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Abstract 
Aquamarine gemstones are popular jewelry in the gemstone trade and are 
currently one of the important products in the world market because of their 
economic value. Aquamarine is a Beryllium Aluminium Silicate with the 
chemical formula Be3Al2Si6O18 and crystallizes in the hexagonal system with 
space group P6/mcc (192), and Tanzania has wide deposits of aquamarine 
gemstones. The quality of gemstone depends on its characteristic properties, 
including electronic, optical, and mechanical properties. In the present study, 
the effect of external pressure on mechanical properties including independ-
ent elastic constants and other related parameters such as Bulk modulus, 
Shear modulus, Young modulus, Poisson’s ratio, and Compressibility were 
studied. Density Function Theory in the forcite module of the material stud-
ies software on the external pressure within the range of 0 - 200 GPa on the 
optimized structure at electrostatic, Van der Waals and Ewald terms were 
used in this study. The results reveal that the independent elastic constants 
are mechanically unstable at 50 - 120 Gpa and are stable at 0 - 40 GPa and 
above 120 GPa, with the average bulk modulus, shear modulus, young mod-
ulus, Poisson’s ratio of 2319.9447, 652.3058, 1789.2236, and 0.26 respectively 
with the compressibility of 0.059921/TPa, this indicates that aquamarine 
gemstones are stable against strain and strongly against shear stress but op-
posing shear deformation. These values are within other crystalline materials 
found in the literature. This provides technological backing for the compre-
hensive valuation of mechanical properties, quality, and stability of gem-
stones available in Tanzania.  
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1. Introduction 

Information shows that aquamarine gemstones are currently one of the Tanza-
nia gemstones products it her market because of their economic value [1]. This 
gemstone is a Beryllium Aluminium Silicate with the chemical formula Be3Al2Si6O18 
and exhibits a hexagonal structure with P6/mcc (192) space group [2] [3]. Most 
aquamarine gemstone is found in the Namtumbo district, Ruvuma region [1]. 

Researchers have studied various properties of the gemstone experimentally 
and theoretically and observed that its colors vary from light blue to greenish 
blue with other possible variants as shown in Figure 1 and Figure 2 [4]. Further, 
the study revealed that gemstone hardness values vary from 7.5 ˗ 8.0, specific 
gravity between 2.67 - 2.71, and refractive index between 1.577 - 1.583 [5]. 
However, many properties such as mechanical, optical, and electronic properties 
still need to be explored because the quality of a gemstone depends widely on the 
nature of the mineral and its origin and external pressure due to the height from 
sea level [6] [7].  
 

 

Figure 1. Beryl varieties [4]. 
 

 

Figure 2. Aquamarine raw stone [4]. 
 

Understanding elastic constants and elastic moduli is crucial to knowing the 
mechanical characteristics of materials [8]. To obtain important information on 
the stability unit cell structure by calculating the elastic constant and the elastic 
modulus such as bulk modulus B, shear modulus G, Young’s modulus E, and 
Poisson’s ration are important to be known to establish the stability of the crystal 
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[9]. Each material has certain respect of strengths and weaknesses in certain re-
spect [10]. 

Density Functional Theory (DFT) is the most widely used ab initio quantum 
computational framework for theoretically understanding the material proper-
ties at the atomistic level [11]. DFT calculations utilized the total energy and 
plane-wave methodology to solve the Kohn-Sham equation [9], and investigate 
mechanical properties of the materials [12]. The mechanical properties of the 
crystal’s stability are due to its capacity to withstand external stress and can be 
studied by elastic properties [13]. This study intends to investigate and analyze 
the mechanical properties of aquamarine gemstones using the DFT method to 
explore their mechanical properties at the atomistic level under applied external 
pressure in the range of 0 - 200 GPa.  

2. Methodology 

The crystal structure was built in the materials studio software package from the 
experimental values of the crystal system obtained from the crystalline database 
[14]. The geometry optimization of the structure was carried out using the for-
cite module [15]-[17]. During optimization and energy calculations, a smart al-
gorithm with universal force fields was used, with an ultra-fine quality setting of 
2 × 10−5 kcal/mol of energy, 0.001 kcal/mol/Å of force, and 1 × 10−5 Å of dis-
placement [18]-[20].  

After the geometry optimization of the structure, the mechanical properties 
were computed on the geometry optimization results obtained using the forcite 
module [16] [19]. During these calculations, the stiffness constants Cijs were 
first calculated using the elastic matric Equation (1) [21]. Independent elastic 
constants C11, C12, C44 and C66 obtained from the results of the stiffness matrix Cij 
independently for all external pressure were used to analyze the necessary stabil-
ity criteria are presented on Equation (2) [8] [9] [22] [23].  
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Similarly, Bulk modulus (B) and shear modulus (G) were calculated from Re-
us, Voight, and Hill using Equations (3) and (4), while Youngs’ Modulus and 
Poisson’s ratio were calculated by using Equations (5) and (6) respectively as 
used elsewhere [23]-[27]. 
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where: BV is the Bulk Modulus Voigt, 
BR is the Bulk modulus, Reus, 
GV is the Bulk Modulus Voigt, 
GR is shear modulus Reus, 
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where B is Bulk Modulus, 
G is the hear Modulus, 
Y is Young Modulus, 
ν is the Poisson’s ratio. 
The ability to resist the deformation and flexibility of the gemstone is repre-

sented by the equation  
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v

−
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 (7) 

where H is the hardness or stiffness constant,  
ν is Poisson’s ratio, 
Y is the Young’s modulus. 

3. Results and Discussion 

The optimized structure was subjected to force fields, with an ultra-fine quality 
setting of 2 × 10−5 kcal/mol of energy, 0.001 kcal/mol/Å of force, and 1 × 10−5 Å 
of displacement in order to investigate its stability conditions. Figure 3 repre-
sents the optimized structure, and all the constituent atoms of the aquamarine 
gemstone with their respective positions. 
 

 

Figure 3. The optimized structure. 
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The crystal lattice parameters a = b = 9.2909 Å; c = 9.1996 Å; α = 90; β = 90; γ 
= 270; V = 687.726 Å3 which is concurrent with the results reported in the crys-
talline database with Be, Al Si, and O [2].  

The Born stability conditions are represented by Figure 4, whereby C11 indi-
cates the stiffness of the material (Figure 4(a)), C12 shear stress (Figure 4(b)), 
and C44 shear deformation (Figure 4(c)). Figure 4(a) indicates the values of 
stiffness oscillate with variations of external pressure, this indicates that aqua-
marine gemstones are stable against strain. While shear stress values oscillated in 
positive and negative values (Figure 4(b)), the positive values outperformed the 
negative values. This also shows that the gemstone considered in this study is 
strongly against shear stress. However, C11 is 0 GPa at the external pressure 140 
GPa and C12 is 4800 GPa at that particular pressure, this violate the stiffness 
condition one from equation 2 mean while at C11 is less 1400 Gpa while C12 is 
2400 Gpa at the external pressure 60 GPa which also violet the Born stiffness 
condition. Figure 4(c), large portions of shear deformation to the negative side, 
this indicates that aquamarine gemstone to a large extent opposes the shear de-
formation [25]. With these parameters considered for Born stability, we can 
conclusively say that aquamarine gemstone is has accepted Born stability condi-
tions except at external pressure 60 GPa and 140 GPa. 
 

 
(a) 

    
(b)                                             (c) 

Figure 4. (a) C11 vs external pressure, (b) C12 vs external pressure (GPa), (c) C44 vs external pressure (GPa). 
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On the basis of mechanical properties such as compressibility, bulk modulus, 
and shear modulus with variations of external pressure were also investigated. 
Figures 5-7 present the fluctuations of compressibility, bulk modulus and shear 
modulus with external pressure respectively. As it can be seen from all three 
curves, the beryllium aluminum silicate material is mechanically stable at the 
external pressure 0 - 40 GPa and above 120 GPa. This stability is indicated by 
small oscillations, while it was unstable at the pressure of around 50 - 120 GPa. 
 

 

Figure 5. Compressibility vs external pressure. 
 

 

Figure 6. Young’s modulus with external pressure. 
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Figure 7. Poisson’s ratio with external pressure. 
 

Other important parameters for determining the hardness of the crystalline 
material are Young’s modulus, Poisson’s ratio (ν) and Young’s modulus tells 
how the material can withstand once subjected to elastic deformation. Figure 6 
shows the variations of the young modulus with the applied external pressure. In 
the range where the beryllium aluminum silicate material was found to be me-
chanically stable, the values of Young’s modulus varied from 0 - 9000 GPa. Thus, 
this material is mechanically stable within that range of external pressure. While 
the average value of Poisson’s ratio was 0.26 as indicated in Figure 7, this value 
is within other crystalline materials found in the literature [8] [16] [28]. 

The critical value of Poisson’s ratio is 0.28 [29], where changes from brittle 
materials to ductile materials. The materials are regarded as ductile materials 
when 0.2857 0.5v<   and as brittle materials 0.125 0.285v< <  [30]. More-
over, some materials have both ductile and brittle properties, and their Poisson 
ratio range varies from 0.26 to 0.42 [29] [30]. Therefore, it is seen from Figure 7 
that most values of the Poisson ratio with increasing external pressure dominat-
ed above the average value of 0.26. Hence, aquamarine gemstone considered in 
this study exhibits ductile properties.  

4. Conclusion  

Aquamarine gemstone (beryllium aluminium silicate) with chemical formula 
Be3Al2Si6O18 which crystallizes in the hexagonal system with P6/mcc (192) space 
group its effect of external pressure on mechanical properties has been studied 
using the First principle. Using Materials Studio simulation, the forcite module 
was used to calculate mechanical properties at convergence tolerance energy of 
2e−005 kcal/mol, the force of 0.001 kcal/mol/A, and tress of 0.001 GPa while ap-
plying the external pressure within the range of 0 - 200 GPa on the optimized 
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structure at electrostatic and Van der Waals terms Ewald. The results show that 
the independent elastic constants are mechanically stable at 0 GPa to 40 GPa, 
above 120 Gpa, and unstable at 60 - 120 Gpa. While the average bulk modulus, 
shear modulus, Young’s modulus, and Poisson’s ratio are 2319.9447, 652.3058, 
1789.2236, and 0.26 respectively. The compressibility of the material was found 
to be 0.059921/TPa, this indicates that aquamarine gemstones are stable against 
strain and strongly against shear stress but opposing shear deformation. These 
values are within other crystalline materials found in the literature [28]-[30]. 
Furthermore, this provides technological backing for the comprehensive valua-
tion of mechanical properties, quality, and stability of gemstones available in 
Tanzania.  
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