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Abstract 
In this article, we address the solution of the Einstein’s equations in the vac-
uum region surrounding a spherically symmetric mass distribution. There are 
two different types of mathematical solutions, depending on the value of a 
constant of integration. These two types of solutions are analysed from a 
physical point of view. The comparison with the linear theory limit is also 
considered. This leads to a new solution, different from the well known one. 
If one considers the observational data in the weak field limit this new solu-
tion is in agreement with the available data. While the traditional Schwarz-
schild solution is characterized by a horizon at 22r GM c= , no horizon ex-
ists in this new solution. 
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1. The First Part That Is Equivalent to the Commonly  
Accepted Treatment 

We will first recall the treatment leading to the traditional Schwarzschild solu-
tion [1]-[3] and will use the formulas with 1c ≡ .  

We solve the Einstein’s equations in the vacuum region surrounding a spher-
ically symmetric mass distribution. 

Now, the corresponding gravitational field must also have spherical symmetry 
[3]. Since it is of interest to deal with a collapsing spherical mass, that is, a sphere 
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that shrinks in size, we begin by assuming a space-time metric that includes a 
time dependence for the components of the metric tensor [3]. At the end of our 
calculation one finds that in the above vacuum region this time dependence dis-
appears: as in the case of the Newtonian gravitational potential, the exterior so-
lution for the metric tensor of a spherical mass does not depend on the size of 
the mass and remains static even when the mass collapses, due to Birkhoff’s the-
orem [3].  

The spherical symmetry of the gravitational field imposes severe restrictions 
on the form of the space-time interval. The rectangular displacements dx , dy ,
dz  must occur in the combination 2 2 2d d dx y z+ +  characteristic of spherical 
symmetry; this combination takes the familiar form 2 2 2 2 2 2d d sin dr r rθ θ ϕ+ +  
when is expressed in spherical polar coordinates [3]. Furthermore, although the 
product d dr t  is consistent with spherical symmetry, the products d dtθ  and 
d dtϕ  are not consistent with spherical symmetry, because they are different 
when moving in the direction of increasing or decreasing θ  and ϕ  [3]. Ac-
cordingly, the space-time interval must be of the form [3]: 

 ( ) ( ) ( )2 2 2 2 2 2 2 2d , d , d d sin d 2 , d ds A r t t B r t r r r F r t r tθ θ ϕ = − + + −   (1) 

where ( ),A r t , ( ),B r t  and ( ),F r t  are some functions of the radial coordi-
nate r and the time coordinate t. 

As H. C. Ohanian and R. Ruffini note [3], the angular coordinates θ  and ϕ  
are unambiguous; the measurement of these coordinates depends only on our 
ability to divide a circumference concentric with the mass into equal parts, 
which we can do even when the functions ( ),A r t , ( ),B r t  and ( ),F r t  are 
not specified. The radial coordinate r is ambiguous because we do not yet know 
its precise relation to the measurement of distance. For a start, as [3], we will 
treat r simply as a parameter that identifies different spherical surfaces concen-
tric with the mass. Obviously r is always greater than zero since we are looking 
for a solution for vacuum region surrounding a spherically symmetric mass dis-
tribution. The time coordinate t suffers from similar ambiguities. However, we, 
as [3], will insist that when  r →+∞  and the space-time becomes flat, the in-
crements in r and t should equal the increments in the true distance and time, 
respectively. This requires that for  r →+∞ , ( ),A r t  and ( ), 1B r t → . 

The term involving d dr t  in the Equation (1) can be eliminated by a change in 
the time coordinate. We, as [3], introduce a new time coordinate t  such that 

 ( ) ( )d d d ,t A t F r Q r t= −  (2) 

where ( ),Q r t  is a function of r and t that is to be chosen so as to make the 
right side of the Equation (2) into a perfect differential [this requires that Q sat-
isfy the following differential equation: ( )( ) ( )( )t FQ r AQ∂ ∂ = − ∂ ∂ ]. 

From the Equation (2) we obtain [3]: 

 
2

2 2 2
2
1d 2 d d d dFA t F r t t r

AQ A
− = −  (3) 

which gives: 
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2

2 2 2 2 2 2 2 2
2
1d d d d sin dFs t B r B r r

AQ A
θ θ ϕ

 
 = − + − +   

 
  (4) 

We can note that we have obtained a formula equivalent to the traditional one 
for a spherically symmetric space-time, as we can see in H. Takeno [4]. 

We, as [3], can simplify the Equation (4) further by introducing a new radial 
coordinate ( )r r B r= . This has the advantage that the terms involving angu-
lar displacements reduce to 2 2 2 2 2d sin dr rθ θ ϕ+  , so we obtain, as [3]: 

 
22

2 2 2 2 2 2 2 2
2
1d d d d sin dF rs t B r r r

A rQ A
θ θ ϕ

  ∂ = − + − −  ∂  


  



 (5) 

For the solution of the Einstein’s equations, it is convenient, following [3], to 
omit the tildes in the Equation (5) and to write the unknown functions multi-
plying 2dt  and 2dr  as exponentials: 

 ( ) ( ), ,2 2 2 2 2 2 2 2d e d e d d sin dN r t L r ts t r r rθ θ ϕ= − − −  (6) 

With 0x t= , 1x r= , 2x θ= , 3x ϕ= , the metric tensor corresponding to 
the Equation (6), as H. C. Ohanian and R. Ruffini note [3], is: 

 
2

2 2

e 0 0 0
0 0 0
0 0 0
0 0 0 sin

N

Le
g

r
r

µν

θ

 
 

− =  −
  − 

 (7) 

The unknown functions are now ( ),N r t  and ( ),L r t . We will use the Ein-
stein’s equations to find them. 

As H. C. Ohanian and R. Ruffini note [3], the Christoffel symbols for a metric  

tensor of the form (7) are (the primes indicate space derivatives: NN
r

′ ∂
≡
∂

 and 

LL
r

′ ∂
≡
∂

; the dots indicate time derivatives: NN
t

∂
≡
∂

  and LL
t

∂
≡
∂

 ): 

 

0 0 0
01 10

0 1
11 00

1 1 1
10 01 11

1 1 2
22 33

2 2 2
12 21 3

00

3

3 3 3 3
13 31 23 32

1 1, ,
2 2
1 1e , e ,
2 2

1 1, ,
2 2

e , sin e
1 , sin cos ,

1 , t

,

co

L N N L

L L

N N

L N

L L

r r

r

r

θ

θ θ

θ

− −

− −

Γ = Γ = Γ

′Γ = Γ =

′Γ = Γ = Γ =

Γ = − Γ = −

Γ = Γ = Γ = −

Γ = Γ = Γ = Γ

=

=

′





 (8) 

All other Christoffel symbols are zero.  
As H. C. Ohanian and R. Ruffini note [3], the Ricci tensor Rµν  can be calcu-

lated from the Christoffel symbols; only the 00, 01, 10, 11, 22, 33 components of 
Rµν  are nonzero. 

The Einstein’s field equation in vacuum is [3]:  
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 1 0
2

R g Rµν µν− =  (9) 

By taking the trace of this equation, we find, as [3], that 0R = . Hence the 
Equation (9) reduces to:  

 0Rµν =  (10) 

The 00, 01, 10, 11, 22 and 33 components of this equation, as H. C. Ohanian 
and R. Ruffini note [3], are as follows: 

 
( )2

00

  
e 0

2 4 4 2 4
N L

L L NN L N N N LR
r

−
− ′′′ ′

= − + − − + + = 
 

′ ′ 





 

 (11) 

 01 10 0LR R
r

= − = − =


 (12) 

 
( )2

11

  
e 0

2 4 4 2 4
L N

L L NN L N N L LR
r

−
 −
 = −

′′ ′ ′ ′
+ − + + =

  

′ 





 

 (13) 

 ( )22
1e 1 1 0
2

LR r N L−  = + − − = 
′


′  (14) 

 ( )2 2
33

1sin e 1 sin 0
2

LR r N Lθ θ−  = + − − = ′
 

′  (15) 

Although these equations look complicated, they can be integrated quite easily. 
The Equation (12) says that L is time independent, and this implies that all the 
terms involving time derivatives in the Equations (11) and (13) drop out. The 
sum of the Equation (13) and eL N−  times the Equation (11) then gives:  

 0L N
r r
′ ′

− − =  (16) 

from which we have [3]:  

 ( )N L h t= − +  (17) 

where ( )h t  is an arbitrary function of time [in regard to the space derivatives 
in the Equation (16), this function ( )h t  behaves like a constant of integration]. 

When we substitute the Equation (17) into the Equation (14), we find, as [3]: 

 ( )e 1 1L rL− ′− + =  (18) 

This equation can be rewritten as:  

 
de 1 1
d

L Lr
r

−  − + = 
 

 (19) 

From which we have: 

 ( )d e 1
d

Lr
r

− =  (20) 

from which we have: 

 e Lr r C− = +  (21) 

where C is a constant of integration that can have any real value (positive, nega-
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tive or null) and r is always greater than zero. 
If there had been a generic function of r on the first member of the (21) then 

we would not have any constraints connected to the values of C and r. But the 
particular shape of this first member entails, as we will see, further constraints 
on the admissible values of C and r. 

From the Equation (19), because of the fact that e L− , r and dr  are all real, 
we can say that also dL  must be real. For which, since 0L =  for  r = +∞ , L is 
equal to a real number for all values of 0r > . 

Thus in the first member of the Equation (21) there is an exponential with a 
real exponent, which exponential is always positive, multiplied by r which is also 
positive for all values of r greater than zero. Therefore also the second member 
of the (21) must be greater than zero for all positive values of r.  

2. The Two Cases of C ≥ 0 and C < 0 
2.1. The Case of C ≥ 0 

If C is chosen greater than or equal to zero then the second member of the (21) 
is always greater than zero for all values of 0r > . 

2.2. The Case of C < 0 

If C is a negative number the second member of the (21) is greater than zero on-
ly for the values of r greater than −C. 

This constraint does not come from the derivatives with respect to which a 
positive or negative or zero value of the constant C makes no difference, but 
from the particular form of the Equation (21) in which the constant C was in-
troduced. 

In the commonly accepted treatment C is assumed to be −2GM [3] and this 
solution is considered valid even for r equal to or less than 2C GM− = , the 
so-called Schwarzschild radius. 

This is not correct, since in the case of negative C the values of r cannot be less 
than or equal to −C, i.e. in this case 2GM, otherwise the (21) is not satisfied.  

The values of r equal to or less than 2GM are precisely those corresponding to 
the points on or inside the event horizon.  

In conclusion there are two types of mathematical solutions, one for the val-
ues of 0C ≥  for which the solutions are valid for all positive values of r. A sec-
ond one for the negative values of C for which the solutions are valid only for the 
values of r greater than −C (that is, commonly for 2r GM> ).  

3. Physical Analysis of the Case with C ≥ 0 

We first consider the case with 0C ≥  which, as we have seen, has solutions for 
all values of 0r > . 

The fact that these solutions hold for all values of 0r >  satisfies a physical 
requirement, since we are looking for a solution for the vacuum region sur-
rounding a spherically symmetric mass distribution of radius R, which mass dis-
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tribution can be concentrated into an arbitrarily small radius R. 
Now, from the (21) we have: 

 1Le C
r

− = +  (22) 

From which we have: 

 
1

1

Le C
r

=
+

 (23) 

where C is a constant ≥0. 
According to the Equation (17), the solution for ( )N r  is then: 

 ( ) ( ) ( ) ( )e e 1 eN r L r h t h tC
r

− +  = = + 
 

 (24) 

With the solutions (23) and (24), the space-time interval for the spherically 
symmetric field takes the form: 

 ( )2 2 2 2 2 2 2 21d 1 e d d d sin d
1

h tCs t r r rCr
r

θ θ ϕ = + − − − 
  +

 (25) 

where C is a constant ≥0.  
Here, the time-dependent function ( )h t  remains undetermined and un-

known. The field equations do not determine this function, but we can eliminate 
it by means of a transformation of the time coordinate. If we, as H. C. Ohanian  

and R. Ruffini [3], adopt a new time coordinate t  such that 
( )
2d e d

h t

tt ≡ , then 
the function ( )h t  disappears from view, and the first term of the right side of 

the Equation (25) becomes 21 dC t
r

 + 
 

 . We can then omit the tilde, so we ob-

tain, as H. C. Ohanian and R. Ruffini [3]:  

 2 2 2 2 2 2 2 21d 1 d d d sin d
1

Cs t r r rCr
r

θ θ ϕ = + − − − 
  +

 (26) 

where C is a constant ≥0. Obviously, 0C =  corresponds to the absence of the 
gravitational field. 

We can see that in the (26) there is no singularity in the coefficients of 2dt  
and 2dr  for any value of 0r > . In particular, for r C=  we have that this 
metric is perfectly defined and regular. 

Moreover, according to the (26), for any value of 0r >  the coefficient of 
2dt  always remains positive and the coefficient of 2dr  always remains negative. 

Therefore, the time t never becomes as a spatial coordinate and the spatial coordi-
nate r never becomes as a temporal coordinate. There is no an event horizon. 

On the other hand, this is in agreement with the fact that the Einstein’s field 
equation [1] [3] [5]-[7] is symmetric with respect to time, i.e. is invariant under 
time reversal T [8]-[13], as can also be easily obtained directly from the CPT 
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symmetry, since in this case we have invariance under the parity transformation 
since we have a spherical symmetry, and invariance under the charge conjuga-
tion since the antiparticles behave in the same way as the particles under the ac-
tion of the gravitation. Therefore we can always reverse the motion, that is due 
to the gravitational field, of any particle in such a way as if it went back in time 
simply by means of changing the sign of the velocity of that particle, i.e. by 
means of reversing the direction of the motion of that particle. This implies in 
general the non-existence of any event horizon, since the existence of an event 
horizon would imply the impossibility of going back for any particle once this 
particle has gone from the outside of the event horizon in the inside of the same 
event horizon and the Einstein’s field equation implies always for any particle 
the possibility of going back by means of reversing the direction of the motion of 
the same particle.  

Moreover, we know that A. Einstein in his article establishing the General 
Theory of Relativity [1] expressed the formally flat metric in the commonly used 
coordinates 2ds  as a function of curved coordinates (that is, measured relative-
ly to a reference frame that is integral with a curved space-time) for expressing 
the gravitational field as the curvature of the space-time [1]. Therefore, we can 
note that the fact that the coefficient of 2dt  in the Equation (26) is >1 in the 
presence of a gravitational field entails that in the presence of a gravitational 
field the clocks go more slowly (that is, that the measurements of time relatively 
to a reference frame that is integral with a space-time curved for expressing the 
presence of a gravitational field flow more slowly): and we know that this is in 
agreement with the experimental results [3].  

In fact, by using 0t  for the time in the commonly used coordinates, we have: 

 2 2
0d 1 dCt t

r
 = + 
 

 (27) 

For which the time t measured by a clock positioned in the gravitational field 
(that is, measured relatively to a reference frame that is integral with a space- 
time curved for expressing the presence of a gravitational field) is less than the 
time 0t  measured by a clock positioned where there is not any gravitational 
field (that is, measured relatively to a reference frame that is integral with a flat 
space-time). 

Finally, as we will see later, from the comparison with the linear theory carried 
out correctly we find that C = 2GM and therefore 0C ≥  (C = 0 when M = 0). 
This value of C = 2GM, as we will see later, leads to a new metric that is different  

from the analogous one commonly used, but in the usual case of 2 1GM
r


 we 

have that the difference between the previsions of the new metric and the previ-

sions of the commonly used metric is only at the second order in 2GM
r

: in fact, 

in this case the two metrics are equal at the first order in 2GM
r

. And all the ex-

periments conducted so far have not had errors so small as to test differences at 
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the second order in 2GM
r

. 

4. Physical Analysis of the Case with C < 0 

Now, we consider the case with 0C <  which, as we have seen, has solutions 
only for the values of r C> − . 

Since we are looking for a solution for the vacuum region surrounding a 
spherically symmetric mass distribution of radius R, which mass distribution can 
be concentrated into an arbitrarily small radius R, in this case there are values of 
r C≤ −  which belong to that region for which values we have no solution. 
Clearly, this is physically unacceptable. 

Using a procedure similar to that used in the case of 0C ≥  we arrive at a 
formula equal to the (26): 

 2 2 2 2 2 2 2 21d 1 d d d sin d
1

Cs t r r rCr
r

θ θ ϕ = + − − − 
  +

 (28) 

where, in this case C is a constant <0 and, obviously, r C> − . 
We can see that in the (28) there is not any singularity in the coefficients of 
2dt  and 2dr  for any value of r C> − . 
On the other hand, we can note that in the (28) there would have been a sin-

gularity for r C= −  (since for r C→−  the coefficient of 2dr  tends to infinity, 
while the coefficient of 2dt  tends to zero), but, as we have seen, this value of r is 
excluded for mathematical reasons. We have already noted that this value of r 
corresponds in the commonly accepted treatment [3] to the event horizon at the 
so-called Schwarzschild radius.  

Moreover, according to the (28), for any value of r C> −  the coefficient of 
2dt  always remains positive and the coefficient of 2dr  always remains negative. 

Therefore, since the coefficient of 2dt  is always not negative the time (that is, 
the temporal coordinate) does not become in any case as a spatial coordinate. 
On the other hand, since the coefficient of 2dr  is always not positive the spatial 
coordinate r does not become in any case as a temporal coordinate. This implies 
that, in this case, for these values of r there is not any event horizon. 

On the other hand, for the values of r C< −  we have that in the (28) the co-
efficient of 2dt  would be negative and the coefficient of 2dr  would be positive, 
so the time (that is, the temporal coordinate) would be as a spatial coordinate 
and the spatial coordinate r would be as a temporal coordinate, but, as we have 
seen, these values of r are excluded for mathematical reasons. We have already 
noted that these values of r correspond, in the commonly accepted treatment [3] 
[5], to the inside an event horizon. 

Now, as we have already observed, we know that the Einstein field equation [1] 
[3] [5]-[7] is symmetric with respect to time, i.e. is invariant under time reversal 
T [8]-[13], therefore we can always reverse the motion, that is due to the gravita-
tional field, of any particle in such a way as if it went back in time simply by 
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means of changing the sign of the velocity of that particle, i.e. by means of re-
versing the direction of the motion of that particle. This implies in general the 
non-existence of any event horizon, since the existence of an event horizon 
would imply the impossibility of going back for any particle once this particle 
has gone from the outside of the event horizon in the inside of the same event 
horizon and the Einstein’s field equation implies always for any particle the pos-
sibility of going back by means of reversing the direction of the motion of the 
same particle.  

Therefore, we can say that the fact that the values of r C≤ −  are excluded for 
mathematical reasons is strictly linked, in this case, to the fact that the Einstein’s 
equations are mathematically symmetric with respect to time: in fact we have 
seen that the values of r C≤ − , in this case, correspond to a black hole (that is, 
to an event horizon and its inside), which, as we have seen, is excluded by the 
symmetry with respect to time of the Einstein’s equations. 

Even A. Einstein wrote an article in 1939 [14] in which, using a metric equiv-
alent to the (28), he argued that the values of r less than or equal to the Schwarz-
schild radius 2GM are excluded for physical reasons. 

Furthermore, as we have already observed, we know that A. Einstein in his ar-
ticle establishing the General Theory of Relativity [1] expressed the formally flat 
metric in the commonly used coordinates 2ds  as a function of curved coordi-
nates (that is, measured relatively to a reference frame that is integral with a 
curved space-time) for expressing the gravitational field as the curvature of the 
space-time [1]. Therefore, we can note that the fact that the coefficient of 2dt  
in the Equation (28) is <1 in the presence of a gravitational field entails that in 
the presence of a gravitational field the clocks go more quickly (that is, that the 
measurements of time relatively to a reference frame that is integral with a 
space-time curved for expressing the presence of a gravitational field flow more 
quickly): and we know that this is contrary to the experimental results [3].  

In fact, by using 0t  for the time in the commonly used coordinates, we 
have: 

 2 2
0d 1 dCt t

r
 = + 
 

 (29) 

For which, in this case, the time t measured by a clock positioned in the grav-
itational field (that is, measured relatively to a reference frame that is integral 
with a space-time curved for expressing the presence of a gravitational field) is 
greater than the time 0t  measured by a clock positioned where there is not any 
gravitational field (that is, measured relatively to a reference frame that is inte-
gral with a flat space-time), contrary to the experimental results [3]. 

Finally, as we have already said and will see later, from the comparison with 
the linear theory carried out correctly we find that 2C GM= , therefore the case 
with 0C <  is also excluded for this reason. 

In conclusion, we have that the solutions with 0C < , for various reasons, are 
unacceptable from a physical point of view. 
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5. The Comparison with the Linear Theory 

For finding the value of C in the Equation (26) or (28), we must compare this 
expression (26) or (28) with the result obtained from the linear theory. Now, the 
formula (obtained from the linear theory) commonly used for the comparison, 
as reported for example by H. C. Ohanian and R. Ruffini [3], is: 

 ( )2 2 2 2 22 2d 1 d 1 d d dGM GMs t x y z
r r

   = − − + + +   
   

 (30) 

But, as we said before, A. Einstein in his article establishing the General The-
ory of Relativity [1] expressed the formally flat metric in the commonly used co-
ordinates 2ds  as a function of curved coordinates (that is, measured relatively 
to a reference frame that is integral with a curved space-time) for expressing the 
gravitational field as the curvature of the space-time [1]. While the (30) is com-
monly interpreted, as we can see for example in the book of H. C. Ohanian and 
R. Ruffini [3] {for example in the page 131 in the formulas (4.13) and (4.14) of 
their book [3]}, as a formally flat metric in the curved coordinates, which metric 
is expressed as a function of the commonly used coordinates. Therefore the (30) 
is not analogue to the (26) or (28), in fact the (30) is not equal to a formally flat 
metric in the commonly used coordinates as the (26) or (28), but the (30) is 
equal to a formally flat metric in the curved coordinates for expressing the pres-
ence of the gravitational field as a curvature of space-time. 

Consequently, we can make this fact explicit by rewriting the (30) as: 

 ( )2 2 2 2 22 2d 1 d 1 d d dg
GM GMs t x y z
r r

   = − − + + +   
   

 (31) 

where 2d gs  is a metric formally flat in the curved coordinates. 
Therefore, for making a comparison with the (26) or (28), we, instead of the 

expression (31), need to have the expression (obtained from the linear theory) of 
the formally flat metric in the commonly used coordinates 2ds , which metric be 
expressed as a function of the coordinates curved for expressing the gravitational 
field as the curvature of the space-time.  

Now, from the formula (31) we have: 

 2 22d 1 dg
GMt t
r

 = − 
 

 (32) 

where d gt  is the time measured by clocks positioned in the gravitational field 
(that is, measured relatively to a reference frame that is integral with a space-time 
curved for expressing the gravitational field as the curvature of the space-time). 
And therefore for 2GM r  we have:  

 2 2 22 2d 1 d 1 dg g
g

GM GMt t t
r r

  ≅ + ≅ +       
 (33) 

And analogously, from the formula (31) we have relatively to the spatial coor-
dinates:  
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( )2 2 2

2 2 2 2 2 2 2 2 2

21 d d d

d d d d d sin dg g g g g g g g g

GM x y z
r

x y z r r rθ θ ϕ

 + + + 
 
= + + = + +

 (34) 

where gx , gy , gz  or gr , gθ , gϕ  are the spatial coordinates measured rela-
tively to a reference frame that is integral with a space-time curved for express-
ing the gravitational field as the curvature of the space-time.  

And therefore for 2GM r  we have:  

 

( )

( )

( )

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

2d d d 1 d d d

21 d d d

21 d d sin d

g g g

g g g
g

g g g g g g
g

GMx y z x y z
r

GM x y z
r

GM r r r
r

θ θ ϕ

 + + ≅ − + + 
 
 

≅ − + +  
 
 

= − + +  
 

 (35) 

Therefore the expression (26) or (28) in the limit for  r →+∞  must be com-
pared not with the expression (30) but with this other expression: 

 ( )2 2 2 2 2 2 2 22 2d 1 d 1 d d sin dg g g g g g g
g g

GM GMs t r r r
r r

θ θ ϕ
   

= + − − + +      
   

 (36) 

In fact the formula (36), in the case of 2 1GM
r


, represents the formally flat  

metric in the commonly used coordinates 2ds , which metric is expressed as a 
function of the coordinates curved for expressing the gravitational field as the 
curvature of the space-time.  

Let us now rewrite the formula (26) or (28) for greater clarity, making explicit 
the fact that the coordinates on the second member of (26) or (28) are those 
curved for expressing the gravitational field as the curvature of the space-time: 

 2 2 2 2 2 2 2 21d 1 d d d sin d
1

g g g g g g g
g

g

Cs t r r rCr
r

θ θ ϕ
 

= + − − −  
  +

 (37) 

Since we cannot compare the expression (37) with the expression (36) directly, 
because the (36) has a form which is different from that of the expression (37), 
let us change, as H. C. Ohanian and R. Ruffini [3], the Equation (37) by intro-
ducing a new coordinate gr : 

 21 1 1
2 2 4g g g gr r Cr r C≡ + + +  (38) 

or, equivalently, 

 
2

1
4g g

g

Cr r
r

 
≡ −  

 




 (39) 

This transformation gives:  
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 ( )

2

4

2 2 2 2 2 2 2 2

1
4

d d 1 d d sin d
41

4

g
g g g g g g g

g

g

C
r Cs t r r rC r
r

θ θ ϕ

 +    = − − + +     − 
 



  





 (40) 

The coordinates used in the expression (40) are called isotropic [3]. 
In the weak field limit ( gr →∞ ), the Equation (40) reduces to: 

 ( )2 2 2 2 2 2 2 2d 1 d 1 d d sin dg g g g g g g
g g

C Cs t r r r
r r

θ θ ϕ
   

= + − − + +      
   

  

 

 (41) 

Obviously, this equation has the same form of the Equation (36). By compar-
ing the Equation (41) with the Equation (36), we have:  

 2C GM=  (42) 

We can note that this is precisely the value of C that we announced in ad-
vance. 

By means of the substitution of C with 2GM, according to (42), the Equation 
(37) becomes: 

 2 2 2 2 2 2 2 22 1d 1 d d d sin d21
g g g g g g g

g

g

GMs t r r rGMr
r

θ θ ϕ
 

= + − − −  
  +

 (43) 

where M is (a constant, which is equal to) the total mass of the system. 
Now the (43) is equal to a formally flat metric in the commonly used coordi-

nates and therefore it is not expressed in a form analogue to that in which the 
linear theory is commonly expressed. For returning to an expression analogue to 
that in which the linear theory is commonly expressed we must simply use a 
method which is the exact inverse to that we have used for transforming the co-
ordinates of the linear limit, except for approximations. 

In particular, by using t for the time in the commonly used coordinates, we 
have: 

 2 22d 1 d g
g

GMt t
r

 
= +  
 

 (44) 

from which we have: 

 2 21 d d21
g

g

t tGM
r

=
+

 (45) 

that is, the coefficient of the temporal part becomes the inverse with this trans-
formation. And analogously the coefficient of 2d gr  becomes the inverse return-
ing to the coordinates commonly used.  

Therefore we have that the correspondent of the (43), i.e. in this case the for-
mally flat metric in the curved coordinates, which metric is expressed as a func-
tion of the commonly used coordinates, is:  
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 2 2 2 2 2 2 2 21 2d d 1 d d sin d21
g

g

g

GMs t r r rGM r
r

θ θ ϕ
 

= − + − −  
 +

 (46) 

where 2d gs  is a metric formally flat in the curved coordinates. 
As for the relation between gr  and r, we have: 

 2 21d d21
g

g

r rGM
r

+
=  (47) 

From which, we have: 

 
2 2

2 2
0 0

1d d21

gr r
g

g

r rGM
r

=
+

∫ ∫  (48) 

From which, we have: 

 
2

2
0

2 d
  2

gr g g

g

r r
r

r GM
=

+∫  (49) 

From which, we have: 

 ( )2 2 2 2

0
4 8 ln 2 gr

g g gr r GMr G M GM r = − + +   (50) 

From which, we have: 

 2 2 2 24 8 ln 1
2

g
g g

r
r r GMr G M

GM
 

= − + + 
 

 (51) 

According to the (51) for 0gr →  also 0r →  and for  gr →+∞  also  
 r →+∞ . Moreover, as gr  increases, r also increases as can be seen by differen-

tiating the right side of the (51) with respect to gr  or directly from the (49). On 
the other side, for any value of 0gr >  we have that gr r< , as can be seen di-
rectly from the (48). 

Furthermore, for 2gr GM
 we have that 21g

g

GMr r
r

 
≅ −  

 
 and also 

21g
GMr r
r

 ≅ + 
 

. This implies that for 2 1GM
r


 the presence of gr  instead 

of r in the (46) implies only corrections to the second order in 2GM
r

. 

On the other hand for 2gr GM
 we have 

3
2

3
grr

GM
≅ . 

In particular for 2gr GM= , ( )2 2 24 2ln 2 1r G M= − , and so in this case we 
have 2 2ln 2 1 1.24r GM GM= − ≅ . 

Moreover, for 4gr GM= , 2 2 28 ln3r G M= , and so in this case we have
2 2ln3 2.96r GM GM= ≅ . 

Instead for 8gr GM= , ( )2 2 28 4 ln5r G M= + , and so in this case we have
( )2 2 4 ln5 6.70r GM GM= + ≅ . 

For simplicity we have used the formulas with 1c ≡  for calculating the cor-
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rect Schwarzschild solution. Obviously, in the case more general (in which c is 
not defined equal to 1) we have that the (43) and the (46) become respectively: 

 2 2 2 2 2 2 2 2 2
2

2

2 1d 1 d d d sin d21
g g g g g g g

g

g

GMs c t r r rGMr c
r c

θ θ ϕ
 

= + − − −  
  +

 (52) 

 2 2 2 2 2 2 2 2 2
2

2

1 2d 1 d d sin d21
g

g

g

GMds c t r r rGM r c
r c

θ θ ϕ
 

= − + − −  
 +

 (53) 

The (53) is the correct final form of the Schwarzschild solution, i.e. the correct 
solution for the case which Schwarzschild has analysed, when we use an expres-
sion analogue to that in which the linear theory is commonly expressed. 

Instead, the common erroneous expression for the Schwarzschild solution is 
usually written as [3]: 

 2 2 2 2 2 2 2 2 2
2

2

2 1d 1 d d d sin d21

GMs c t r r rGMrc
rc

θ θ ϕ = − − − − 
  −

 (54) 

This formula (54) is usually considered to be equal to a formally flat metric in 
the curved coordinates, which metric is expressed as a function of the commonly 
used coordinates, in fact, for example, H. C. Ohanian and R. Ruffini obtained 
this formula through a direct comparison with the (30) [3]. Therefore, the (54) 
with the symbolism adopted by us becomes: 

 2 2 2 2 2 2 2 2 2
2

2

2 1d 1 d d d sin d21
g

GMs c t r r rGMrc
rc

θ θ ϕ = − − − − 
  −

 (55) 

Therefore, we can note that the erroneous expression for the Schwarzschild 
solution was due to two errors: one error was the choice of a solution of the Ein-
stein’s equations that is incorrect for mathematical and physical reasons, and 
another error was the interpretation of that erroneous solution as analogous of 
the (30) or (31). 

As we will see, the difference between the correct formula (53) and the incor-
rect formula (55) entails enormous physical consequences, even though, as we  

announced in advance, in the usual case of 2
2 1GM
rc

  we have that the differ-

ence between the previsions of the erroneous Schwarzschild solution and the 
previsions of the correct Schwarzschild solution is only at the second order in 

2
2GM
rc

: in fact, in this case the two formulas (53) and (55) are equal at the first 

order in 2
2GM
rc

.  

6. The Behaviour of the Clocks Positioned in Gravitational 
Fields According to the Correct Schwarzschild Solution 

Now, as we have already seen, the fact that the coefficient of 2 2d gc t  in the Equa-
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tion (52), which is the correct Schwarzschild metric when we express the for-
mally flat metric in the commonly used coordinates 2ds  as a function of the 
curved coordinates, is >1 in the presence of a gravitational field entails that in 
the presence of a gravitational field the clocks go more slowly (that is, that the 
measurements of time relatively to a reference frame that is integral with a 
space-time curved for expressing the presence of the gravitational field flow 
more slowly): and we know that this is in agreement with the experimental re-
sults [3]. In fact, we have:  

 2 2
2

21 d dg
g

GM t t
r c

 
+ =  

 
 (56) 

For which the time gt  measured by a clock positioned in the gravitational 
field (that is, measured relatively to a reference frame that is integral with a 
space-time curved for expressing the presence of the gravitational field) is less 
than the time t measured by a clock positioned where there is not any gravita-
tional field (that is, measured relatively to a reference frame that is integral with 
a flat space-time). 

Analogously, the fact that the coefficient of 2 2d gc t  in the Equation (52) has 

the form 2
21

g

GM
r c

 
+  

 
 entails that the clocks positioned in a more intense gravi-  

tational field go more slowly than the clocks positioned in a less intense gravita-
tional field (that is, that the measurements of time relatively to a reference frame 
that is integral with a space-time curved for expressing the presence of a more 
intense gravitational field flow more slowly than the measurements of time rela-
tively to a reference frame that is integral with a space-time curved for express-
ing the presence of a less intense gravitational field), and we also know that this 
fact is in agreement with the experimental data. In fact we have: 

 2 2
1 22 2

1 2

2 21 d 1 dg g
g g

GM GMt t
r c r c

   
+ = +      

   
 (57) 

Now, when the gravitational field is more intense (that is, when gr  is more 
small) the coefficient of 2d gt  is greater, for which the corresponding time flows 
more slowly (that is, the measurements of time relatively to a reference frame 
that is integral with a space-time curved for expressing the presence of a more 
intense gravitational field flow more slowly than the measurements of time rela-
tively to a reference frame that is integral with a space-time curved for express-
ing the presence of a less intense gravitational field). In particular, we have: 

 
2

2 1

1
2

2

21
d

2d 1

g g

g

g

GM
t r c

GMt
r c

+

=
+

 (58) 

For which when 2 1g gr r> , i.e. when the second gravitational field is less in-
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tense than the first gravitational field, then 2 1d dg gt t> : we have the well-known 
result (which has been confirmed by numerous experiments [3]) that the more 
intense is the gravitational field the more slowly the clocks go (that is, that the 
measurements of time relatively to a reference frame that is integral with a 
space-time curved for expressing the presence of a more intense gravitational 
field flow more slowly than the measurements of time relatively to a reference 
frame that is integral with a space-time curved for expressing the presence of a 
less intense gravitational field). 

Analogously, the ratio of the relative frequencies 1 11 d gtν =  and 2 21 d gtν =  
is: 

 
2

11

2
2

2

21

21

g

g

GM
r c
GM

r c

ν
ν

+

=
+

 (59) 

This is the correct formula for the gravitational redshift of light in the correct 
Schwarzschild metric. We can note that the two formulas (58) and (59) are differ-
ent from those obtained usually from the incorrect expression of the Schwarz-
schild solution by means of an incorrect procedure [3], but are equal at the first  

order in 2
2GM
rc

 (to the incorrect formulas). In fact, the formulas commonly 

used, instead of the two correct formulas (58) and (59), are respectively [3]: 

 
2

2 2

1
2

1

21
d

2d 1

GM
t r c

GMt
r c

−
=

−
 (60) 

 
2

1 2

2
2

1

21

21

GM
r c
GM
r c

ν
ν

−
=

−
 (61) 

7. The Radial Velocity of Light According to the Correct 
Schwarzschild Solution 

The light formally moves in a straight line relative to the reference system curved 
for expressing the presence of the gravitational field. Therefore we can impose 
the condition 2d 0gs =  for the propagation of light. Therefore from the (53) if 
we take a radial motion of the light in the commonly used coordinates ( d 0θ =  
and d 0ϕ = ) we have: 

 2 2 2
2

2

1 2d 1 d 021 g

g

GMc t rGM r c
r c

 
− + =  
 +

 (62) 

From which we have that the radial velocity of light in the commonly used 
coordinates is equal to [3]: 
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2

d 1  2d 1
l

g

rv cGMt
r c

= =
+

 (63) 

We can note that the radial velocity of light in the commonly used coordi-
nates is always ≤c, and is equal to c only when there is not a gravitational field. 
Moreover this formula (63) is in agreement with the available experimental data 
[3]. 

8. Other Consequences of the Correct Schwarzschild  
Solution 

On the other hand, we have seen that the correct Schwarzschild solution, ana-
logue to that in which the linear theory is commonly expressed, is a formally flat 
metric in the curved coordinates, which metric is expressed as a function of the 
commonly used coordinates, and is equal to: 

 2 2 2 2 2 2 2 2
2

2

2 1 2d d 1 d d sin d21
g

g

g

GMs c t r r rGM r c
r c

θ θ ϕ
 

= − + − −  
 +

 (64) 

We can easily see that this metric does not imply any event horizon and, con-
sequently, this metric does not imply any black hole, contrary to the common 
treatment of the Schwarzschild solution [3] [5]. 

In fact, according to the (64), taking into account the (51), there is not any  

singularity at the Schwarzschild radius 2
2

s
GMr
c

≡  (both for r and for gr ) and  

in general at any value of 0r >  (or of 0gr > ). 
On the other hand, the gravitational redshift according to the (59) is always 

not infinite for any value of 0r >  (or of 0gr > ), in particular this is true both  

for 2
2

s
GMr r
c

= ≡  and for 2
2

g s
GMr r
c

= ≡ , contrary to the common treatment 

of the Schwarzschild metric [3] [5]. 
Moreover, according to the (64), for any value of 0r >  or of 0gr >  (and in 

particular for any value of r or of gr  less than the Schwarzschild radius  

2
2

s
GMr
c

≡ ) the coefficient of 2 2dc t  always remains positive and the coefficient  

of 2dr  always remains negative. Therefore, since the coefficient of 2 2dc t  is 
always not negative the time (that is, the temporal coordinate) does not become 
in any case as a spatial coordinate, contrary to the common treatment of the 
space-time inside the event horizon [3] [5]. On the other hand, since the coeffi-
cient of 2dr  is always not positive the spatial coordinate r does not become in 
any case as a temporal coordinate, contrary to the common treatment of the 
space-time inside the event horizon [3] [5].  

Consequently, the light cones are always orientated in the usual way, in par-
ticular there is not any horizontal inclination of the light cones, contrary to the 
common treatment of the space-time inside the event horizon [3] [5]. 
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9. Experimental Prospects 
9.1. The Available Experimental Data  

As for the experimental data obtained with the help of x-ray astronomy the 
proof that we have found black holes, and therefore event horizons, is based only 
on the fact that we have found invisible objects which have masses that are too 
great, according to the commonly accepted theory, for not being black holes [3] 
[15] [16]. But according to the correct theory of this article, whatever the masses 
and the dimensions of these invisible objects are, we never have black holes, and 
therefore we never have event horizons. Therefore such experimental data can-
not discriminate between the commonly accepted theory and the same theory 
corrected according to this article. 

On the other hand, with regard to the experimental data of the so-called grav-
itational waves (obtained by the LIGO collaboration) of a collision between two 
black holes, such gravitational waves were detected only below measurement er-
rors, i.e. the signals detected were lower than the background noise (cf. chapter 6 
of [15]). Furthermore the models expected from the theory were used for select-
ing the signals from the background noise (cf. chapter 6 of [15]) with the help of 
supercomputers: obviously, this is an incorrect practice which cannot produce 
any significant data. The awareness of the non-significance of the LIGO collab-
oration data is now widespread [17]-[20]. Obviously, also such data cannot dis-
criminate between the commonly accepted theory and the same theory corrected 
according to this article. 

As for the alleged photos of black holes, they were formed with the help of 
special algorithms from something compatible with the white noise. In other 
words, these photos were extracted from something compatible with the white 
noise only on the basis of the images that were expected by the researchers, with 
the help of appropriate algorithms loaded onto supercomputers (cf. the Section 
“Imaging a Black Hole” of [21]. See also [22]). Therefore, also in this case the 
researchers wanted to measure something that is below measurement errors, and 
so these photos are completely unreliable. On the other hand, serious doubts 
have now spread about the reliability of these photos [23] [24]. Consequently 
such photos cannot prove anything and in particular cannot discriminate in any 
way between the commonly accepted theory and the same theory corrected ac-
cording to this article. 

Moreover, the corrections, that we have proposed in this article, to the com-
monly accepted theory are very small in the normal experimental situations (for 
example in the solar system), so the fact that, in these situations, so far no differ-
ence has been noted between the commonly accepted theory and the experimental  

results is not strange. In fact, as we have seen, in the usual case of 2
2 1GM
rc

  we  

have that the difference between the previsions of the erroneous Schwarzschild 
solution together with the erroneous classical limit and the previsions of the 
correct Schwarzschild solution together with the correct classical limit is only at  
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the second order in 2
2GM
rc

. And all the experiments conducted so far in the so-

lar system have not had errors so small as to test differences at the second order 

in 2
2GM
rc

 [3]. 

Therefore, in conclusion, there is no available experimental data that can dis-
criminate between the commonly accepted theory and the same theory corrected 
according to this article. 

9.2. A Proposal for a Crucial Experiment 

On the other hand, a crucial experiment could be done, which discriminates 
between the commonly accepted theory and the same theory corrected accord-
ing to this article, by taking advantage of the high precision and sensitivity of the 
latest atomic clocks.  

In fact from the correct formula (58) and from the analogous one for the 
commonly accepted theory (60) we have that the ratio of the passage of time in 
the gravitational field according to the correct theory to that according to the 
commonly accepted theory is: 

 

2 2

d 1
d 2 21 1

g

g

t
t GM GM

r c rc

=
  + −     

 (65) 

which in the case of 2
2 1GM
rc

 , since (as we have seen) in this case gr r≅ , be-

comes: 

 

2

22 2

2 2

2 2

d 1 1
d 22 2 11 1

2 1 21 1
2

g

g

t
t GMGM GM

rcr c rc

GM GM
rc rc

= ≅
     −+ −         

   ≅ + ≅ +   
   

 (66) 

Now throughout the solar system we have effectively 2
2 1GM
rc

 . 

The term 
2

2
1 2
2

GM
rc

 
 
 

 due to the solar mass on the surface of the Sun is ap-  

proximately equal to 8.99 × 10−12, while at the average distance of the Earth from 
the Sun this value becomes approximately equal to 1.95 × 10−16. Obviously, ex-
ternally to the Sun, such term decreases with the square of the distance from the 
centre of the Sun according to the formula. 

On the other hand the same term due to the mass of the Earth on the surface 
of the Earth is approximately equal to 9.69 × 10−19 and obviously also here, ex-
ternally to the Earth, decreases with the square of the distance from the centre of 
the Earth according to the formula. Of course, if we were to opt to use only the 
term due to the mass of the Earth we would have to do so between two points 
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that have an approximatively equal contribution due to the mass of the Sun, so 
that the difference between these contributions due to the mass of the Sun be 
negligible compared to the difference between the correspondent contributions 
due to the mass of the Earth.  

On the other hand, now we have atomic clocks that have an error of 7.6 × 
10−21 [25] [26] and therefore we can measure such differences between the pre-
dictions of the commonly accepted theory and those of the same theory correct-
ed according to this article with appropriate temporal measurements made in 
the solar system. 

Now, in theory we could make a single measurement of time with one such 
atomic clock for being able to detect such differences, but in practice there can 
easily be errors due to the low precision in predicting the measurement results 
according to the commonly accepted theory (for example due to the low preci-
sion in knowing the mass of the Sun, the mass of the Earth and the universal 
gravitational constant G), so it is more convenient to make differential meas-
urements, i.e. to measure the differences between the time measurements of two 
atomic clocks of such type placed respectively in two appropriate positions in the 
solar system. Indeed, it would be even better if the comparison between the time 
measurements of two atomic clocks of such type were made between several 
pairs of points of the solar system, thus revealing the difference between the two 
theories also on the basis of the trend of these differences as a function of the 
positions of at least one of these two clocks in the solar system.  

Therefore we could do a crucial experiment, which discriminates between the 
commonly accepted theory and the same theory corrected according to this arti-
cle, by taking one such atomic clock to diverse convenient locations in the solar 
system for comparing its time measurements made at those various locations 
with the corresponding time measurements made by another similar clock here 
on Earth. 

10. General Conclusions 

As we have seen, the corrections of this article imply that the correct solution 
does not entail any event horizon and, consequently, any black hole, since there 
is not any black hole without an event horizon. Therefore, this article confutes 
all the physics that on the basis of the Schwarzschild solution foresees the possi-
bility of the existence of event horizons and black holes [3] [5] [8] [27]. 

Moreover, we have observed that the symmetry with respect to time, i.e. the 
invariance for time reversal T, of Einstein’s field equation [8]-[13] excludes the 
possibility of event horizons, and therefore of black holes, in general. 

On the other hand, we have seen that the alleged proofs in favour of the ex-
istence of black holes and event horizons based respectively on x-ray astronomy, 
on alleged gravitational waves and on alleged photos of black holes are not con-
clusive and therefore are not sufficient to discriminate between the commonly 
accepted theory and the same theory corrected according to this article. 
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Furthermore, we have observed that the corrections, that we have proposed 
here, to the commonly accepted theory are very small in the normal experimental 
situations, so the fact that so far no difference has been noted between the com-
monly accepted theory and the experimental results is not strange. In fact, as  

we have seen, in the usual case of 2
2 1GM
rc

  we have that the difference be-

tween the previsions of the erroneous Schwarzschild solution and the previsions 

of the correct Schwarzschild solution is only in the second order in 2
2GM
rc

. And, 

as we announced in advance, all the experiments conducted so far have not had 

errors so small as to test such differences at the second order in 2
2GM
rc

 [3]. 

However, as we have already noted, recently atomic clocks have been con-
structed with a sensitivity such as to test these small differences in experiments 
that are feasible in the solar system. Therefore, it would be appropriate to try to 
make a crucial experiment that discriminates between the commonly accepted 
theory and the same theory corrected according to this article. 

Finally, according to this article, all the physics that is based on the incorrect 
Schwarzschild solution should be modified on the basis of the correct formula 
that we have calculated in this same article. 
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