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Abstract 
Due to the dynamic stiffness characteristics of human joints, it is easy to cause 
impact and disturbance on normal movements during exoskeleton assistance. 
This not only brings strict requirements for exoskeleton control design, but 
also makes it difficult to improve assistive level. The Variable Stiffness Actua-
tor (VSA), as a physical variable stiffness mechanism, has the characteristics 
of dynamic stiffness adjustment and high stiffness control bandwidth, which 
is in line with the stiffness matching experiment. However, there are still few 
works exploring the assistive human stiffness matching experiment based on 
VSA. Therefore, this paper designs a hip exoskeleton based on VSA actuator 
and studies CPG human motion phase recognition algorithm. Firstly, this pa-
per puts forward the requirements of variable stiffness experimental design 
and the output torque and variable stiffness dynamic response standards based 
on human lower limb motion parameters. Plate springs are used as elastic el-
ements to establish the mechanical principle of variable stiffness, and a small 
variable stiffness actuator is designed based on the plate spring. Then the cor-
responding theoretical dynamic model is established and analyzed. Starting 
from the CPG phase recognition algorithm, this paper uses perturbation the-
ory to expand the first-order CPG unit, obtains the phase convergence equa-
tion and verifies the phase convergence when using hip joint angle as the input 
signal with the same frequency, and then expands the second-order CPG unit 
under the premise of circular limit cycle and analyzes the frequency conver-
gence criterion. Afterwards, this paper extracts the plate spring modal from 
Abaqus and generates the neutral file of the flexible body model to import into 
Adams, and conducts torque-stiffness one-way loading and reciprocating 
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loading experiments on the variable stiffness mechanism. After that, Simulink 
is used to verify the validity of the criterion. Finally, based on the above crite-
rions, the signal mean value is removed using feedback structure to complete 
the phase recognition algorithm for the human hip joint angle signal, and the 
convergence is verified using actual human walking data on flat ground. 
 

Keywords 
Variable Stiffness Actuator, Plate Spring, CPG Algorithm Convergence  
Criterion, Human Motion Phase Recognition, Simulink and Adams  
Co-Simulation 

 

1. Introduction 

The research of human exoskeleton and prosthetics is developing rapidly these 
years. The number of annual published articles in the field has tripled compared 
to 10 years ago [1]. One of the research hotspots is how to ensure safe, smooth, 
and effective human-machine interaction in exoskeletons. Classical methods such 
as the impedance/admittance assistive control algorithm are widely used in assist-
ing the human body [2] [3], and their mechanical structure is mostly driven by 
direct drive or in-series spring structure design, which rely entirely on the end 
torque sensor to measure and filter for control. It often shows strong hysteresis to 
the human body structure, and insufficient bandwidth for disturbance response 
to human body motion dynamics, which cannot provide an effective experimental 
platform for further research on stiffness matching issues. Advanced controllers 
are often identified as showing considerable heterogeneity, each one suited for a 
specific kind of application, target population and performance target, being not 
universal enough and lacking the value of comparative study [4]. 

In recent years, there have been more and more design cases of variable stiffness 
actuators (VSA), all of which can achieve physical variable stiffness or impedance. 
Compared with other driving structures, the advantages of VSA structures are 
their robustness [5], energy efficiency [6], and adaptability to complex tasks [7]. 
Evidence of these advantages is human joint, which is a typical representative of 
antagonistic variable stiffness actuators, works far better than current machine 
joint drives in these properties. According to their working principles, variable 
stiffness structures can be mainly divided into three types: antagonistic, variable 
transmission ratio, and material physical properties. One of the typical uses of 
antagonistic structures is taken out by the Georgia Institute of Technology [8], 
which uses a nonlinear spring with a force-deformation curve that exhibits a par-
abolic shape, built with a linear spring and cam structure, and is driven antago-
nistically with two stepper motors. The typical structures of variable transmission 
ratio type are Aw AS-I and Aw AS-II developed by the Italian Institute of Tech-
nology [9] [10], which uses a torsion spring as an elastic element, and controls 
stiffness by controlling the force arm r of the torsion spring. This type of structure 
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also has typical representatives such as VS-Joint, QA-Joint, and FSJ developed by 
the German Aerospace Center [11]-[13]. The advantage of this type of structure 
is that the output and stiffness control are usually driven by motors separated from 
each other, with high energy efficiency and a large stiffness adjustment range. 
However, the volume of the structure is often relatively large, the quality is also 
relatively high, the internal inertia of the motor is high when outputting, and it is 
difficult to achieve an arbitrary rotation angle as the motor. Material physical 
property type structures use the self-physical properties of the elastic element, rep-
resented by the Jack spring [14]. The stiffness is changed by controlling the work-
ing length of the spring by a rotating central axis extension and contraction of the 
spring. There are also typical structures that change the external stiffness by 
changing the working length of the plate spring, such as the arm structure de-
signed by Waseda University, which uses the sliding block to change the working 
range of the plate spring [13]. There are also methods that use a rotatable plate 
spring inside a spring to achieve variable stiffness [15] [16], and so on. 

Although there are many technical routes and corresponding achievements in 
structural design, the upper-level control required for VSA still has issues with 
real-time performance and stability that cannot be achieved. Currently, the upper 
limb control algorithm methods for calculation principles and starting points are 
mainly divided into four categories: based on human body models, based on ma-
chine learning calculations, based on sensor information feature points, and based 
on oscillator calculations [17]. The typical control algorithm based on human 
body models, such as that developed by the Harbin Institute of Technology, ob-
tains the pressure at the bottom of the foot through an optical motion capture 
system and force platform, and calculates the joint torque of the human lower 
limb through rigid-body inverse dynamics [18]. Based on this, David G. Lloyd and 
others from the University of Western Australia changed the parameters of the 
muscle model by changing the characteristic values of the electromyographic sig-
nals to simulate human muscle force, and then solved the joint torque of the hu-
man body [19]. Angelos Karatsidis and his colleagues from Delft University of 
Technology in the Netherlands measured human motion using an inertial meas-
urement unit (IMU) and assisted the optical motion capture system with a force 
platform to calculate the joint torque of the human body [20]. This method is 
currently the most widely recognized approach, but it has higher requirements for 
equipment and sites, expensive equipment costs, and can only be used indoors. 
The control algorithm based on neural network calculation first began in 1993, 
when FRANCIS and others from the University of Catholic Chile used electromy-
ography (EMG) to estimate joint angles and joint torque of humans and machines 
[21], with accuracy up to 73%. In 2019, Fuzhou University only used 10 EMG 
signals in the lower body and joint signal sources to identify the joint torque of 
the lower limb of the human body with an accuracy rate of P > 0.9633 [22], and 
recent research is becoming more and more mature [23]-[25]. However, due to 
the limitations of EMG sensor fit and neural network transferability, the current 
practical application scenarios are still relatively narrow. The control algorithm 
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based on sensor information feature points has various types, such as in 2015, 
when Samsung Industrial University used the periodicity of the vertical accelera-
tion of the human torso during walking to identify human motion phases [26]. 
The NREL-Exo assistive exoskeleton developed by North Carolina State Univer-
sity determines the walking state of the human body by detecting joint angles and 
angular velocities [27]. The VariLeg exoskeleton assistive device developed by the 
Swiss Rehabilitation Engineering Laboratory obtains the current phase of the hu-
man body through feedback from the foot pressure sensor and joint angle and 
angular velocity [28]. In 2016, Harvard University designed a hip exoskeleton that 
identifies human motion phases using the maximum joint extension [29], and an 
ankle exoskeleton that uses ankle joint angular velocity zero points as phase iden-
tification feature points [30], respectively. L. Bergmann et al. provide an un-
scented Kalman filter (UKF) to estimate the joint torques the subject gives in to 
the exoskeleton with VSA [31]. It can be applied over the entire stiffness range of 
the VSAs and performs better than the common inverse dynamics approach, 
while requiring reidentification on each subject for accurate fitting. The oscillator-
based method is a phase recognition calculation method that uses CPG learning 
function (rather than the form of a rhythmic signal generated by CPG unit cou-
pling). As a newly emerged control method, although its stability has not yet been 
determined, it has advantages of simple and accurate use in the recognition of 
human body movements with changing gait. Compared with methods based on 
sensor information feature points, CPG is widely present in vertebrates to control 
periodic movements, so external CPG and human internal CPG can construct in-
fluencing paths to make phase recognition reasonably possible. Samsung Poly-
technic College designed the world’s first exoskeleton based on CPG assistance 
[32], which uses an adaptive oscillator to learn human joint movements, estimate 
the phase with no delay, and finally provide percentage assistance based on the 
statistical torque curve. Apart from Samsung, Arizona State University has used 
the Combination of Central Pattern Generator and Human Intent calculation to 
design a hip exoskeleton assistive device [33]. Currently, there is limited literature 
on the accuracy of CPG phase calculation, but from the results presented in the 
current literature [34] [35], it has some practical value, but further exploration is 
still needed. Also. there is currently no research on using VSA to explore assistive 
human stiffness matching experiments. So, this paper will start with the human 
lower limbs that have been more researched, design a hip exoskeleton based on 
VSA, and study the CPG human motion phase recognition algorithm. 

The rest parts of this paper are arranged as follows: In the second section, this 
paper establishes the performance indicators of the variable stiffness human-as-
sisted experimental apparatus, and then uses two motors to drive a four-linkage 
mechanism together, and uses a plate spring as the elastic element to establish the 
principle of variable stiffness and complete the main parameter design. According 
to the main structure parameters, the mechanism detailed design is completed, 
the dynamic model of the VSA mechanism is deduced and analyzed, and the non-
linear problems in the variable stiffness mechanism are identified, and the upper-
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level control structure is divided. In the third section, this paper uses perturbation 
theory to expand the first-order CPG unit and obtains the main equation for phase 
convergence under the same frequency and waveform. Then, the convergence of 
the hip joint angle signal during walking on flat ground is deduced. After deter-
mining the main equation, this paper establishes the main equation for CPG con-
vergence of external periodic signal frequency under the premise of circular limit 
cycle, analyzes the convergence criterion of frequency under circular limit cycle, 
and identifies the factors affecting the frequency convergence of hip joint angle. 
Furthermore, this paper extends these criteria to the convergence of CPG units 
under a complex limit cycle. In the fourth section, this paper uses Abaqus to build 
a plate spring elastic model, conducts one-way and reciprocating loading experi-
ments on the variable stiffness mechanism in the joint simulation of Simulink and 
Adams, analyzes the experimental data, and uses the above-derived criteria to es-
tablish the CPG phase recognition algorithm, remove the signal mean value 
through feedback structure and verify it using actual hip joint angle signals during 
walking. 

2. Design and Modeling of Variable Stiffness Actuator 
2.1. Definition and Design Requirements of Stiffness 

The design of variable stiffness actuators needs to consider the form and parame-
ter requirements of variable stiffness firstly. In the field of human-machine con-
tact, stiffness is divided into two types: intrinsic stiffness, which is manifested as 
having elastic elements internally and can exhibit displacement according to cor-
responding stiffness rules when subjected to external disturbances; and apparent 
stiffness, which depends on the control system to achieve a stiffness rule. When 
external force disturbances occur, the executing mechanism responds with a dis-
placement according to the control rule, thereby having a certain virtual stiffness 
from the outside perspective. The typical representative of apparent stiffness is 
motor impedance control. 

The biggest difference between these two types of stiffness is in their external 
response bandwidth. Intrinsic stiffness is a mechanical property of the structure’s 
interior, so the external bandwidth and response speed are much greater than the 
stiffness exhibited by the controlled action. Currently, apparent stiffness is often 
used to assist the human body in the human-machine coupling direction. Alt-
hough this method means that the structure and control method are easy to im-
plement, it often faces problems such as sensor information processing, actuator 
driving bandwidth, and control stability in the face of fast motion. It is difficult to 
keep stable and effective in various test environments. Therefore, this paper de-
signs variable stiffness starting from actuators with intrinsic stiffness. 

In addition, based on statistical parameters such as torque and angular velocity 
of human lower limb movement, the experiment is designed to be conducted at a 
walking speed of 5 km/h. At the same time, in combination with the current per-
formance indicators in the field of lower limb exoskeleton design, the remaining 
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performance indicator requirements are specified as follows: 
1) The torsional stiffness ranges from 30 N·m/rad to 150 N·m/rad; 
2) The change from maximum stiffness to minimum stiffness does not exceed 

0.1 s; 
3) The torque-bearing capacity at minimum stiffness is not less than 10 N·m; 
4) The maximum output torque is not less than 25 N·m; 
5) The minimum output angular velocity is not less than 10 rad/s. 
6) The volume should be as small as possible, and the internal rotational inertia 

should be lower than 0.2 kg·m2. 

2.2. Structural Principles and Mechanism Design 
Structural Principles 
According to the design requirements, the entire actuator uses a long strip plate 
spring as the elastic element to control the change of the internal stiffness prop-
erties of the actuator by controlling the contact point position of the plate spring. 
The entire mechanism is divided into front-end mechanism and an elastic output 
mechanism. The front-end mechanism uses a pair of servo motors to drive a four-
bar linkage mechanism together, making it rotate as a whole, controlled by the  

motor output common mode angle 1 2

2
φ φ+

. The position of the plate spring’s 

contact point is controlled by the motor differential mode angle 1 2

2
φ φ−

. The 

elastic output mechanism mainly fixes the plate spring and transmits torque out-
put. The comprehensive design parameters of the mechanism are shown in Table 1. 
 
Table 1. Design of basic mechanism parameters. 

Name Value 

Overall shape of the plate spring (Lxbxh) 55 × 10 × 1 (mm) 

Effective working part of the  
plate spring (Lxbxh) 

35 × 10 × 1 (mm) 

Material of the plate spring 
60Si2CrVA, Young’s modulus E = 199e9 
Pa, Poisson’s ratio v = 0.3, Yield strength 

1.78e9 (Pa) 

Outer radius R 55 (mm) 

Stiffness range 30 - 216 (N∙m/rad) 

Load torque at minimum stiffness 20 (N∙m) 

Length of the four-bar linkage 18 mm 

 

Take the differential mode angle of the motor 1 2 90
2

φ φ−
=   as the angle  

balance state, and its deviation angle is used as abscissa. The design deviation 
ranges from −0.2 rad to 0.8 rad, and the motor differential mode angle changes. 
The stiffness change curve of the variable stiffness mechanism is shown in Figure 
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1. The design stiffness ranges from a minimum of 30 N·m/rad to 216 N·m/rad, 
and the working point radius changes from 24 mm to 33 mm. The torque ampli-
fication gain changes from the minimum value of 2.8 at 0 rad to the maximum 
value of 3.7. It has been verified that the plate spring can withstand a negative load 
torque of 20 N·m/rad at the minimum stiffness.  
 

 
Figure 1. Working curve design of variable stiffness actuator. 

2.3. Structure Design 

In structural design, the core idea is to split the four-bar linkage mechanism, so 
that the two bars on its both sides are installed on both sides of the plate spring, 
and a holding bracket is used to offset the torque generated by unbalanced instal-
lation, so that the mechanisms do not interfere with each other during operation 
and the structure is compact. 

The core structural design is shown in Figure 2. Two servo motors are respec-
tively connected to gear disk 1 and gear disk 2 with a 2:1 reduction ratio. Gear disk 
1 and the driven disk are both mounted on the center axis along the Z direction 
through the key connection in order to drive the driven disk. In addition, gear 
disk 2 is also mounted on the center axis via angular contact ball bearings. The 
driven disk and gear disk 2 both have four mounting threaded holes with the same 
diameter and evenly distributed around the periphery with a diameter of 36 mm, 
and are connected to the corresponding swing arm on one end through pins in-
stalled in the threaded holes. The other end of the swing arm is connected to the 
corresponding slider through pins. 

Considering that a set of four-bar linkage mechanisms is not in the plane, it 
produces a torsion tendency perpendicular to the Z direction on the slider during 
operation. Therefore, a holding bracket is installed on the slider, as shown in Fig-
ure 3. The holding bracket is mounted on the center axis via two non-standard 
angular contact bearings, allowing only rotational freedom around the O-Z direc-
tion. The holding bracket is fixed with 8 optical axes through threaded connection. 
The optical axes restrict the slider to only slide radially in the Z direction through 
linear bearings installed on the slider, ensuring that the four-bar linkage mecha-
nism works normally. 

There are two micro-needle roller bearings installed on the slider for contact 
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with both sides of the plate spring to realize forward and reverse rotation. The 
plate spring installation and output are shown in Figure 2. To ensure that the plate 
spring only undergoes deformation by rotating around the Z-axis, the contact sur-
face is made a uniform line contact. First, the plate spring is tightly mounted on 
the mounting seat with screws, then the mounting seat is fixed on the output 
bracket through ear holes with screws on both sides, and finally the output bracket 
outputs torque and displacement outward through the output shaft fixed on it. 

 

 
Figure 2. Core structure diagram. 

 

 
Figure 3. Retainer frame diagram. 

 
The overall assembly 3D model of the entire mechanism is shown in Figure 4. 

The front and rear mounting plates and the output support shell are assembled 
and fixed with dowels to form the entire mechanism. There are angular contact 
ball bearings on the centers of the front and rear mounting plates for mounting 
the entire center shaft, and the majority of the components are restricted in the Z 
direction by the center shaft. 

The overall 3D structure diagram is shown in Figure 5, where the entire mech-
anism is connected by fixed pins. Two servo motors are mounted on the rear 
mounting plate, and each motor is equipped with a standard carbon steel pinion 
with 16 teeth and a modulus of 2, which matches 2:1 reduction ratio to increase 
torque. An outer 16-bit photoelectric encoder is installed on the outer side of the 
rear mounting plate to measure the rotational angle output. A rolling needle bear-
ing with an internal diameter of 100 mm (not shown) is installed in the output 
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support shell to install and limit the motion of the output bracket. Since the output 
force sensor and VSA mechanism are independent of each other, the torque sen-
sor is not shown in this figure. 
 

 
Figure 4. Output frame diagram. 

 

 
Figure 5. Three-dimensional schematic diagram of structural design. 

2.4. Derivation and Analysis of the Dynamic Model 

In the movable components, the main mass rotates on a fixed shaft. The rest are 
mainly the slider and the rolling needle bearings on it. The linkages with small 
mass are ignored. The mechanism can be simplified as shown in Figure 6, where 

, , , 1,2,4i i iJ T iφ =  respectively represent the corresponding moment of inertia, 

rotation angle and input torque of the transmission from the motor to the linkage 
and the output bracket, and TL represents the external load torque. 

The force diagram of the slider of the four-bar linkage mechanism is shown in 
Figure 7, where F1 and F2 represent the forces acting on the slider by the two link-
ages, F3, Fs, and Ff represent the radial force, vertical force and friction force gen-
erated by the plate spring on the slider. Jh and m3 represent the moment of inertia 
of the holding bracket and the mass of the slider, and T11 and T22 represent the 
torques transferred from the motor output to the linkage, respectively: 

Based on Figure 6 and Figure 7, the transmission Equation (1) of motor 1 and 
motor 2 and the force Equation (2) of the linkage are listed below: 

 
1 1 1 11 1 1

2 2 2 22 2 2

4 4 3 4 4L

J T T d

J T T d

J T T d

φ φ

φ φ

φ φ

= − −

= − −

= − −













 (1) 
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Figure 6. Schematic diagram of mechanism distribution. 

 

 
Figure 7. Force diagram of the four-bar linkage mechanism. 

 

 
( )

( )

11
1

1 2

22
2

1 2

sin

sin

TF
l

TF
l

φ φ

φ φ

=
−

=
−

 (2) 

The total mass of the four plate springs is less than 50 g, so the dynamic effects 
of the plate springs can be ignored. Considering that the slider is rotating as well 
as moving radially, the following dynamic equations are written for the slider and 
the support bracket: 

 2 1 2 11 22 1 2
3 3 32

2 2
HJ T Tm r m rr F r
n n

φ φ φ φ   + + + + = − −    
    

  

  (3) 

 ( )
2

1 2 1 2
3 3 2 1 3cos

2 2 sm r m r F F F Fφ φ φ φ
µ

 + − = + − − −   
  

 

  (4) 

where n = 4 represents the number of parallel linkages, m3 represents the mass of 
the slider, and JH is the moment of inertia of the support bracket. The radius equa-
tion of the contact point is established based on the geometric relationship： 

 1 22 cos
2

r l φ φ− =  
 

 (5) 

Considering that the stiffness value is actually a function of torque and radius 
r, the torsional stiffness KT of the VSA mechanism is defined as follows:  
 ( )3 ,T KK f T r=  (6) 

In Equation (4), Fs represents the downward force of the variable plate spring 
on the slider. This force is essentially influenced by the load TL and the stiffness 
value KT of the VSA mechanism, but can be indirectly calculated by the energy 
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required for the plate spring to change its stiffness being equal to the energy out-
put change of the external system, without considering the friction. The calcula-
tion process is shown in Equation (7):  

 
( ) ( )

( ) ( )
( )

( )

( )

3 3
3 4 3

3 3

3

3 32 2
3 32 2

3 3

, ,

,
, ,

, ,

s
K K

K

K K

K K

T TF gdr T gd T
f T r dr f T r

f T r
f T r f T r dr rT T dr

f T r f T r

φ
 

= = −  + 
∂

− + ∂≈ = −

 (7) 

The compensation equation for stiffness variation is obtained as follows: 

 
2

3
2

T
s

T

T KF
rK

∂
= −

∂
 (8) 

Finally, the relationship between output torque, contact point radius, and rota-
tion angle is listed as follows: 

 1 2
3 44

2out TT F r K φ φ
φ

+ = = − 
 

 (9) 

There are two problems in the dynamics of this VSA mechanism. One is that 
the magnitude of the differential mode torque required for the radial motion con-
trol of the slider is significantly different from the common mode torque required 
for the overall mechanism output. Secondly, the stiffness value of the plate spring 
shows a load-related characteristic during operation, which will be validated in 
the subsequent simulation. This section will only analyze the force relationship 
between various torque components affecting the core slider, which mainly cor-
responds to Equation (3) and Equation (4). 

In Equation (3), the radial rotation of the slider is influenced by inertial force, 
Coriolis force, plate spring reaction force, and the input moment of the two link-
ages. Calculated based on the maximum working radius of 32 mm, the moment 
of inertia is only 15 × 10−6 kg∙m2. Assuming that the maximum stiffness variation 
to the minimum stiffness requires 0.1 s, and considering that the output speed is 
under 15 rad/s, the maximum torque produced by the Coriolis force is about 0.03 
N.m. The total output torque of the two motors in parallel is 28 N∙m, which is 
evenly distributed to the four executing mechanisms, totaling 7 N∙m. It can be 
seen that the effects of inertial force and Coriolis force on the input force are rel-
atively small. Therefore, to avoid loss of generality, and considering the worst case, 
Equation (3) can be simplified as follows: 

 1 2 1 2
3 3 0 32

2 2
rTJ m rr F r

n
φ φ φ φ   + +

= − −   
   

  



 

 (10) 

where 2
3 0

6 2
3 15 10 kg mHJJ m r

n
−= + = × ⋅ ， 11 22rT T T= + , 0 0.15 m sr = . 

When the slider is moving radially, the load force is mainly composed of cen-
trifugal force, friction force, inertial force, and downward pressure of the plate 
spring according to Equation (2-2). Based on the maximum speed and maximum 

https://doi.org/10.4236/jsip.2024.152002


J. X. Li et al. 
 

 

DOI: 10.4236/jsip.2024.152002 30 Journal of Signal and Information Processing 
 

radius, the centrifugal force is 0.47 N. Based on the maximum load force, the 

contact force is 3
20 N m 167 N

4 0.03 m
F ⋅

=
×

 . Based on the worst rolling friction  

coefficient of 0.003, the value is approximately 0.5 N. Since the mass is only 

3 70 gm = , assuming that the acceleration from rest to the maximum angular ve-
locity requires 0.1 s, the required inertial force is 7 N. The compensation force for 
variable stiffness depends on the current load torque and the difference between 
the motor rotation angle and has a numerical change between 0 and several tens 
of N. Among the four forces, the first three are transformed into the maximum 
difference in motor output torque according to Equations (2-1) and (2-2), which 
is 0.025 N∙m. But the downward pressure of the plate spring has different stiffness 
values, so the differential torque requires a value between 0 and 3 N∙m. The dif-
ference between the two values is large, so it is very important to obtain the rela-
tionship between the stiffness KT, contact point radius, and load as a function. It 
cannot be simplified directly. 

3. CPG Human Motion Phase Recognition Algorithm 
3.1. Convergence Principle of CPG Recognition Algorithm 

The convergence characteristics of CPG are based on the adaptive frequency 
learning method proposed by Ludovic et al. The basic structure under the Carte-
sian coordinate system is shown in Equation (11): 

 
( ) ( )
( )

( )
2 2

, ,

, ,

x f x y F t

y f x y
yF t

x y

ω ε

ω

ω ε

= +

=

= −
+







 (11) 

where ,x y  represents a two-dimensional limit cycle oscillator, and ( )F t  repre-
sents external disturbances. In the above equation, ( )F tε  represents phase 

learning, and ( )
2 2

yF t
x y

ε−
+

 represents frequency learning behavior of  

external signals. The learning result is that variable x can basically reproduce the 
main frequency component of the input signal ( )F t . 

This form is widely used in Hopf oscillators. On the one hand, the structure of 
the Hopf oscillator is simple, and on the other hand, the limit cycle is a uniform 
circular motion, which can correspond well with the frequency spectrum. Its polar 
coordinate equation has more obvious mathematical significance, as shown in 
Equation (12): 

 

( )2 cos

sin

sin

r r r F

F
r

F

µ ε ϕ

εϕ ω ϕ

ω ε ϕ

= − +

= −

= −







 (12) 

Here, , ,r ϕ ω  represent the radius, phase, and angular velocity of the limit cy-
cle respectively. It can be seen that when the disturbance coefficient 0ε = , 
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Equation (12) degenerates into a complete Hopf oscillator. When 0ε ≠ , it will 
produce disturbances to the system and continue to affect the parameters of the 
oscillator. 

The disturbance behavior can be visually explained in Figure 8, where the mid-
dle part shows a Hopf oscillator with a circular limit cycle, and the black dot rep-
resents the current position. The direction of the limit cycle’s evolution in the next 
moment under the limit cycle is considered as the vector P . At this time, the ex-
ternal interference F  is viewed as a rotating vector around the origin, and the 
angle and amplitude of the vector represent the phase angle and signal strength of 
the external interference, respectively. For example, a constant disturbance 

0=F  is represented as a constant vector starting from the origin with a phase 
angle of 0. 

The influence of the disturbance on the limit cycle can be determined by the 
phase difference between the current external signal and the phase of the current 
position on the limit cycle, which can be divided into two directions: tangential 

re  and normal ne  as shown in Figure 9. 
 

 
Figure 8. Representation of external disturbance limit cycle. 

 

 
Figure 9. Tangential and orthogonal impacts of external dis-
turbance on the limit cycle. 

 
To obtain the projection values of F  in the tangential and normal directions, 

the polar coordinate system is transformed back into the Cartesian coordinate 

system, and the values are obtained as 2 2 r
y e

x y
⋅

+
F  and 2 2 n

x e
x y

⋅
+

F , 
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respectively. It can be further written as sinF ϕ  and cosF ϕ . 

Back to Equation (12), it can be seen that the amplitude term is affected by dis-
turbances along the vertical direction, and once the disturbance is removed, the 
radius of the limit cycle is still determined by µ . However, the phase and angular 
velocity are affected by disturbances along the tangential direction and will change 
significantly. Therefore, under the condition of only requiring synchronization 
characteristics, the equation for radius change can be directly omitted, and only 
the last two terms in Equation (12) that affect the phase are used. It has been 
proved in Ludovic’s literature that when fixing the radius of the limit cycle to be 
1, the ability of synchronous learning has been demonstrated. The following will 
be generalized to discuss the convergence pattern when the limit cycle is not a 
circle.  

3.2. Convergence Analysis of the CPG Algorithm 

The existing literature has shown that the amplitude of the limit cycle does not 
have a significant impact on the phase. Removing the amplitude and continuing 
the previous approach in the tangential direction, the following simplified Equa-
tion (13) can be obtained: 

 
( ) ( )

( ) ( )
F t g

F t g

φ ω ε φ

ω ε φ

= +

=





 (13) 

where ( )sin φ  representing tangential direction previously is now represented by 

( )g φ , the derivative of ( )f φ  with respect to φ . In practical applications, 

( )f φ  represents the waveform of a gait for human walking. The time axis of 
this waveform is normalized in the interval [ ]0,1 , and the corresponding angle 
φ  also changes within the interval [ ]0,1 . is the derivative of normalized ( )f φ  
with respect to φ . ( )F t  represents the input signal, which is the joint angle sig-
nal. 

3.2.1. Explanation of Disturbance Theory Explanation 
The disturbance theory has a good estimation effect on the evolution of weakly 
nonlinear systems. Its basic principle is to perform a Taylor expansion of the non-
linear system at the current moment, and then calculate and estimate based on the 
expansion term with the strongest influence. Therefore, it is very suitable for stud-
ying the learning and convergence behavior of the simple limit cycle CPG in this 
paper. 

As with most linearization methods for nonlinear systems, the estimation is of-
ten more accurate in a small neighborhood of the linearization point. Whether the 
long-term estimation error converges depends on the type of equilibrium point of 
the system without disturbance. For disturbance theory, the equilibrium point of 
the oscillator is a non-exponential equilibrium point, which means the long-term 
estimation based on a certain operating point diverges. As a substitute, observing 
and studying the current expansion at a time point can determine the evolution 
trend of the current system. Then, the convergence of all operating points can be 
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concluded, and the global convergence property can be indirectly obtained. 
Back to the oscillator model, the theory is mainly used to analyze two points: 1) 

the convergence characteristics of phase when the frequency and waveform of the 
limit cycle are consistent with those of the external signal; 2) the convergence 
characteristics of the limit cycle frequency.  

3.2.2. Proof of Convergence of Phase at the Same Frequency 
According to the hypothesis, the oscillator equation is rewritten as follows: 

 ( ) ( )F t gφ ω ε φ= +  (14) 

According to the theoretical introduction, the first-order estimation equation 
for the system state variable φ  is given: 

 2
0 1 Rφφ φ εφ ε= + +  (15) 

Here, 0-th order estimation, 1st order estimation, and the residual error of the 
quadratic term of φ  are represented by 0 1, , Rφφ φ , respectively. Generally, 

( )f φ  is obtained by filtering signal ( )F t , so ( )f φ  and ( )g φ  can be rep-
resented as a finite sum of sinusoids: 

 
( )

( )

e

e

in
n

n Z
in

n
n Z

f A

g inA

φ

φ

φ

φ
∈

∈

=

=

∑

∑
 (16) 

To obtain a multi-order series expansion of ( )g φ  with respect to φ , we first 
expand the functions cosφ  and sinφ  as shown in the following Equation (17) 
and Equation (18):  

 

( )
( ) ( )

( )
( ) ( ) ( )

2 3
0 1 2

22 3
0 1 2

0

2
0 1 0

cos

1

2 !

cos sin

pp

p

kn R
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k

kn kn kn O

φ

φ

φ εφ ε φ ε

φ ε φ ε φ ε

φ ε φ φ ε

∞

=

 + + + 

− + + +
=

= − +

∑  (17) 

 

( )
( ) ( )

( )
( ) ( ) ( )

2 3
0 1 2

2 12 3
0 1 2

0

2
0 1 0

sin

1

2 1 !

sin cos
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p

k R

k k k kR

p

k k k O

φ

φ

φ εφ ε φ ε

φ ε φ ε φ ε

φ ε φ φ ε

+
∞

=

 + + + 

− + + +
=

+

= + +

∑  (18) 

We can then derive Equation (19): 

 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )0 0

2
0 1 0

2
0 1 0

2
1

e cos sin

cos sin

sin cos

e e

ik

ik ik

k i k

k k k O

i kn kn kn O

ik O

φ

φ φ

φ φ

φ ε φ φ ε

φ ε φ φ ε

ε φ ε

= +

= − +

 + + + 

= + +

 (19) 

Finally, by substituting formula Equation (19) into Equation (14), we can obtain 
Equation (20): 
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 ( ) ( )2 2
0 1 0 0R F t g Rφ φφ εφ ε ω ε φ ε+ + = + +    (20) 

Following the principle of equal corresponding items in disturbance theory, we 
can obtain the following formula Equation (21): 

 
( ) ( )

0

1 0F t g

φ ω

φ φ

=

=





 (21) 

Suppose we integrate from time 0t  to obtain the following solution formula 
Equation (22):  

 
( )
( ) ( ) ( )

0

0 0

1 0 d
t

t

t t t

t F t g t

φ ω ω

φ φ

= +

= ∫
 (22) 

Since ( )f φ  must have the main waveform of the input signal ( )F t  for 
phase synchronization to be meaningful, we can represent the input signal as 
Equation (23):  

 ( ) ( ) ( )F t f t R tω= +  (23) 

Here, ( )R t  represents the residual high-frequency signal. The phase differ-
ence between ( )f φ  and ( )F t  is already implicit in the starting time point 0t  
of the limit cycle, which is represented by 0tω . At this time, ( )0g φ  can be ob-
tained by Equation (24):  

 ( ) ( )0
0 ein t t

n
n Z

g in A ωφ ω −

∈

= ∑  (24) 

By substituting Equation (24) into Equation (22) and integrating ( )1 tφ , we can 
obtain the following Equation (25):  

 
( ) ( ) ( ) ( )

( ) ( )

0

0

0

0

1 0

,

e e d

e d

t in t tim t
m nt

m n

im t in t t
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m n
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ω ωω

ω ω ω

φ ω φ

ω

−

∈ ∈

+ −

∈ ∈

= ⋅ +

= +

∑ ∑∫

∑ ∫ 

 

 

 (25) 

At this time, a constant term appears only when m n= − . Otherwise, the ef-
fects will be averaged over a sufficiently long time. Assuming the input signal is a 
real signal, i.e. nA  and nA−  are conjugates, the result can be further simplified 
as Equation (26):  
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( )
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0

0 0

0

*

1
,

2
0 0

e d
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−
− −

∈

∈

= +

= − +

= − +

∑ ∫

∑ ∫

∑







 (26) 

Note that the constant component in the convergence result does not affect the 
convergence result, only non-zero frequencies will affect it, which is slightly dif-
ferent from the subsequent frequency convergence derivation. Observing the con-
stant term, when 0 0tω > , it represents that the oscillator signal phase is lagging 
behind the external signal. At this time, it will accelerate the phase φ  to approach 
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the external signal, which will gradually reduce 0tω  to 0. The opposite is also true. 
Taking the signal ( ) ( ) ( )sin sin 2F t t t= π + π  as an example, the function graph 
of the constant component ( ) ( ) ( )2 sin 4 sin 2f φ φ φ= π + π  is plotted according to 
Equation (26), as shown in Figure 10: 
 

 
Figure 10. Schematic diagram of phase convergence. 

 
In the evolution direction, a positive value means that the oscillator will accel-

erate its own frequency, while a negative value means the opposite. A positive 
phase difference means that the oscillator phase leads the perturbation signal, 
while the amplitude is opposite. Looking within the domain P0, when the internal 
phase of the oscillator is in phase with the external signal, the oscillator will accel-
erate its own frequency and reduce the phase lag. The opposite is also true. This 
drives the oscillator signal to always converge towards P0, the phase synchroniza-
tion point. 

In fact, each zero point where the derivative of the curve in Figure 10 is negative 
is a convergence point, while the zero points where the derivative is positive de-
termine the range and boundaries of each convergence interval. As can be seen 
from Figure 10, the convergence to the zero points between every two blue lines 
only occurs in the area where the phase difference is approximately ± 2 rad. 

For continuous spectrum external signal inputs, the constant component in Eq. 
26 can be rewritten in a continuous integration form:  

 ( )2
00

2 sin dA tωω ω ω
∞

−∫  (27) 

Taking the hip joint as an example, the amplitude distribution of the hip joint 
signal after FFT is shown in Figure 11. It can be seen that the spectrum is mainly 
concentrated in two parts: walking frequency and mean value. Equation (27) in-
dicates that the mean value does not affect the phase convergence, so it can be 
predicted that the phase will converge when the hip joint angle signal is inputted 
as shown in Figure 11. Substituting the hip joint FFT amplitude results into Equa-
tion (27), we can draw the oscillator evolution trend chart for the hip joint angle 
signal as an input in Figure 12. 

Because the external signal has not been time-normalized, the phase difference 
in Figure 11 here represents the synchronization time difference. The normal 
walking speed of the human body is about 0.8 Hz. Obviously, the convergence 
points are lagging one gait cycle, no lag, and leading one gait cycle. Drawing the  
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Figure 11. Hip joint angle spectrum during walking at 4.5 Km/h on flat ground. 

 

 
Figure 12. Convergence trend of hip joint angle curve. 

 
convergence interval, it can be seen that the convergence result is either com-
pletely synchronized with the signal, or leading or lagging an integer number of 
gait cycle times. This phenomenon is determined by the fact that the hip joint 
angle curve spectrum is highly concentrated and close to a sine curve. In fact, us-
ing only Equation (27) to predict the convergence situation is not entirely correct. 
When there are multiple frequency components, the formula will obtain multiple 
intervals and different phase-locked points in one signal cycle. Obviously, this is 
incorrect. The hip joint signal spectrum has an infinite bandwidth, but the fact is 
that it can still converge in phase. The reason is that other terms with mean effects 
are not irrelevant during the convergence process. These terms reveal that there 
are phase back-and-forth oscillations whether in the convergence process or after 
convergence. These oscillations allow the phase point to jump out of the conver-
gence interval caused by small amplitude frequency components and converge in 
the interval of the main frequency component. This will be further discussed in 
the frequency convergence later. In conclusion, it can be inferred that when the 
hip joint angle signal is input, the phase difference under the same frequency can 
completely converge to an integer number of gait cycles. Therefore, as long as the 
frequency converges, the phase must converge, which provides a prerequisite for 
the next proof. 

3.2.3. Frequency Convergence Derivation 
Since the disturbance theory is a linearized estimation, the more complex the limit 
cycle trajectory ( )f φ  is, the worse the estimation effect and the more serious 
the error. Integrating the result will be extremely difficult to calculate. Therefore, 
only the circular limit cycle will be calculated next, and its conclusion will be 
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extended to complex limit cycles. For Equation (13), a third-order estimation for-
mula is listed as below: 

 
2 3

0 1 2

2 3
0 1 2

R

R
φ

ω

φ φ εφ ε φ ε

ω ω εω ε ω ε

= + + +

= + + +
 (28) 

Here, , , , , 1,2i i iφ ω φ ω =  and ,R Rφ ω  are dependent variables of time t. Sub-
stituting them into formula (3-18) and combining the above formulas Equation 
(17), Equation (18) and Equation (19), we derive Equation (29): 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 2
0 1 2 0 1 0 2 1 0
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′+ + + = +  

   



 (29) 

Similarly, based on the disturbance theory, Equation (30) can be written ac-
cording to the corresponding equal terms as below: 
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( ) ( )
( ) ( )

0 0

0

1 1 0

1 0

2 2 1 0

2 1 0

0

F t g

F t g

F t g

F t g

φ ω
ω

φ ω φ

ω φ

φ ω φ φ

ω φ φ

=

=

= +

=

′=

′=













 (30) 

Next, we will solve Equation (30), assuming that the input is a finite number of 
sine waves with a discontinuous spectrum. The signal is represented as formula 
(31): 

 ( ) e Fin t
n

n
F t A ω

∈

= ∑


 (31) 

The corresponding limit cycle trajectory of the circle is written as below: 

 ( ) ( )0sinf aφ φ φ= +  (32) 

Equation (13) can be written as follows: 

 
( ) ( )

( ) ( )
0

0
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F t a
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φ ω ε φ φ

ω ε φ φ

= + +

= +





 (33) 

Firstly, calculate the first-order term as follows: 

 
( )
( ) ( )

0 0

0 0 0

t

t t t

ω ω

φ ω

=

= −
 (34) 

Assuming 0Fnω ω≠ , that is, the starting frequency is not synchronized with any 
frequency of the input signal ( )F t , the second-order term is calculated in se-
quence as shown in Equation (35) and Equation (36): 
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 (35) 
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As mentioned earlier, frequency convergence is a prerequisite for phase con-
vergence. The first-order estimation result ( )1 tω  only has oscillations with a 
mean value of 0, which cannot play a decisive role in determining the evolution 
direction of the frequency. Therefore, it is necessary to further expand the CPG 
unit and estimate the second-order items for the convergence frequency. Equation 
(36) is substituted into Equation (30) for further integration of ( )2 tω , and the 
calculation result is shown in Equation (37):  
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The expressions of E1 to E5 are shown in Equation (38) as follows: 

( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( )

( ) ( )
( )

( )

( )
( )

( )

0 0 0 0

0 0 0 0

0 0 0 0

2
1 22

0 0

2
2 22

0 0

2 2 2 2
0

0 0
3 2

4
0 0

0

1 1 e

1 1 e

2 4 e

e e e

F

F

F

F F

i n m t t t

F F

i n

F F

m t t t

F F

i n m tF

i n t i n t
i

F F

E
i n i n

E
i n i n

nE
i n n

i iE
n n

ω ω ω φ

ω ω ω φ

ω

ω φ ω φ

ω ω ω ω

ω ω ω ω

ω ω ω
ω ω ω ω

ω ω ω ω

+ + − +

+ − − +

+

+ −

 
 = +
 + + 
 
 = − +
 − − 

 
 = + − − 
 

= +  + − 

( ) ( )( )( )

( ) ( )( )
( )

( )
( )

( )
( )

( )

( )

( )

0 0 0 0 0 0 0 0

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0

0

5
0 0

2 2
0 0

e

e ee e

e e

F F

F F
F F

F F

m t t t i m t t t

i n t i n t
i m t t t i m t t t

F F

i n t i n t

F F

t t

E
i n i n

n n

ω ω ω φ ω ω ω φ

ω φ ω φ
ω ω ω φ ω ω ω φ

ω φ ω φ

ω ω ω ω

ω ω ω ω

+ − + − + −

+ −
+ − + − + −

+ −

− −


= − − + + −


− −
+ − 

 (38) 

https://doi.org/10.4236/jsip.2024.152002


J. X. Li et al. 
 

 

DOI: 10.4236/jsip.2024.152002 39 Journal of Signal and Information Processing 
 

1 2 5E E E  are periodic oscillations with a mean value of 0 after time integration. 

4E  represents the divergent term, which gradually increases in amplitude over 
time, but the mean value is still 0 in the integration process. Only the integration 
mean of 3E  when m n=  is not 0, leading to a trend of fixed direction change. 
The simplified expression of 2ω  is as follows:  

 
( )( ) ( ) ( )

*

22 3 2
00 0

2 2 0 2 02
00

2
2

n
biasw

n N F

Aa A t t t t
n

ωω
ω ω ω ω

ωω ω∈

 
 = + − − = + − − 
 
∑   (39) 

Here, 2ω  represents oscillation components with a mean value of 0. At this 
time, the second-order estimation of the frequency is as follows: 

 ( )2 2 3
0 1 2 0bias t t Rωω ω εω ε ω ε ω ε= + + + − +

 (40) 

The mean value of the remaining components’ convergence contribution to the 
frequency is 0, so the numerical value of biasω  will mainly determine the direc-
tion of system evolution. Next, the frequency convergence property of CPG will 
be analyzed based on the theory above.  

3.2.4. Frequency Convergence Property 
The hip joint angle curve is very close to a sine curve. When deriving and using it, 
it can be directly equivalent to a mean value plus a sine curve for convergence 
verification. However, for the convenience of parameter debugging or synchroni-
zation with other complex signals, this section summarizes the convergence laws, 
and introduces the basic convergence properties, continuous signal convergence 
properties, disturbance effects during convergence, and consistent convergence 
properties of complex trajectory phases, supplemented by simulation verification. 

1) Basic Convergence Property 
When the initial frequency of the oscillator 0 0ω = , 0biasω = , Equation (3-29) 

indicates that the oscillator cannot learn. If 0 0ω ≠ , the convergence direction will 
be determined by biasω . 

The denominator of the second term 
( )2 2

0

1

Fnω ω−
 in biasω  shows that each 

frequency component Fnω  of the input signal will have a tendency to pull os-
cillator frequency 0ω  towards it, and the closer it is, the stronger the pull will be, 
approaching infinity. Therefore, we can draw the following conclusion: 

When 0 0ω ≠ , there is a neighborhood for each frequency component of the 
disturbance signal, as long as the angular frequency of the oscillator is close 
enough to the frequency component, the oscillator frequency component will def-
initely converge to this frequency. The boundary between each neighborhood is 
determined by solving Equation (41) below.  

 
( )*

22
00

2 2
0 0

2
0n

n F

AA
n

ω
ω ω ω∈

− + =
−

∑


  (41) 

Assuming that the input signal is composed of n non-zero frequency real sig-
nals, solving Equation (41) with 0ω  as the variable yields 1n −  solutions that 
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divide the positive real axis into n open intervals. Each interval must contain a 
frequency of the input signal, and as long as the initial frequency of the oscillator 
is in this interval, it will eventually converge to this frequency. 

In practical applications, the influence of the constant component often exceeds 
what is described in Equation (38). Through experimental testing and adjustment, 
Equation (42) can be rewritten as: 

 
( )( )*

22
00

2 2
0 0

24 0n

n F

AA

n

ω
ω ω ω∈

− + =
−

∑


 (42) 

Simulation verification will be carried out by taking an example. Assuming the 
input signal is ( ) ( ) ( )3 2sin sin 2F t t t= + π + π , substituting it into Equation (42) 
yields the Equation (43): 

 
( )

2 22
0 0

2 2 2 2
0 0 0

2 2 2 14 3 0
2

ω ω
ω ω ω

× × × ××
− + + =

π − π −
 (43) 

By discarding the negative solutions, we obtain 2.8380 and 6.1531. The positive 
real axis is divided into three intervals: (0, 28380), (2.8380, 6.1531), (6.1531, +∞). 
In the first interval, the initial frequency converges to the 0 frequency, in the sec-
ond interval it converges to π, and in the third interval it converges to 2π. 

The convergence results with different initial frequencies are shown in Figure 
13. It can be clearly seen that there are three convergence results corresponding 
to the distribution of perturbation signal frequencies, and the boundaries between 
the convergence results basically match the calculated results. The final conver-
gence frequency results in each convergence interval are close to the lower limit 
of the interval, indicating that there is a superposition effect among multiple fre-
quencies of the perturbation signal on the oscillator frequency convergence, which 
is consistent with the description in Equation (43) and verifies the above predicted 
results.  
 

 
Figure 13. Convergence conditions with different initial frequencies. 
 

In the previous derivation process, the convergence assumption was made as 

0Fnω ω≠ , and the Equation (38) that determines the convergence direction was 
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obtained. It did not consider the possibility of the average values of E1, E2, E4, and 
E5 not being zero at some point during the convergence process. Using the input 
signal ( ) ( )sinf φ φ=  and learning signal mode ( ) ( ) ( )sin sin 2F t t t= π + π , 
with an initial angular frequency of 4π rad/s and perturbation gain 0.1ε = , a sim-
ulation experiment was conducted. The result is shown in Figure 14. 

The oscillator finally converged to 3π, which is consistent with the predicted 
result in Equation (37). It should be noted that the convergence frequency passed 
through 3ω = π  rad/s. If perturbation analysis is carried out at this point, E1 and 
E2 are not zero averages. This indicates that E1 and E2 do not play a decisive role 
in convergence, and in fact, E4 and E5 cannot have an absolute impact on conver-
gence. The main factor affecting convergence is E3.  
 

 
Figure 14. Convergence to the second-order special point chart. 
 

The hip joint angle signal is essentially equivalent to the addition of a constant 
component and a frequency component. As long as the mean component is re-
moved, and the oscillator for circular limit cycle CPG has a starting frequency that 
is not 0, according to Equation (3-30), the oscillator will definitely frequency con-
verge to learn the angle signal, and then the phase will inevitably synchronize.  

2) Nature of Continuous Perturbation Signal Input 
The aforementioned are all discrete disturbance signals input. When the input 

signal is a continuous signal, i.e., ( ) ( )e di tF t F ω
ω

ω ω
∈

= ∫ 
, the disturbance  

theory still holds. However, in the derivation process, the spectrum of the input 
signal 0ω  is inevitably involved, which belongs to the input signal condition. At 
this time, only the contribution of E3 is considered, and the E3 term is rewritten in 
the form of continuous spectrum, as shown in the result Equation (44). 

 0 0
2 22 3 2

0 00 0
2 2 2 20

0 0 0

2 24 d d
2

A Aa A ω ωω ωω ωω
ω ω

ω ω ω ω ω

− +

+ +∞

 
− + + 

− +  
∫ ∫  (44) 

The intuitive physical description of the above equation is shown in Figure 15. 
The curve represents the spectral amplitude of the disturbance signal. The part of 
the curve on the right side of 0ω  will shift the inherent frequency of the CPG 
towards a higher frequency, which can be intuitively understood as a force F2 to 
the right. Similarly, the spectral on the left side of 0ω  will generate a force F1 to 
the left. 
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Figure 15. Schematic diagram of frequency convergence. 

 
The property that the convergence effect is greater for frequencies closer to 0ω  

is still maintained in Equation (44). In the vicinity of zero, the integral on both 
sides tends towards infinity in the same form. Assuming there is a small neigh-
borhood 0ω ω± ∆ , the sum of the influences of the two symmetrical points on 
the left and right on 0ω  is given by Equation (44) as follows:  

 
( ) ( ) ( ) ( )

0 0 0 0

2 2 2 2
0 0 0 0

2 2 2 22 2 2 2
0 0 0 0 0 0 0 0

2 2 2 2A A A Aω ω ω ω ω ω ω ωω ω ω ω

ω ω ω ω ω ω ω ω ω ω ω ω
−∆ +∆ −∆ +∆+ +

− ∆ − + ∆ − − ∆ − + ∆ −
 (45) 

It can be written as below since 0ω ω∆  : 

 ( )( )0 0 0 0 0

0

2 d
d

A A A A A Agω ω ω ω ω ω ω ω ω

ω ω
ω ω ω

+∆ −∆ +∆ −∆

=

− +
=

∆ ∆
 (46) 

It can be seen that in the extremely small convergence region of the oscillator 
frequency, which is close to 0ω , the convergence effect of the two symmetric fre-
quencies on the oscillator frequency is approximately determined by the ampli-
tude 

0
2Aω  and the derivative of the amplitude with respect to the frequency of 

the input signal at this point. Moreover, it tends to infinity. When the disturbance 
signal frequency is not in the frequency domain of 0ω , the attraction to the os-
cillator frequency 0ω  is limited, which means that the direction and speed of 
convergence are determined by the local properties of 0ω . 

Specifically, there are two types of convergence directions. If the spectral am-
plitude at 0ω  is not 0, and the derivative of the spectral amplitude of the input 
signal is not 0, then the positive or negative value of the derivative will determine 
the direction of CPG evolution. If the spectral amplitude at this point is 0, or the 
derivative is 0, then the convergence direction will be completely determined by 
the calculation result of integral 44. This rule also fully includes the convergence 
rule described by Equation (42). 

The input signal is added with white noise with an energy of 0.01 to form a 
continuous spectrum. The frequency distribution diagram is shown in Figure 16, 
and the simulation results are shown in Figure 17. 

In terms of convergence results, noise does not affect the convergence results. 
During the process, when the internal angular frequency of CPG is at 3π rad/s, 
the derivative of the spectral amplitude of the output signal at this point with  
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Figure 16. Distribution of initial spectrum. 

 

 
Figure 17. Learning with noise. 

 
respect to the angular frequency is 0. The input signal shows attraction between 
frequencies of 2π rad/s and π rad/s, which pulls the CPG frequency towards it. 
When it reaches 2π rad/s, if it continues to decrease below 2π rad/s, according to 
Equation (46), 2π rad/s will produce an infinite positive value, which will pull the 
convergence frequency back to 2π rad/s. From another perspective, this learning 
behavior has a good filtering effect on noise with uniformly distributed ampli-
tudes. 

3) The nature of disturbances during convergence 
As mentioned earlier, the convergence of continuous spectrum is related to the 

position of the spectrum derivative. In computer numerical simulations, the input 
spectrum is not continuous and depends on the sampling frequency. The simula-
tion experiment results are theoretically very unstable, but in fact, the simulation 
experiment results are very stable and effective. 

Observing the simulated convergence process in Figure 15, the CPG frequency 
converges during oscillation. When using disturbance theory for estimation, there 
are sine signal components 1ω  2ω  during the convergence process and steady 
state. These sines force the CPG to oscillate during steady state and convergence, 
which may cause the frequency component to cross the convergence critical point 
between the frequency components and towards the convergence of a stronger 
attraction frequency. 

The amplitude of oscillation depends on two factors based on the previous der-
ivation: 1) the amplitude distribution of the spectrum ( )F t ; 2) the disturbance 
gain ε . Based on the composition of Equation (38), in disturbance estimation, 
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Aω  and a, as well as their corresponding frequencies, directly represent the am-
plitude of 1ω  2ω . Based on previous simulation results, the disturbance signals 
are changed to ( ) ( )sin sin 2t tπ + π  and ( )sin 2 tπ  respectively. The simulation 
convergence process and steady-state results are shown in Figure 18.  
 

 
Figure 18. Convergence comparison with different disturbance signals. 

 
The convergence result and convergence speed are determined by the conclu-

sions of the previous section, while the convergence error after convergence in-
creases due to the excess frequency components in the input signal. The gain ε  
represents the impact of the disturbance quantity ( )F t  on the state quantity 

,φ ω . Considering the disturbance signal as ( ) ( )sin 1.8 sin 2t tπ + π  and the simu-
lation results are shown in Figure 19. The convergence result oscillates back and 
forth between the two frequency components, causing the final convergence mean 
to be between the two and greatly increasing the convergence error of the result. 
 

 
Figure 19. Convergence results with different disturbance coefficients. 

 
5) Convergence characteristics of complex limit cycles 
By replacing the limit cycle trajectory with Equation 16, the CPG oscillation 

signal of this limit cycle trajectory has continuous values on a sufficiently wide 
spectrum. Therefore, all odd order derivatives of the trajectory signal form a mul-
tidimensional orthogonal space with the original trajectory signal. As long as the 
number of derivative orders is large enough, the input signal ( )F t  can be ex-
panded in this space, and it can be expressed as a linear combination of the tra-
jectory signal and multiple odd-order derivatives, similar to the process of Fourier 
transform. This allows the complex limit cycle trajectory equation to be treated as 
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a single frequency unit, making it theoretically possible to achieve the same deri-
vation and proof method as the circular trajectory. 

On the other hand, starting again from E3 and conducting disturbance theory 
derivation is equivalent to performing second-order integration on Equation (41), 
resulting in the following Equation (47).  

 21
1 2
1 2

22 3
11

, 1 22
1 1

2
0

2
2

24 d d
2

AA A ωω
ω ω
ω ω

ωω
ω ω

ω ω ω≠

 
 − + − 
 

∫∫  (47) 

Here, 1 2,ω ω  represents the frequency components of the limit cycle and the 
disturbance signal. The convergence direction becomes the superposition effect 
of the oscillator frequency component and the disturbance signal frequency com-
ponent. 

In disturbance theory derivation of complex limit cycle trajectories, only the 
term in Equation (39) is independent of the phase components of the limit cycle. 
Therefore, to prove that the convergence law is still mainly determined by Equa-
tion (39), we use the characteristic of no phase information in Equation (39) to 
conduct the following simulation: 

Setting the disturbance signal as:  

 ( ) ( ) ( ) ( ) ( )sin sin 2 3cos 4 4cos 5 5cos 6F t t t t t= π + π + π + π + π  (48) 

The limit cycle trajectory is set to two groups: 

( ) ( ) ( ) ( )
( ) ( )

sin sin 2 6 3cos 4 3

4cos 5 2 5cos 6 ;

f p p p

p p

φ = + + π + + π

+ + π +
 

( ) ( ) ( ) ( )
( ) ( )

cos 2cos 2 6 12sin 4 3

20sin 5 2 30cos 6

g p p p

p p

φ = + + π − + π

− + π −
 

and 

( ) ( ) ( ) ( ) ( ) ( )sin sin 2 3cos 4 4cos 5 5cos 6 ;f p p p p pφ = + + + +  

( ) ( ) ( ) ( ) ( ) ( )cos 2cos 2 12sin 4 20sin 5 30cos 6g p p p p pφ = + − − −  

The initial angular velocities are both 4π rad/s, and the disturbance coefficient 
is set to 0.01. The convergence results are shown in Figure 20, where the processes 
and convergence results of the two are basically the same. This indicates that the 
consistency of phase does not affect the convergence results at all, which is con-
sistent with the predicted result of Equation (39) and the assumption. Of course, 
if the phase of the frequency component of the oscillator trajectory signal does not 
correspond to the phase of the frequency component of the disturbance signal, 
the final converged phase has no meaning at all.  

3.3. CPG Algorithm Construction 

The basic convergence property shows that the constant component of the dis-
turbance signal has a strong influence on the frequency convergence of the oscillator. 
In the hip joint angle spectrum curve, the constant component occupies 50%  
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Figure 20. Convergence impact on phase consistency. 

 
of the signal energy. Therefore, in order to ensure the stability of the convergence, 
the average component must be minimized as much as possible. Building feed-
back structure shown in Figure 21 and the corresponding convergence Equation 
(49) based on reference: 
 

 
Figure 21. Algorithm structure. 
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 (49) 

where 0 unit is used to learn the signal mean value and corresponds to the fourth 
line formula in Equation (49). The 1 unit is used to learn the phase of the external 
periodic signal and is constructed using the learning law in this chapter. Limit 
cycle ( )f φ  is a custom trajectory. The corresponding amplitude is learned us-
ing the third line formula in Equation (49). 

The sum of the external disturbance signal minus the output of the two units 
generates an error signal, which will drive the two error signals to continue learn-
ing the external signal until reaching a convergent stable state. At stable state, the 
1 unit has synchronized with the external disturbance signal. Combining its stable 
angular frequency and current phase, it can obtain the future phase change for a 
period of time. This information can be transmitted to the lower-level control 
through the human motion information mapping. 
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4. Simulation and Discussion 
4.1. Simulation Model Establishment and Stiffness Correction 

The stiffness value of the VSA mechanism designed in Section 2 does not com-
pletely comply with the design rule in the actual working process, which has been 
pointed out in the stiffness design. Moreover, actual stiffness values are required 
to correct the variable stiffness compensation force in subsequent control. There-
fore, it is necessary to establish a corresponding simulation model to obtain the 
actual stiffness curve, verify the design results, and conduct subsequent control 
simulations. 

4.1.1. Simulation Model Establishment 
Adams is an authoritative software for dynamic simulation, which can effectively 
simulate a large number of mechanical systems. The VSA mechanism includes 
plate springs as elastic components. To make the plate springs perform realisti-
cally in the Adams model, finite element analysis is needed. 

Although Adams internally includes Autoflex, the functions are relatively basic. 
For this VSA mechanism, the boundary elements and plate spring mounting 
boundary conditions need to be defined since Autoflex is unable to perform well. 
Also, there is a lack of reasonable subdivision mesh units for stress deformation. 
Therefore, it is necessary to define the Modal Neutral File for the plate spring flex-
ible body in an external model and import it. This paper uses Abaqus 6.14 for 
frequency analysis of the plate spring and imports it into Adams. 

Firstly, the material density, elastic modulus, and Poisson ratio of the plate 
spring are set as 7.85e−9 (tonne/mm3), 1.97e5 (MPa), and 0.3, respectively, in 
Abaqus. Since the plate spring does not work under extreme conditions, parame-
ters such as yield limit need not be set. Standard linear beam elements are used. 

Considering the force curve of the plate spring head in the clamping method, 
the rigid part that has little effect on the elasticity is removed and replaced with a 
parabolic shape. The truncated parabolic section is connected to a reference point 
Rp in the form of a beam element using the MPC multisite constraint method, as 
shown in Figure 22. At the same time, Rp is taken as the load point, and its 6 
degrees of freedom are constrained. The modal analysis is performed in six direc-
tions for the RP reference point, and then the Rp point is defined as the sub-model 
interface marker in Adams. The corresponding mesh is generated with a scale of 
1.6. 

Plate spring frequencies are extracted every 1 to 15 orders, and the frequency 
analysis results are used to generate sub-model data, export the mass matrix and 
stress-strain data, and output the corresponding mnf file according to the unit 
output described above. The first-order mode extraction result of the plate spring 
frequency is shown in Figure 23. The first-order frequency of 62Hz indicates that 
the plate spring has almost no dynamic characteristics in the current application 
environment, which is consistent with the characteristics of the low mass of the 
plate spring itself. 
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In Adams, Rp is defined to be fixedly connected to the mounting seat, and the 
plate spring is defined to be in contact with the two-side needle roller bearings by 
a combination of flexible and rigid bodies. In order to prevent the occurrence of 
piercing during the simulation process, the stiffness of the needle roller bearing is 
reduced to 1e+6 (N/m), and the penetration depth is limited to 1e−3 (m). The final 
result of simulation is shown in Figure 24. 
 

 
Figure 22. Grid partition and MPC constraint settings. 

 

 
Figure 23. First-order mode of the plate spring. 

 
 

 
Figure 24. Schematic diagram of the deformation of the flexible body. 
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4.1.2. Stiffness Experiment 
Stiffness testing was conducted on the VSA mechanism based on the Adams 
model set up mentioned above. The test was divided into two parts: the one-way 
loading experiment and the reciprocating loading experiment. The former was 
mainly used to obtain the stiffness variation trend, stiffness variation range and 
the reason for the non-linear variation of the stiffness, while the latter aimed to 
explore the existence of dead zones and hysteresis in the displacement-torque 
curve during reciprocating loading to obtain a stiffness fitting curve. 

1) One-way loading experiment 
a) Simulation experiment settings 
The experimental device was initially in the form of a square structure com-

posed of four linkages, and the differential angle of the motor was pi/2. In the first 
two seconds, the two motors were operated in opposite directions to pre-rotate 
the same angle. When the angle was positive, the contact point of the spring plate 
was rotated around the center to increase the stiffness, and when the angle was 
negative, it was decreased. Afterwards, the two motors were fixed to ensure that 
the position of the slider no longer changed. The load end was uniformly in-
creased from 0 N·m to a maximum of 20 N·m using a ramp function from the 2nd 
second until the 12th second. 

A total of 11 groups of experiments were conducted, and each group achieved 
different stiffness by adjusting the pre-rotation angles of the two motors. Consid-
ering that the four-bar mechanism has a singular position, the pre-rotation angles 
were set from -0.2rad to 0.8rad with an interval of 0.1rad from low to high. The 
experimental results are shown in Figure 25. 

b) Analysis of experimental results 
Two general trends can be observed from Figure 25: 
1) The displacement-torque curve becomes steeper as the pre-rotation angle 

increases, which indicates that the stiffness value is increasing. The displacement 
at a load of 20 N·m for the curve with the maximum stiffness value is 2.5 times 
that of the curve with the minimum stiffness value. ii. Under the same pre-rota-
tion angle, as the load torque increases, the increase in displacement decreases and 
stiffness increases. For example, the slope representing stiffness at point P1 is sig-
nificantly higher than that at point P0. 

In order to obtain the specific stiffness values, a third-order polynomial fitting 
was performed on the curves in Figure 25. Taking the curve with the most irreg-
ular shape and most severe pre-rotation, −0.2 rad, as an example, the fitting result 
is shown in Figure 26. The residual value of 8.1 indicates that the fitting result is 
relatively good. The stiffness values were derived based on the fitting curve by 
taking derivatives, as shown in the stiffness curve in Figure 27, which also con-
forms to the two trends in Figure 25. The following two conclusions can be drawn: 
1) The range of stiffness values varies from the lowest 28 N·m/rad to 275 N·m/rad. 
The lowest stiffness occurs at a pre-rotation angle of −0.2 rad with almost no load, 
and the highest stiffness occurs at a pre-rotation of 0.8 rad with a load of 20 N·m. 
2) Under the same pre-rotation angle, the trend of stiffness increasing with 
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increasing load torque increases as the pre-rotation angle increases. From the par-
allel trends between the curves, it can be seen that the stiffness curve of pre-rota-
tion 0.8 rad increases much faster with increasing load than the stiffness curve of 
pre-rotation −0.2 rad. 

The characteristic of the stiffness curve increasing with increasing load torque 
can be explained by Figure 28 and Figure 29. In the working process, the plate 
spring is not subject to a single-sided force but is subject to pressure on both sides 
of the needle roller bearing. When not subjected to torque load, the plate spring 
is in contact with the needle roller bearings on both sides at the same position, 
and the stiffness value at this time is close to the design value. As shown in Table 
2, where the experimental stiffness represents the stiffness of rotating 0 rad in Fig-
ure 22, which is the stiffness under no load. The results show that the design re-
sults and experimental results are closer in the low-stiffness range. When sub-
jected to torque load, the contact points on both sides of the plate spring do not 
have the same length. The two different positions of the needle roller bearings 
result in a situation similar to a lever for the plate spring. The contact point away 
from the center of rotation serves as a fulcrum, while the other contact point 
serves as a force application point, causing the actual working length of the plate 
spring to become shorter and the stiffness to increase. The influence of the work-
ing length of the plate spring on stiffness depends on the current working length, 
the shorter the working length, the more dramatic the increase in stiffness, which 
is also the reason for the second point mentioned above. 
 

 
Figure 25. Displacement curve of unidirectional 0 - 20 N·m uniform loading. 

 

 
Figure 26. Third-order polynomial fitting of the pre-rotation −0.2 rad dis-
placement-torque curve. 
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Figure 27. Displacement curve of unidirectional loading. 

 

 
Figure 28. Pre-rotation 0.8 rad. 

 
 

 
Figure 29. Pre-rotation −0.3 rad. 

 
When a load is applied, the lever effect causes the forces on the two needle 

roller bearings to be unequal. The torques of the two contact pairs on the rotating 
center axis were monitored as shown in Figure 30. It can be clearly seen that the 
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Table 2. Comparison between design stiffness and experimental stiffness. 

Pre-rotation 
(rad) 

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Design 
stiffness 

(N·m/rad) 
30 39 49 61 76 93 113 135 160 187 216 

Experimental 
stiffness 

(N·m/rad) 
26 36 47 58 67 78 87 95 105 115 128 

 
sum of the two torques multiplied by 4 is almost equal to the load-bearing force 
of 20 N·m. This also indicates that the force on the plate spring is not the same as 
the ideal design. 
 

 
Figure 30. Torque of −0.2 rad pair of needle roller bearings on rotating shaft. 

 
2) Reciprocating loading experiment 
a) Simulation experiment settings 
The simulation process is similar to the one-way loading experiment, except 

that after 12 seconds, the torque is maintained for 2 seconds, and then the load 
torque changes from 20 N·m to −20 N·m using a ramp function from 14 seconds 
to 24 seconds. The torque is then maintained for 2 seconds, and finally the load 
changes from −20 N·m to 0 N·m from 26 seconds to 36 seconds. The experimental 
groups were still divided into 11 groups according to the pre-rotation angle from 
−0.2 rad to 0.8 rad. The experimental results are shown in Figure 31. 

b) Analysis of experimental results 
The following conclusions can be drawn from the data shown in Figure 31:  
1) The mechanism has extremely small creep characteristics, and the creep de-

creases as the pre-rotation angle increases. At the maximum load point in Figure 
31, after the slow loading torque stops increasing and is maintained for 2 seconds, 
the mechanism still undergoes a small displacement. The displacement decreases 
gradually from low pre-rotation angles to high pre-rotation angles. In addition, at 
the pre-rotation angle of −0.2 rad, the creep is only 0.002 rad when the maximum 
force is maintained, indicating that the creep is minimal. The above statement also 
implies that creep under low stiffness conditions is more severe than that under 
high stiffness conditions. 
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2) The mechanism exhibits a certain hysteresis phenomenon, which is related 
to the pre-rotation angle and stiffness value. The hysteresis curves in Figure 23 all 
exhibit loops, and the area of the loops decreases as the pre-rotation angle in-
creases. At −0.2 rad, the highest angle displacement difference can be as large as 
0.02 rad (approximately 1 degree) under the same torque.  

3) The overall mechanism exhibits a work characteristic of central symmetry, 
which conforms to the original intention of symmetric structural design.  

4) The mechanism as a whole has an extremely small zero error, which can be 
ignored. Figure 32 shows the curve near zero position of Figure 31, and it can be 
seen that the maximum zero error is 0.01 rad. 
 

 
Figure 31. Timing diagram for simulation testing. 

 

 
Figure 32. Load displacement curves under different stiffness settings. 

4.1.3. Stiffness Correction and Working Range 
Based on the experimental results mentioned above, it is necessary to simplify the 
experimental data in the reciprocating experiment to modify the calculation of the 
torsional stiffness ( )3 ,T KK f T r= . Since the radius r is a single-value function of 

https://doi.org/10.4236/jsip.2024.152002


J. X. Li et al. 
 

 

DOI: 10.4236/jsip.2024.152002 54 Journal of Signal and Information Processing 
 

the differential angle of the two motors, in order to facilitate calculation and reflect 
the actual stiffness, corresponding numerical tables and tables of differential angle 
values are established according to the experimental results. 

Firstly, polynomial estimation is applied to the results of the reciprocating ex-
periment in Figure 31, taking the pre-rotation angle of −0.2 rad with the most 
complex curve as an example. As shown in Figure 33, the fitting curve and exper-
imental data curve fit well, with a residual value of only 62. Then, according to the 
polynomial fitting results, the slope-stiffness curve is derived from the curve and 
shown in Figure 34. The torque-stiffness curve is also shown in Figure 35 accord-
ing to the fitting formula. Figure 34 mainly serves to calculate the current stiffness 
based on the current rotation angle (equivalent to knowing the difference between 
the output angle of the two motors and the output angle), and the differential an-
gle of the two motors (equivalent to pre-rotation angle) in subsequent control. 
Figure 35 mainly serves to calculate the current differential angle of the motors 
based on the target torque and stiffness in subsequent control. The region A sur-
rounded by the curves in Figure 34 and Figure 35 essentially indicates the work-
ing range of the VSA, and any action beyond region A cannot be successfully 
achieved. Therefore, boundary penalty functions can also be generated based on 
these two graphs to prevent loss of control. 
 

 
Figure 33. Load-displacement-torque curve under pre-rotation −0.2 rad. 

 

 
Figure 34. Reciprocating load angle-stiffness curve. 
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Figure 35. Reciprocating load torque-stiffness curve. 

4.2. Simulation of CPG Phase Recognition Algorithm 

To verify the performance of the CPG algorithm constructed in this paper, EMG-
based dataset of human walking on a treadmill is collected, and output signals of 
CPG and real signals are compared. The EMG-based dataset was constructed by 
our laboratory, with approval from the Chinese Ethics Committee of Registering 
Clinical Trials. Nine quadrupolar EMG electrodes were mounted on lower-limb 
muscles (rectus femoris, vastus lateralis, vastus medialis, tibialis anterior, soleus, 
biceps femoris, semitendinosus, gastrocnemius medial head, and gastrocnemius 
lateral head) with a sampling frequency of 1111.11 Hz. According to Equation 
(42), the high-frequency noise contained in the limit cycle will bring additional 
interference attraction. Therefore, first use a 3rd-order Butterworth filter to filter 
out noise above 1 Hz from the joint angle signal and angular velocity signal of 
human walking on a treadmill. Then select the waveform corresponding to one 
cycle as the and trajectories ( )f φ  and ( )g φ  for the 1 unit, and normalize 
the time. 

Set the disturbance coefficient 0.1ε = , the amplitude learning gain 1ak =  for 
the 1 unit and 0 unit, and the initial value were set to 20˚ and 10˚ respectively, 
with an initial phase of 0.5. The experimental results are shown in Figure 36 and 
Figure 37. It can be clearly seen from the figures that learning can be completed 
in three steps with significant results. It is foreseeable that the predictive infor-
mation provided to the lower-level control is quite accurate.  
 

 
Figure 36. Angle signal learning diagram. 
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Figure 37. Comparison of normal walking hip joint signals and learning signals. 

5. Conclusions 

This paper aims to conduct experiments on human-machine interaction variable 
stiffness and complete the following works: 

1) Analyzed the requirements for variable stiffness in human-machine interac-
tion experiments, used plate springs as elastic elements, and four-bar linkages as 
driving mechanisms to complete the structural design of a small variable stiffness 
actuator. In the analysis of the dynamic model, it was found that the non-linearity 
of the mechanism is mainly caused by the non-linear stiffness of the plate spring. 
Then, Abaqus software was used for finite element analysis of the plate spring to 
determine that the dynamic characteristics of the plate spring can be ignored. Us-
ing the Abaqus software interface to generate a corresponding simulation model 
in combination with Adams, a unidirectional force and reciprocating force were 
applied to the variable stiffness actuator under joint simulation in MATLAB and 
Adams. It was found that the displacement curve of the stiffness of the mechanism 
was centrally symmetrical and that dead zones and hysteresis phenomena were 
not significant. Finally, the experimental data was fitted by a third-order polyno-
mial to obtain the corresponding stiffness table. 

2) Addressing the lack of research on the convergence characteristics of CPG in 
human body phase recognition. First, the perturbation theory was used to analyze 
the convergence characteristics of CPG units with the same frequency and con-
cluded that the hip joint angle signal will converge in phase under the same fre-
quency. Then, the perturbation theory was used to second-order expand the CPG 
unit, and a judgment formula for frequency convergence was obtained when the 
limit cycle was a circle. According to the formula, corresponding convergence cri-
teria were obtained and the conclusion was extended to the non-circular case of 
the limit cycle. The conclusion was that the convergence of the input signal with 
a negative frequency in the load limit cycle is not affected. Finally, based on the 
conclusions and criteria, a CPG feedback loop was constructed to eliminate the 
mean, and the Simulink was used to verify the algorithm’s reliability and conver-
gence. 

There are still some shortcomings in this work. Firstly, CPG only optimizes the 
upper-level control of the hip joint exoskeleton. Secondly, the simulation 
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experiments of the CPG phase recognition algorithm simulate relatively simple 
types of motion. It is necessary to consider actual application requirements and 
observe the performance of the algorithm under different motion modes and con-
trol accuracy requirements. Finally, the research results of this paper still need 
further real-machine verification to prove. Future works will focus on improving 
the lower-level control of the exoskeleton to realize more accurate and stable con-
trol of the exoskeleton, especially the feedforward compensation considering the 
nonlinear stiffness of the VSA. Simulations containing lower-level control should 
be conducted, and more research and experiments should be taken on the real 
machine to verify the performance of the whole control system. 
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