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Abstract 
Oncological hyperthermia is one of the most versatile forms of oncotherapy. 
It can complement every conventional treatment method and be applied to 
any tumorous cancer, irrespective of its stages and localization. Numerous 
technical realizations are conventionally compared by their thermal effect, 
measured by temperature. However, nonthermal (mainly electric) excitation 
effects are more recognized nowadays. The technical variants alter the synergy 
between thermal and nonthermal energy components. Nonthermal energy ab-
sorption-induced molecular mechanisms include essential behaviors like se-
lectivity and immunogenicity. The nonthermal electromagnetic effects excite 
molecular changes, intracellular signals, gene expressions, and many other 
chemical reactions. Their synergy with thermal conditions is based on the Ar-
rhenius law, which describes the rapid growth of chemical reactions with tem-
perature. A unique technical realization of hyperthermia, modulated electro-
hyperthermia (mEHT) tries to optimize the thermal and nonthermal effects. 
The results look very perspective, containing the high accuracy of targeting 
the tumor cells, the immunogenic cell death, and the activation of tumor-spe-
cific immune reactions restoring the healthy immune surveillance to destroy 
the cancer. 
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1. Introduction 

Hyperthermia (HT), a diverse field with multiple approaches in oncology, is 
poised to revolutionize cancer treatment. The potential to leverage the therapeutic 
benefits of heat offers inspiration for improved outcomes for cancer patients, 
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whether as a standalone treatment or in combination with other therapies. The 
historical origin of hyperthermia, a field traced back to ancient Greek medicine 
when energy delivery to the body was limited, is a testament to its evolution. The 
discovery of electromagnetic energy transfers a couple of hundred years ago 
changed hyperthermia applications. This led to the development of numerous 
electromagnetic energy transports, including electric and magnetic fields, electro-
magnetic radiation: direct current, alternating current, radiofrequency (RF), mi-
crowave, and visible light. Non-electromagnetic applications such as focused ul-
trasound and hyperthermic perfusions were also developed. Diverse concepts sup-
ported these developments, all with the same goal: to selectively and homogene-
ously heat up the tumor at higher temperatures than the homeostatic control.  

All electromagnetic interactions deliver energy to the biomaterials. The energy 
could be realized by heat and, consequently, temperature and electron excitation, 
making chemical reactions. These effects are naturally together because the bioe-
lectromagnetic interactions partly modify compounds’ chemical bonds and struc-
ture with electromagnetic forces. One part of the energy absorption heats the tar-
get, and the other makes the nonthermal interactions. The two energy compo-
nents are used in two kinds of hyperthermic therapies in oncology. One direction 
was Arsene D’Arsonval (1851-1940), a French physician who successfully used 
nonthermally the electric and magnetic fields for oncotherapy [1]. The direct and 
alternating currents, mostly nonthermal, are applied with a combination of chem-
otherapy (electrochemotherapy) [2] in modern medicine. At the same time, the 
Danish physician Kristian Overgaard (1899-1976) focused on the thermal effect 
alone [3]. The temperature approach was more straightforward and accessible to 
control and understand, and so became the mainstream of hyperthermia applica-
tions as a return to the ancient wishes with modern technologies. Due to the lack 
of a complete understanding of bioelectromagnetic processes, controversies were 
developing around it. Some measurements are misinterpreted, most claims have 
no data or only some subjective reports, and some results are shown only in indi-
vidual cases. The wide variety of individual case reports makes it impossible to 
statistically evaluate those effects, which depends on the treated individuals. How-
ever, the debate about the divisive electromagnetic therapies is not useless. It pro-
vokes research and points out the physiological importance of electric currents, 
deriving many modern principles, including the control of the cellular effects [4] 
and modern neuroscience [5]. Even a general hypothesis of “biologically closed 
electric circuits” (BCEC) was formed based on the existence of intrinsic electric 
currents in the body, [6] [7], which idea is used in the treatment of malignant 
diseases [8] [9]. The pathological disorders [10] and wounds induce currents [11]. 
The spontaneous biological charge transfers caused by the tissue-repair process, 
[12] [13], and can be used as a noninvasive indicator of wound healing [14]. The 
biological effects of low-level, non-stationary magnetic fields have been observed 
[15] and adopted [16]. Among these effects, we may find some resonance charac-
ter [17], demonstrating much experimental evidence from the field of ionic 
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cyclotron resonance [18]. Several theoretical explanations of the ion cyclotron res-
onance have been developed [19]-[24]. The resonance effects are dominantly non-
thermal and focus on the molecular excitations and structural changes, inducing 
desired signal pathways.  

Bioelectromagnetic treatments are detached from hyperthermia, while the ther-
mal and nonthermal components are applied in different shares in cancer distor-
tion technical variants. For example, radiotherapy (RT) primarily uses nonther-
mal molecular breaking in DNA stands, and the thermal effects are negligible. On 
the contrary, hyperthermia is the opposite; it focuses on thermal energy, when the 
temperature is the single parameter that measures the dose, and the nonthermal 
energy is neglected in conventional evaluation. Such an approach to hyperthermia 
does not differentiate how which technique produces the heat. The exact temper-
ature production is regarded as an identical treatment. However, it becomes in-
creasingly evident that heat production is deeply connected to nonthermal bioe-
lectromagnetic processes. Considering only the heat energy, the thermal homeo-
static regulation, the stress reactions, the immunogenic aspects, enzymatic regu-
lations, and many other molecular effects became one-sided, having only thermal 
dependence. On the other hand, the thermal calories are not equal to the same 
number of calories from food, inducing nonthermal chemical effects. Life is more 
chemical-based than thermal, so nonthermal chemistry cannot be neglected when 
evaluating bioelectromagnetic effects.  

Energy absorption produces thermal and nonthermal processes. Thermal ef-
fects primarily involve heating tumors to temperatures typically between 39˚C to 
45˚C, which may cause direct cytotoxicity, like protein denaturation. Still, it pro-
vides a general condition for optimization of the other nonthermal processes. The 
growing temperature increases the indispensable enzymatic reactions, but the en-
zymes are blocked over a thermal limit. Also, immune reactions have such thermal 
limitations. The nonthermal effects can significantly influence the overall efficacy 
and outcomes of hyperthermia treatments in oncology. The ionizing radiation like 
radiotherapy (RT) and the chemical interactions of drugs like chemotherapy 
(ChT), together with the many electromagnetic molecular effects and the immu-
nogenic processes are nonthermal but use thermal conditions for higher efficacy 
(Figure 1). According to the Arrhenius law, thermal conditions increase sensitiv-
ity to radiation, and raising the reaction rate enhances chemotherapy efficacy. The 
thermal background provides optimal efficacy for the nonthermal effects of ion-
izing radiation (radiotherapy), chemical reactions (chemotherapy), immune pro-
cesses (immunotherapy), and electrohyperthermia, which uses the electric field to 
modify the molecular reactions. 

2. Differences between the Hyperthermia Techniques 

Different hyperthermia techniques may vary in their ability to induce these non-
thermal biological effects effectively. Technical differences alter the synergy be-
tween thermal and nonthermal energy components. 
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Figure 1. The thermal background (elevated tempera-
ture) provides the appropriate optimal conditions for 
using various nonthermal absorbed energies, including 
the electric field impact, ionizing and nonionizing pro-
cesses, and the chemical changes by drugs.  

 
The thermal and nonthermal processes are synergistically active in all applica-

tions, but the ratio of the two components may differ. The complex combination 
of the thermal and nonthermal effects can alter the physiological and biochemical 
properties (like blood flow, lymph transport, enzymatic processes, etc.). HT in-
creases the microcirculation [25]-[34], and enhances the efficacy of the chemo-
therapies. The enhanced blood flow can improve the delivery of oxygen and ChT 
drugs to the tumor site [35]-[37]. Further support is that the hot drug is more 
reactive [38], providing excellent possibility for synergy, which is even more ef-
fective when considering accelerated drug metabolism and gained pharmacoki-
netic parameters. Furthermore, hyperthermia may activate the G0 phase of cell 
division, making these states reachable to reaction impacts. These advantages can 
improve the efficacy of concurrent treatments and reduce the chances of treat-
ment resistance. 

Various electromagnetic and technical parameters produce hyperthermia ef-
fects, sometimes combined with mechanical actions like ultrasound. The technical 
variations depend on the various chosen designs (Figure 2). The technical param-
eters use the wide variability of the electromagnetic processes including the fre-
quency, energy delivery, acting on selected volumes, and selective molecular fo-
cusing ability, the fiend could be formed in invasive form, and depends on the 
energy source, the energy coupling to the target and at the end the combined 
(complementary) applications with other treatments concomitantly or concomi-
tantly next to each other.  

Techniques differ in how the physiological changes can be manipulated effec-
tively and how to improve treatment outcomes. The methods differ in activating 
the blood vessel permeability in tumors, which can enhance the delivery of chem-
otherapy drugs or oxygen to the tumor site. The nonthermal effects of various 
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hyperthermia techniques involve a complex interplay of molecular excitations and 
biological responses triggered by cellular stress responses to elevated tempera-
tures. These responses encompass a range of molecular pathways and signaling 
mechanisms that influence cell survival. The hyperthermia technique also varies 
by modulation of the immune response, potentially enhancing immune recogni-
tion and attacking cancer cells, increasing the therapeutic outcomes in oncology.  

 

 

Figure 2. The possible technical parameters of electrohyperthermia methods. All shown categories have numerous 
subcategories and could be grouped in various technical solutions. The combination of the parameters allows hun-
dreds of technical solutions.  

 
The technical solution may vary the efficacy [39], modify the reaction rates 

measured by the Arrhenius plot [40], and develop different amounts of HSPs [41], 
different cell destruction [42] [43], different immune activity [44] [45], modifying 
the preclinical [46] and clinical results [47]. Various techniques differ in enhanc-
ing the synergistic effects of other cancer treatments, such as RT or ChT, by opti-
mizing nonthermal mechanisms that may improve patient outcomes. The conse-
quence of the variations appears in the essential differences between the charac-
terization of the methods in Figure 3.  

 

 

Figure 3. The primary technical and operational parameters of electro-
magnetic hyperthermia methods.  
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Understanding how thermal and nonthermal effects interact allows us to opti-
mize basic treatment parameters such as temperature, duration of treatment, and 
integration with other therapies. Technical optimization maximizes therapeutic 
efficacy while minimizing adverse effects on healthy tissues. The optimum of the 
multivariant process is a complicated task, which is the primary intention for all 
hyperthermic designs. The optimum is a Nash equilibrium [48]. In this state, no 
further change of the technical parameters produces higher efficacy, and the con-
tradictory interactions compensate each other in a balance. The equilibrium could 
be lost by changes in the conditions (different individuals, tumor stage and 
change, increasing temperature, etc.), which needs to repeat the optimizing pro-
cess.  

The differences in results between hyperthermia techniques can arise due to 
several other factors:  

1) Different techniques may heat tumors to the same average temperature, but 
the distribution of heat within the tumor and penetration depth can vary. Some 
methods may be better at uniformly heating the tumor throughout its volume, a 
factor that can significantly influence treatment outcomes. 

2) Variations in how well different techniques achieve and maintain the target 
temperature can affect treatment efficacy and safety. 

3) The way heat is transferred to tissues can vary between techniques. Factors 
such as tissue perfusion (blood flow) and the thermal properties of tissues can 
impact how effectively the desired temperature is reached and maintained within 
the tumor. 

4) Hyperthermia is often used in combination with other cancer treatments. 
The synergy between hyperthermia and these treatments may differ depending on 
the specific technique, influencing overall treatment outcomes. 

5) Variability in patient anatomy and tumor characteristics can also interact 
differently with various hyperthermia techniques, affecting individual treatment 
responses. 

The pivotal difference between the applied techniques is the ratio of thermal 
and nonthermal effects. The default effect is thermal. The nonthermal impact is a 
complementary additive to the thermal one. The nonthermal effects are induced 
nonionizing in the tumor microenvironment (TME) by the electric field. The 
complementary synergy of these effects works like the synergic addition of non-
thermal ionizing radiation (radiotherapy) to the thermal impact alone, which is a 
well-proven combination [49]-[51]. The thermal effect and chemotherapy com-
bination are similar to thermal and nonthermal amalgamation. The ChT focuses 
on chemical reactions, which are nonthermal, but the thermal conditions may ac-
celerate the reaction rate and the transport of the chemical drugs [52]-[54].  

The nonthermal effects are a larger category than hyperthermia. Ionizing radi-
ation, nonionizing radiation, electromagnetic fields, and drug-induced chemo 
changes are all nonthermal (Figure 4). The thermal effects promote nonthermal 
processes, which could change the molecular bonds and make signal excitations 

https://doi.org/10.4236/ojbiphy.2024.144014


A. Szasz 
 

 

DOI: 10.4236/ojbiphy.2024.144014 361 Open Journal of Biophysics 
 

by nonionizing energy as HT does. It does not have enough energy to ionize atoms 
or break chemical bonds. When the energy is as high as in the ionizing range, like 
in radiotherapy (RT), it breaks the molecular bonds. The synergy of these non-
thermal effects works in thermo-radio-chemotherapy complementary applica-
tions. Thermally-induced nonthermal effects can stimulate anti-tumor immune 
responses by promoting antigen presentation, activating dendritic cells, and en-
hancing T-cell function. Changes in the TME, including increased infiltration of 
immune cells and modulation of immune checkpoints, can contribute to im-
proved anti-tumor immunity.  

 

 

Figure 4. The ionizing and nonionizing processes have im-
mense nonthermal effects on modifying molecular struc-
tures. Additional drugs make chemical impacts and form new 
molecules. Their synergy provides the basis for combining 
nonthermal HT effects with RT and ChT.  

 
The essential biological differences between the electromagnetic hyperthermia 

techniques include numerous molecular and physiological changes (Figure 5). 
The consequence of the technical differences is the massive variation of the effects 
achieved with the applied method.  

2.1. Thermal-Nonthermal Balance 

Hyperthermia can induce various biological responses within cells and tissues be-
yond heating them. The optimal parameters are technique-dependent and deter-
mined by the interaction of thermal and nonthermal processes. They may enhance 
the overall effectiveness of HT as a treatment modality in oncology. The thermal 
effects induce a counter-reaction by thermal homeostasis, which tries to restore 
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the equilibrium thermal conditions. The nonthermal effects modify the molecular 
bonds and may also have counter-reactions by natural compensations, like chap-
erone proteins. HT’s thermal and nonthermal effects interact through various bi-
ological mechanisms, often synergizing to enhance treatment outcomes and in-
teract complexly. The potential of hyperthermia to enhance treatment outcomes 
is significant, offering hope for improved patient outcomes. The thermal condi-
tions provide the optimal situation for the nonthermal contribution to vasodila-
tion and vasocontraction, altering tumor blood flow. While heat directly damages 
cancer cells (thermal effect), it also releases HSPs into the tumor microenviron-
ment (nonthermal effect) that can further sensitize cells to radiation or chemo-
therapy. Combining thermal and nonthermal effects can lead to complex biolog-
ical responses within tumors. These responses may involve a balance between cy-
totoxicity (thermal) and immune activation (nonthermal), ultimately influencing 
tumor regression and clinical outcomes.  

 

 

Figure 5. The important processes of mEHT. 
 

The thermo-chemotherapy results in a better therapeutic effect, increasing the 
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is also applied in low-dose metronomic chemo-regulation [59]. Some key molec-
ular excitations and processes involved in thermal and nonthermal effects are 
shown in Figure 6.  
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merous optimized parameters chosen from the electromagnetic possibilities (Fig-
ure 7).  
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Figure 6. Differences and similarities interact in a synergy of energy absorption’s 
thermal and nonthermal components.  

 

 

Figure 7. The selected parameters for mEHT. (a) Selection from the possibilities of electromagnetic hyperthermia (em-
phases with red letters); (b) The most important parameters of mEHT.  
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range. The β-dispersion is interfacial polarization [60], targeting the cancer region 
[61]. This frequency is optimal for selecting malignant tumors based on their extra 
electric conductivity [62], driving the radiofrequency (RF) current to this region. 
This behavior can also be used for diagnostics [63]. The cancer cells in the tumor 
behave autonomically and break the healthy network connections with other cells, 
which increases their dielectric constant (permittivity) [64]-[66], which allows 
their recognition [67] [68]. The 13.56 MHz is an ISM standard for hospitals, so it 
does not require extra shielding for operation. The high conductivity and dielec-
tric behavior concentrate the energy absorption on the cell membrane [69]. The 
tumor microenvironment (TME) differs from the general extracellular matrix 
(ECM) [70], which helps the selection process.  

2) The applied amplitude modulation is chosen from the low-frequency 𝛼𝛼-dis-
persion range, providing the appropriate extrinsic signaling for apoptosis and im-
munogenic cell death, forcing healthy homeostatic control [71].  

3) The complete selection is resonance-based [72], accurately ensuring the op-
timum of the processes. Resonance is stochastic and fits the impedance matching 
and also the modulation [73].  

4) Due to the molecular selection, the energy is not used to heat the entire tumor 
mass, which allows much lower incident power than in conventional hyperther-
mia applications [74]. This makes the method safer and causes fewer adverse ef-
fects, avoiding thermal toxicity (burns).  

5) The overlapping 𝛿𝛿-dispersion [75] helps to select the water-bonded lipid-
protein complexes in the glycoprotein lipid microdomains (rafts) [76]. The mem-
brane rafts are enveloped in a nonconductive lipid membrane environment, so 
their relatively high conduction achieves their precise heating by increasing the 
mEHT treatment’s heating preciosity [77]. Raft excitation is highly likely in these 
conditions and may trigger intracellular signals [78]. 

6) Due to the high preciosity and proper selection, the dosing does not need 
temperature control or enough energy (power, RF current) control in the treat-
ment.  

7) The thermal and nonthermal effects are synergistically optimized [74], giving 
the suitable condition for the signal transfers to develop a molecular pattern in an 
appropriate space-time form, releasing damage-associated molecular pattern 
(DAMP) in an immunogenic cell death (ICD) process [79].  

8) The unique real-time tuning, which matches the patient’s impedance to the 
treatment, increases the treatment accuracy [80]. The patient is an organic part of 
the RF resonant conditions, acting like one of the discrete elements of the electric 
circuit [81].  

9) The mEHT is a kind of hyperthermia but a heterogeneous heating solution 
[82]. The selectively heated microdomains work like nanoparticle heating. The 
domains absorb high energy, having higher temperatures than their environment. 
They start to heat by conducting their vicinity, which produces a mild temperature 
level on average in the tumor.  
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The mEHT method has numerous publications discussing the above phenom-
ena. The most comprehensive material could be found in two books, and some 
chapters of others dealing with this method [83]-[88]. 

3. Perspectives of Modulated Electrohyperthermia (mEHT) 

The mEHT fits the latest trends in oncotherapy development [89] [90]. It is selec-
tive, safe and immunogenic.  

3.1. Selective Application Using the Cancer’s Electric and Thermal  
Differences (Biophysical Characters) 

The main selectivity characters of mEHT [91]: 
• Choses the tumor by high conductivity; 
• Choses the tumor cells in the tumor mass by their autonomy; 
• Choses the transmembrane proteins by their easy excitation; 
• Absorbs the energy by homeostatic harmony. 

The mEHT selectively attacks the malignant cells and mostly naturally kills 
them. It is essential because it allows for more effective and targeted treatment 
strategies, which can lead to better outcomes for cancer patients. When mEHT 
selectively targets the cancer cells, it can minimize damage to surrounding healthy 
tissues and organs, reducing the severity of side effects experienced by the patient. 
Selective targeting allows mEHT to focus more effectively on eliminating cancer-
ous cells. This can enhance the overall efficacy of treatment by increasing the like-
lihood of killing cancer cells while sparing healthy ones. Cancer cells can develop 
resistance to treatments over time, making them harder to eliminate. The mEHT 
targets specific vulnerabilities of malignant cells and may reduce the likelihood of 
resistance developing, potentially improving long-term treatment outcomes. The 
selectivity of mEHT towards specific types of cancer cells can lead to more per-
sonalized treatment approaches. This could involve tailoring therapies based on 
the patient’s cancer cells’ genetic profile or other characteristics, potentially opti-
mizing treatment effectiveness. The selectivity of mEHT can contribute to better 
patient outcomes by maximizing the therapeutic effect on cancer cells while min-
imizing harm to healthy tissues. This balance is crucial for improving cancer pa-
tients’ survival rates and quality of life. 

3.2. The Nonionizing Nonthermal Electric Field Application 

The RF application of mEHT is nonionizing. It represents an innovative approach 
that offers significant advantages in terms of efficacy, safety, and patient-centered 
care compared to traditional ionizing radiation or chemotherapy. Continued re-
search and technological advancements in this field hold promise for further im-
proving outcomes and expanding treatment options for cancer patients.The 
mEHT offers several advantages that make it valuable in clinical practice. The 
main nonionizing nonthermal processes used by mEHT:  
• Changes chemical processes without extra toxicity by using only natural 
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processes; 
• Guides the processes in harmony with homeostasis (note that it is applicable 

not only for oncology); 
• Helps to reduce the side effects of conventional therapies by targeting the tu-

mor; 
• Improves the efficacy of chemo reactions and radio effects (note that it is ap-

plicable not only for oncology). 
Nonionizing mEHT is delivered strictly localized. This localization helps mini-

mize systemic toxicity and adverse effects commonly associated with systemic 
treatments like chemotherapy. The locally enhancing reaction rate of the chemo 
drug increases its efficacy, and the higher blood perfusion also increases its con-
centration. The locally higher concentration leaves less concentration for systemic 
adverse effects. It can be repeated multiple times if necessary, without cumulative 
toxicity. This flexibility can be beneficial for managing recurrent tumors or ad-
dressing residual cancer cells after initial treatment. The nanoscopic raft heating 
of mEHT offers precise control over the treatment area and depth, allowing clini-
cians to target tumors accurately. This precision helps to concentrate the thera-
peutic effect on the cancerous tissue while preserving nearby critical structures. 
The mEHT can often be combined with other treatment modalities such as sur-
gery, radiotherapy, chemotherapy, or immunotherapy. This multimodal ap-
proach can synergistically enhance treatment outcomes by targeting different as-
pects of cancer biology or overcoming treatment resistance. The mEHT has 
demonstrated effectiveness across a range of cancer types and stages. They can be 
tailored to specific tumor characteristics, making them versatile in clinical oncol-
ogy practice. It typically results in less discomfort, shorter recovery times, and im-
proved overall quality of life for cancer patients.  

3.3. Immunogenic Effects, Tumor Vaccination 

The immunogenic effects of mEHT therapy refer to the treatments’ ability to stim-
ulate the body’s immune system to recognize and attack cancer cells. This ap-
proach offers several distinct advantages in the treatment of cancer. The immu-
nogenic effects in cancer therapy represent a promising avenue for improving 
treatment outcomes, expanding treatment options, and potentially achieving 
long-term remission or even cures for certain types of cancer. The main immu-
nogenic effects of mEHT [92]:  
• Activates the innate and adaptive immune system by recognizing the cancer 

cells; 
• Produces tumor antigen presentation for killer T-cells; 
• Attacks the cancer cells all over the body in micro and macro metastases (ab-

scopal effect); 
• Works like tumor vaccination (patented). 

The immunogenic effect of mEHT can specifically target cancer cells based on 
their unique molecular markers or antigens, potentially sparing healthy tissues 
from damage. The induced immunogenic cell death releases unharmed molecules 
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with information about the cancer cells, which was hidden for immune surveil-
lance until this. This targeted approach also enhances the specificity of treatment. 
The mEHT immunogenic cell death (ICD) can induce a durable antitumor re-
sponse. Once activated, the immune system can continue recognizing and elimi-
nating cancer cells, providing long-term benefits. ICDs can activate immune cells 
throughout the body, enabling them to seek out and destroy cancer cells wherever 
they may be present, including micro and macro metastatic sites (abscopal effect) 
[93] [94]. This systemic effect enhances the treatment’s ability to address wide-
spread disease. The likelihood of developing resistance to mEHT therapy de-
creases over time is minimal. The mEHT can overcome these resistance mecha-
nisms by targeting different pathways or enhancing immune surveillance. The 
mEHT can be combined with other treatments that can synergistically improve 
treatment outcomes by simultaneously targeting multiple aspects of cancer biol-
ogy. The mEHT immunogenicity is automatically tailored to individual patients 
based on their immune profile and the specific characteristics of their cancer. This 
personalized approach also may improve treatment efficacy and reduce unneces-
sary side effects. The mEHT-induced ICD may successfully treat cancers that were 
previously difficult to treat with conventional therapies. The mEHT develops a 
tumor-specific vaccination, which can induce immunological memory. This means 
that the immune system retains a memory of the cancer cells, protecting against 
recurrence or future metastases. 

4. Conclusions 

The perspectives of hyperthermia, especially the modulated electrohyperthermia, 
have multiple possible ways for future realization.  

1) Hyperthermic therapies must increase their focus on the target, avoid un-
wanted hot spots in healthy tissues, and limit heat spreading by natural heat con-
ditions. The mEHT, with its molecular selectivity on the membrane rafts of ma-
lignant cells, optimizes the selectivity of energy absorption.  

2) Hyperthermia must harmonize thermal and nonthermal processes to choose 
the best signal pathways to destroy the tumor. The mEHT optimizes the molecular 
actions and signals excitations with a synergy of the thermal and nonthermal pro-
cesses. 

3) The rapid development of immuno-oncology affects all modern oncology 
treatments. Hyperthermia must fit this new trend. The mEHT, which induces im-
munogenic cell death, induces immunogenic effects and could be well harmo-
nized with other immunotherapies.  
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