1305 2.5758 110.293 

2 0.025 0.1 25 475 1100 500 20 4.22 0.50 0.05 0.90 0.050 43 6.5401 1.9600 124.138 

3 0.025 0.1 25 475 2200 1000 40 8.44 1.00 0.10 0.95 0.100 17 5.3109 2.3862 213.903 

4 0.025 1.0 50 950 550 250 10 4.22 0.50 0.05 0.95 0.100 52 3.4424 1.9600 213.171 

5 0.025 1.0 50 950 1100 500 20 8.44 1.00 0.10 0.85 0.025 10 4.4158 1.9858 120.963 

6 0.025 1.0 50 950 2200 1000 40 2.11 0.25 0.01 0.90 0.050 239 7.2545 2.5758 259.434 

7 0.025 10.0 100 1900 550 250 10 8.44 1.00 0.10 0.90 0.050 10 2.0754 1.8181 177.653 

8 0.025 10.0 100 1900 1100 500 20 2.11 0.25 0.01 0.95 0.100 286 3.8120 2.5758 334.421 

9 0.025 10.0 100 1900 2200 1000 40 4.22 0.50 0.05 0.85 0.025 39 4.3231 1.9774 218.452 

10 0.250 0.1 50 1900 550 500 40 2.11 0.50 0.10 0.85 0.050 41 2.3956 1.9233 190.626 

11 0.250 0.1 50 1900 1100 1000 10 4.22 1.00 0.01 0.90 0.100 15 1.2664 2.5758 235.198 

12 0.250 0.1 50 1900 2200 250 20 8.44 0.25 0.05 0.95 0.025 208 12.9624 1.9600 364.356 

13 0.250 1.0 100 475 550 500 40 4.22 1.00 0.01 0.95 0.025 18 7.2209 2.5758 139.278 

14 0.250 1.0 100 475 1100 1000 10 8.44 0.25 0.05 0.85 0.050 144 19.1449 1.9600 272.858 

15 0.250 1.0 100 475 2200 250 20 2.11 0.50 0.10 0.90 0.100 35 3.7494 1.6449 254.619 

16 0.250 10.0 25 950 550 500 40 8.44 0.25 0.05 0.90 0.100 169 8.5765 1.9600 294.623 

17 0.250 10.0 25 950 1100 1000 10 2.11 0.50 0.10 0.95 0.025 65 5.2409 2.3863 90.688 

18 0.250 10.0 25 950 2200 250 20 4.22 1.00 0.01 0.85 0.050 14 2.4755 2.5758 117.582 

19 0.500 0.1 100 950 550 1000 20 2.11 1.00 0.05 0.85 0.100 18 1.7297 2.7208 201.686 

20 0.500 0.1 100 950 1100 250 40 4.22 0.25 0.10 0.90 0.025 138 10.8119 1.6449 235.680 

21 0.500 0.1 100 950 2200 500 10 8.44 0.50 0.01 0.95 0.050 72 8.4034 2.5758 310.532 

22 0.500 1.0 25 1900 550 1000 20 4.22 0.25 0.10 0.95 0.050 174 6.1854 1.6449 311.456 

23 0.500 1.0 25 1900 1100 250 40 8.44 0.50 0.01 0.85 0.100 53 3.1141 2.5758 390.370 

24 0.500 1.0 25 1900 2200 500 10 2.11 1.00 0.05 0.90 0.025 15 1.8801 2.5090 101.673 

25 0.500 10.0 50 475 550 1000 20 8.44 0.50 0.01 0.90 0.025 60 14.1236 2.5758 121.502 

26 0.500 10.0 50 475 1100 250 40 2.11 1.00 0.05 0.95 0.050 15 3.8802 2.1575 94.864 

27 0.500 10.0 50 475 2200 500 10 4.22 0.25 0.10 0.85 0.100 116 7.7401 1.6449 209.789 
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3. Results 
3.1. The MCS 2D Contour Algorithm 

The following steps were performed to process the MCS 2D visualization data 
for the contour plots of the minimum regions for F(n, h, L) = E(C)/E(T): 

1) Initialize the range vectors for the different values of n, h, and L. In this 
case, 20 different values within the range {1, 325} and {1, 20} were considered for 
n and h respectively. These values were stored in the vectors rang_n and rang_h. 
For L, 14 different values were considered. These were stored in the vector 
rang_L. 

2) Estimate E(C)/E(T) for each set of n, h, and L values defined by rang_n, 
rang_h and rang_L. This was performed as follows: 

a) For each set of n, h, and L values, E(C)/E(T) was estimated. This led to the 
creation of a square matrix of E(C)/E(T) values for a particular L value. 

b) Each E(C)/E(T) matrix is stored within a three-dimensional array called 
costs. While the x and y axes are associated to the values of rang_h and rang_n 
respectively, the z-axis is associated to the values of rang_L. 

3) Normalize the values within the array costs to pixel values. This was per-
formed in two steps: 

a) Normalize the values of costs for each L to {0, 1}: 

( )
( ) ( )

costs min costs
Vnorm

max costs min costs
L L

L
L L

−
=

−
    (3) 

b) Scale the normalized values of costs for each L (VnormL) to {1, 255} (pixel 
values): 

 ( )( )255 1 Vnorm 1.L LPix = − +  (4) 

4) Keep only the pixels that represent minimum cost values. If a pixel in PixL 
has a magnitude higher than 1.0 then it gets a constant value of 0; however, if it 
has a magnitude less or equal to 1.0 then it gets a constant value of 1.0. 

5) Estimation of minimum cost regions through all L values (estimation of 
MCS values).  

This was performed by adding all normalized (and scaled) PixL matrices 
through all L values (z-axis). This led to the creation of a single matrix called 
minimum_regions where the region is most likely to contain overall minimum 
cost values have higher values of minimum cost scores (MCS) which are given 
by the cumulative sum of PixL’s. 

The minimum_regions matrix presents the following advantages: (a) it only 
contains integer MCS values within the range {0, 14}, (b) its numerical data 
(MCS values) can be used directly by the solving algorithm to adjust the limit 
restrictions for the chart’s parameters (and thus, reduce the search space), (c) it 
can be visualized in the 2D domain with any contour or surface visualization 
method. Figure 1(a) presents an example of the minimum_regions matrix in its 
numerical form (MCS values) while Figure 1(b) and Figure 1(c) present two 
different contour visualizations of the same matrix. 
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(a) 

 
(b) 

 
(c) 

Figure 1. Examples of numerical data (MCS) and 2D contour visualizations from a 
minimum_regions matrix. (a) Numerical Data (MCS); (b) Contour Visualization 1; (c) 
Contour Visualization 2 (Surface). 
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As presented in Figure 1(b) and Figure 1(c), minimum regions that were 
consistent through L have the highest numerical data (highest MCS values). 
These regions are represented with dark red tones. Blue tones represent mini-
mum regions that were observed just for very few (if any) values of L. In the fol-
lowing section, the visualization of the minimum regions for all the cases (trails) 
of Table 2 is presented and discussed. 

3.2. MCS 2D Contour Plots 

 
Figure 2. MCS 2D contour plots for the trails of the orthogonal array (Part I). 
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Figure 2 and Figure 3 present the MCS 2D visualization contour plots for the 
minimum_regions matrix of each trail from the L27 orthogonal array (see Table 
2). The x-y coordinate points defined by the best n-h values reported in Table 2 
(Chih et al., 2011) are plotted within the contour plots. These points are identi-
fied with the symbol “O”. 
 

 
Figure 3. MCS 2D contour plots for the trails of the orthogonal array (Part II). 
 

The contours of the minimum regions presented in Figure 2 and Figure 3 
were observed to be elliptical contours. Figure 4 presents the ten elliptical con-
tours that were identified to cover the minimum regions of the 27 trails. These 
elliptical contours were labeled from A-to-I. Note that, although C* is the same 
size as C, C* is located closer to the y-axis (n). Table 3 presents the elliptical 
contours that model the minimum regions of each trail. 
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Figure 4. Elliptical contours that cover the MCS 2D minimum regions of the cost function for each trail of the L27 array. 
 

Table 3. Elliptical contours for each trail. 

Trail 
Elliptical 
Contour 

Trail 
Elliptical 
Contour 

Trail 
Elliptical 
Contour 

1 C 2 H 3 D 

4 E 5 D 6 B 

7 I 8 A 9 H 

10 A 11 I 12 F 

13 D 14 G 15 E 

16 C* 17 H 18 I 

19 I 20 C* 21 H 

22 B 23 E 24 I 

25 G 26 I 27 C* 

 
If the search mechanisms of a solving algorithm are only focused on the 

minimum regions with the highest MCS values, then the size of these regions 
(and of the search space) can be reduced further. As presented in Figure 2 and 
Figure 3, for most of the trials, the best n-h pairs (as presented in Table 2) were 
located within the minimum regions with the highest MCS values. This confirms 
the advantages and suitability of the proposed approach to improve the search 
mechanisms of solving algorithms. 

4. Discussion 

This paper presented a fast estimator of the solution space for a cost function 
model for the economic statistical design (ESD) of X-bar control charts. This es-
timator introduced the concept of 2D visualization of minimum cost scores 
(MCS) to illustrate the patterns of the cost function model for the ESD problem. 

https://doi.org/10.4236/jssm.2024.175022


S.-O. Caballero-Morales, A. Rahim 
 

 

DOI: 10.4236/jssm.2024.175022 410 Journal of Service Science and Management 
 

It was observed that the minimum regions of the cost function for different ref-
erence data sets could be modelled with elliptical boundaries. Also, it was ob-
served that sub-regions with the highest MCS were more likely to contain the 
optimal values for the chart’s parameters. Hence, this approach can be integrated 
within a heuristic method to perform an initial sampling of the solution space, 
making the search process more specific. 

Nevertheless, more work must be performed to measure the suitability of this 
approach. The following points are considered for future work: 
● Explore alternatives to (or improvements on) the metric of minimum cost 

scores (MCS). Because this metric can be seen as a coding metric, other met-
rics can be considered for representation of minimum values for a cost func-
tion model. This could make the search processes of heuristic and ex-
act-solving algorithms faster. 

● Apply the MCS 2D visualization approach to track the search performance of 
solving algorithms. 
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