4

PN¢ S o Journal of Computer and Communications, 2024, 12, 1-20

‘ ¢ Scientific https://www.scirp.org/journal/jcc
0 ’ Research

94¢% Publishing ISSN Online: 2327-5227

o,

ISSN Print: 2327-5219

SQL or NoSQL—Practical Aspect and Rational
behind Choosing Data Stores

Sourabh Sethi?, Sarah Panda?

'Digital Experience, Infosys Limited, New York, USA
2Research and Incubation, Microsoft Inc., Seattle, USA
Email: sourabhsethi@ieee.org, sp3206@columbia.edu

How to cite this paper: Sethi, S. and Pan-
da, S. (2024) SQL or NoSQL Practical As-
pect and Rational behind Choosing Data
Stores. Journal of Computer and Commu-
nications, 12, 1-20.
https://doi.org/10.4236/jcc.2024.128001

Received: April 22, 2024
Accepted: August 4, 2024
Published: August 7, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

[Omom

Abstract

Data storage solutions are a crucial aspect of any application, significantly
impacting data management and system performance. This article explores
the rationale behind utilizing both SQL and NoSQL databases, addressing key
questions about when each type is preferable. The background emphasizes
the importance of selecting the appropriate database technology to meet spe-
cific application requirements. The purpose of this research is to provide a
comprehensive guide for choosing between SQL and NoSQL databases based
on various factors, including workload characteristics, scalability needs, and
consistency requirements. To achieve this, we examine different strategies for
implementing SQL and NoSQL databases in large-scale distributed applica-
tions and systems. The research method involves a comparative analysis of
the features, advantages, and limitations of both database types. We specifi-
cally focus on scenarios involving read-heavy versus write-heavy systems and
the trade-offs between availability and consistency. The results of this re-
search indicate that SQL databases, with their relational structure and ACID
compliance, are ideal for applications requiring complex queries and data in-
tegrity. In contrast, NoSQL databases, offering schema flexibility and hori-
zontal scalability, are better suited for managing extensive datasets and
high-velocity data ingestion. In conclusion, the selection of a database de-
pends on the specific needs of the application. SQL databases are preferred
for transactional systems with complex relationships, while NoSQL databases
excel in scenarios demanding flexibility and scalability. The study provides
insights into hybrid approaches, leveraging both database types to optimize
system performance.

Keywords
SQLData Stores, NO-SQLData Stores, ACID, BASE, RUM Conjecture

DOI: 10.4236/jcc.2024.128001 Aug. 7, 2024 1

Journal of Computer and Communications

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2024.128001
https://www.scirp.org/
https://doi.org/10.4236/jcc.2024.128001
http://creativecommons.org/licenses/by/4.0/

S. Sethi, S. Panda

Table 1. Database comparison.

1. Introduction

SQL databases are structured as relational databases, comprising interconnected
tables, each with a fixed set of columns. The ability to query across tables facili-
tates the retrieval of related information. A key requirement for SQL databases is
to store data in normalized form to prevent redundancy and ensure consistency
across tables.

For instance, consider two tables storing a particular score. If one of the scores
is altered due to an update operation, confusion may arise with two different
scores in two tables. Normalizing the data helps avoid redundancy and trust is-
sues. SQL data stores offer ACID guarantees, where atomicity ensures a transac-
tion is either entirely successful or entirely rolled back, consistency ensures data
consistency before and after a transaction, isolation ensures independence of two
transactions, and durability ensures changes persist even after system reboots or
crashes. While the fixed schema in SQL has advantages, it may not fit every use
case. For instance, a fixed schema might not accommodate various product at-
tributes in an e-commerce website efficiently. A t-shirt and a MacBook Air have
vastly different attributes, making a single table impractical. SQL’s design for
handling millions of records in a single table, not millions of tables, poses chal-
lenges with flexible schemas. Additionally, if data sharding or partitioning is re-
quired, SQL’s advantages diminish. Performing SQL queries across machines af-
ter sharding becomes difficult and costly. In addressing these issues, NoSQL da-
tabases come into play. For example, when sharding is necessary, NoSQL data-
bases offer solutions. The first step involves choosing a sharding key, and the
second step includes performing denormalization. However, denormalization
can lead to data redundancy and inefficiencies. Careful consideration of the
sharding key is essential to mitigate such problems in NoSQL databases.

Database Fast

T'ype
Name Writes

Read Data Query Transaction Security
Performance

Scalability Best Use Cases

Consistency Complexity Support Features

MySQL SQL Moderate

PostgreSQL SQL High

MongoDB NoSQL High

Oracle SQL High

SQL Server SQL Moderate

High

High Both Strong High Yes High

Web applications, Small

High Horizontal Strong Moderate Yes Moderate to medium-sized

business systems

Complex queries,
Both Strong High Yes High Analytical workloads,
Enterprise applications

Big data, document stor-

Moderate Horizontal Eventual Simple Limited =~ Moderate age, real-time

analytics

Large enterprises, High

Very High Both Strong High Yes Very High transaction processing,

Financial systems

Business intelligence,
Integrated business
solutions, Corporate IT
systems

DOI: 10.4236/jcc.2024.128001

2 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

Continued

Cassandra NoSQL Very High

Redis NoSQL Very High

SQLite SQL Moderate

DynamoDB NoSQL High

MariaDB SQL High

Couchbase NoSQL High

Neo4j NoSQL Moderate

Elasticsearch NoSQL High

HBase NoSQL High

InfluxDB NoSQL High

Moderate Horizontal Eventual Simple Limited = Moderate

Very High Horizontal Eventual Simple No Moderate

High Horizontal Eventual Simple Limited High

High Horizontal Strong High Yes High

High Horizontal Strong Moderate Yes High

Moderate Horizontal Strong Simple Limited =~ Moderate

Large, distributed
environments,
Time-series data

Caching, Session storage,
Real-time applications

Local storage, Mobile

Moderate None Strong Moderate Yes Moderate applications, Embedded

systems

Serverless applications,
Web-scale applications

Web applications,
Database replication,
Clustering

Interactive applications,
Mobile and IoT

Graph-based

High Horizontal Strong High Yes Moderate applications, Network

analysis

Search engines, Log

Very High Horizontal Eventual Simple No Moderate analytics, Real-time

analysis

Big data applications,
Column-oriented storage

Time-series data, Re-

High Horizontal Eventual Moderate Yes Moderate al-time analytics, Moni-

toring

These data stores in Table 1 exhibit three key properties: buffering, immuta-
bility, and ordering, which are instrumental in describing, memorizing, and ex-
pressing various aspects of the storage structure. Selecting the proper physical
design—through static auto-tuning, online tuning, or adaptively—and access
method has been a key research challenge in data management systems for sev-
eral decades. The physical organization of data on storage devices (disk, flash,
memory, caches) defines and restricts the possible ways that data can be read
and updated. As applications evolve rapidly and continuously, the underlying
hardware also diversifies and changes quickly with new technologies and archi-
tectures. Both trends introduce new challenges in designing data management
software. Reviewing existing access method proposals reveals recurring funda-
mental challenges and design decisions. Specifically, researchers consistently aim
to minimize three primary overheads: 1) read overhead (R), 2) update overhead
(U), and 3) memory (or storage) overhead (M)—collectively known as the RUM
overheads. Deciding which overhead (s) to optimize and to what extent remains
a critical part of designing new access methods, especially as hardware and
workloads evolve. For instance, in the 1970s, a crucial aspect of every database

algorithm was minimizing the number of random disk accesses; 40 years later, a

DOI: 10.4236/jcc.2024.128001

3 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

similar strategy is applied to minimize the number of random accesses to main
memory.

A prominent cost model for storage structures, known as the RUM conjec-
ture, factors in three crucial elements: Read, Update, and Memory overhead.
According to this conjecture, reducing two of these overheads inevitably wors-
ens the third, necessitating optimization at the expense of one parameter. Com-
paring storage engines based on these parameters sheds light on their optimiza-
tion strategies and potential trade-offs. Ideally, a solution would minimize read
costs while keeping memory and write overheads low, but achieving this balance
is often unattainable, leading to trade-offs. B-Tree structures prioritize read op-
timization, yet writing to them involves locating records on disk and potentially
updating disk pages multiple times, resulting in increased space overhead due to
reserved extra space for future updates and deletes. Conversely, LSM
(Log-Structured Merge) trees eliminate the need to locate records on disk during
writes and do not reserve additional space for future writes. However, in the de-
fault configuration of LSM tree-based data stores, reads are more costly since
multiple Sorted String Tables (SSTs) must be accessed to retrieve complete rec-
ords. The table below illustrates how these three properties can be combined to

achieve desired characteristics.

Table 2. Storage structure.

Storage Structure Buffered Mutable Ordered
B + Trees No Yes Yes
WiredTiger Yes Yes Yes
La-Trees Yes Yes Yes
COW B-Trees No NO Yes
2C LSM Trees Yes No Yes
MC LSM Trees Yes No Yes
FD-Trees Yes No Yes
BitCask No No No
Wisckey Yes No Yes
BW-Trees No No No

As per the RUM Conjecture [1], developing an access method for a storage
system that excels in all three crucial aspects—Reads, Updates, and Memory uti-
lization—simultaneously is deemed unfeasible. This conjecture suggests that op-
timizing one aspect inevitably comes at the cost of the other two, leading to a
competitive triangle akin to the renowned CAP theorem, where the three com-
ponents are inherently at odds with each other.

Access methods optimized for reads prioritize minimizing read overhead.
Examples include indexes offering constant or logarithmic time access, such as
hash-based indexes, B-Trees, Tries, Prefix B-Trees, and Skiplists. While these

DOI: 10.4236/jcc.2024.128001

4 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

methods generally provide rapid read access, they often result in increased space
overhead and may encounter challenges with frequent updates.

On the other hand, write-optimized structures aim to reduce the write over-
head associated with in-place updates by utilizing secondary differential data
structures as mentioned in Table 2. The core concept involves consolidating
updates and applying them in bulk to the base data. Examples include the
Log-structured Merge Tree, Partitioned B-tree (PBT), Materialized Sort-Merge
(MaSM) algorithm, Stepped Merge algorithm, and Positional Differential Tree.
Notably, write-optimized trees like LA-Tree and FD-Tree focus on leveraging
flash storage efficiently while accommodating its limitations, such as the dispar-
ity between read and write performance and the finite number of physical up-
dates flash can handle. While such structures generally perform well under up-
dates, they tend to increase read costs and space overhead. Space-efficient access
methods aim to minimize storage overhead. Examples encompass compression
techniques and lossy index structures like Bloom filters, lossy hash-based index-
es such as count-min sketches, bitmaps with lossy encoding, and approximate
tree indexing. Sparse indexes, including ZoneMaps, Small Materialized Aggre-
gates, and Column Imprints, also belong to this category. Typically, these meth-
ods substantially reduce space overhead but may increase write costs (e.g., due to
compression) and occasionally elevate read costs as well (e.g., with a sparse in-
dex).

Read Optimized

Hash

Point &Tree'
indexes
B-Tree Tirie

Skiplist

Cracking
Adaptive structures
PDT Merging gparse Index

LSM
A " Bloom filter
Differential PBT Approximate

structures MaSM Bitmap indexes

Werite Optimized Space Optimized

Figure 1. RUM conjecture.

All mentioned data stores in Table 1 could be categorized according to the
Storage Structure defined in Table 2 and RUM Conjecture in Figure 1. It is the
developer’s responsibility to choose the correct data store according to the ap-
plication’s use case and their access pattern.

Sharding and Choosing Shard Key

Consider a banking system where users can have active bank accounts in var-
ious cities. The most frequent operations include balance queries, fetching
transaction history, retrieving a list of user accounts, and creating new transac-

tions. In this context, selecting an appropriate sharding key is crucial. CityID

DOI: 10.4236/jcc.2024.128001

5 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

would be a suboptimal choice for a sharding key, as users may move between
cities, necessitating the migration of data across different city-based shards.
Furthermore, the uneven distribution of user populations across cities can lead
to load-balancing issues. A more effective sharding key is UserID, as it consoli-
dates all user-related information in a single shard. This approach ensures that
operations like balance queries, transaction history retrieval, and user account
management are confined to the machine holding that user’s data, thereby facil-
itating efficient load distribution and minimizing inter-machine communica-
tion.

In a system akin to Uber, where the primary use case is searching for nearby
drivers, CityID appears to be a suitable sharding key. This choice enables
searches to be limited to cabs within the user’s city, handling common use cases
effectively. However, DriverID is not a viable option as nearby drivers could be
on any machine, necessitating queries to multiple machines, and incurring high
costs. Sharding by PIN CODE is also suboptimal as cabs frequently traverse re-
gions with different pin codes.

Considering the Indian Railway Catering and Tourism Corporation (IRCTC),
where the main purpose is ticket booking involving TrainID, date, class, and
UserID, the system aims to address double-booked tickets and load balancing,
especially during peak times such as tatkal bookings. Date of Booking is an un-
suitable sharding key because it would overload the machine handling trains for
the next day. UserID poses challenges in preventing the same ticket from being
assigned to multiple users, leading to consistency issues. A good sharding key in
this case is TrainID, as loads are distributed among trains, addressing the short-
comings of Date and UserID as sharding keys.

For a messaging system resembling Slack, which is group-heavy, where groups
may consist of up to 100,000 users, UserID is not ideal due to the need for mul-
tiple write operations across different machines for a single message in a group
or channel. In this context, GroupID emerges as the best sharding key. It allows
for single writes corresponding to messages and events, facilitates storage of all
channels of a user in one machine, supports lazy fetch, and enables asynchro-
nous retrieval of unread messages and channel updates. Considering the specific
use case of Slack, GroupID proves to be a more logical choice.

Consider the following guidelines when selecting sharding keys:

Aim for a uniform distribution of load across all machines to ensure optimal
system performance. Prioritize the efficient execution of the most frequent op-
erations to enhance overall system responsiveness. Minimize the number of
machines that need updates during high-frequency operations to maintain da-
tabase consistency effectively. Strive to minimize redundancy within the system

to improve storage efficiency and reduce unnecessary data duplication.

2. Literature Review

BigTable, Dynamo, PNUTS, MongoDB, CouchDB, and Cassandra do not pro-

DOI: 10.4236/jcc.2024.128001

6 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

vide ACID transactions. RAMCloud is an in-memory key-value system that
supports only single-object transactions. Google’s Percolator, Apache Tephra,
and Omid add transactional APIs on top of key-value stores with snapshot isola-
tion. FoundationDB (FDB) supports strictly serializable ACID transactions on a
scalable key-value store, which has been used to support flexible schema and
richer queries. Similar SQL-over-NoSQL architectures are adopted in Hyder,
Tell, and AIM. Many systems establish the serial order among transactions and
ensure atomicity and isolation by using the time when all locks are acquired. For
example, Spanner uses TrueTime to determine commit timestamps upon ac-
quiring all locks, while CockroachDB employs a hybrid-logical clock combining
physical and logical time. Like FDB, several systems order transactions without
locks. H-Store, Calvin, Hekaton, and Omid execute transactions in timestamp
order. Hyder, Tango, and ACID-RAIN use a shared log to establish ordering,
whereas Sprint employs total-order multicast. FDB ensures strict serializability
with a lock-free concurrency control combining MVCC and OCC, with the seri-
al order determined by a Sequencer. These databases separate the transaction
component (TC) from the data component (DC). Deuteronomy creates virtual
resources that can be logically locked in the transaction system, while the DC
remains unaware of transactions, their commits, or aborts. Solar combines scal-
able storage on a cluster of nodes with a single server for transaction processing.
Amazon Aurora simplifies database replication and recovery using shared stor-
age. Systems like Tell use advanced hardware to achieve high performance and
implement snapshot isolation with a distributed MVCC protocol, while FDB us-
es commodity hardware with serializable isolation. In FDB, the TC is decom-
posed into several dedicated roles, and transaction logging is decoupled from the
TC, enabling lock-free concurrency management with a deterministic transac-
tion order. Traditional databases tightly couple the transaction and data com-
ponents. Silo and Hekaton achieve high throughput using a single server for
transaction processing, while many distributed databases partition data to scale
out. Systems like FaRM and DrTM exploit advanced hardware to enhance
transaction performance. FDB adopts an unbundled design with commodity
hardware in mind. Traditional databases often use ARIES-based recovery pro-
tocols. VoltDB employs command logging, starting recovery from a checkpoint
and replaying commands in the log. NVRAM devices have been used to reduce
recovery time. Amazon Aurora decouples redo log processing from the database
engine using smart storage, leaving only the undo log for the database engine.
RAMCloud performs parallel recovery of redo logs across multiple machines,
with recovery time proportional to log size. In contrast, FDB completely decou-
ples redo and undo log processing from recovery by separating log servers and

storage servers.

3. Datastore Analysis Methodology

There are generally four types of NoSQL datastores: Key-Value datastores,
Document DBs, Column-Family Storage, and Graph Databases. Key-Value

DOI: 10.4236/jcc.2024.128001

7 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

NoSQL DBs: Examples include Redis and DynamoDB. In these databases, data is
stored in the form of key-value pairs, resembling a hashmap. The values are un-
typed, akin to a hashmap from string to string. Document DBs: Examples in-
clude MongoDB and AWS ElasticSearch. In this type, data is structured in JSON
format, where each record is akin to a JSON object with different attributes. This
format is beneficial for applications with numerous product categories, offering
a tabular structure for efficient searching. Column-Family Storage: Examples in-
clude Cassandra and HBase. In this system, the sharding key constitutes the
RowlID. Each RowID contains multiple column families, akin to tables in SQL
databases. Within each column family, multiple strings are stored as records,
sorted by timestamp in descending order. This structure allows for efficient pre-
fix searching and retrieval of the top or latest X entries. Column-Family Storage
is particularly useful for applications with countable schemas, and it excels in
implementing pagination, especially when pagination is required on multiple at-
tributes. These NoSQL databases cater to various application scenarios, offering
flexibility and efficiency in handling different types of data structures and access

patterns.

Choosing Database

Consider a Twitter hashtag data storage system where the goal is to store the
most popular or latest tweets associated with a hashtag. The system must sup-
port incremental fetching of tweets, such as retrieving the first 10 tweets initially
and then fetching subsequent batches as users scroll through the application. In
this context, a Key-Value database is not suitable. The issue is that when fetching
information for a particular tweet (key), all associated tweets are retrieved. Even
if only 10 tweets are needed, the entire set, potentially comprising 10,000 tweets,
is fetched, causing delays and a poor user experience. Conversely, a Col-
umn-Family system is more appropriate. By using the tweet as a sharding key,
column families like Tweets and Popular Tweets can be utilized. To retrieve
posts related to a tweet, queries can access only the first X entries of the tweets
column family. Additional tweets can be fetched by specifying an offset and re-
trieving records from that point, ensuring efficient and incremental data retrieval
[2].

Now, consider a system that deals with the live score of matches or sports
events. In this scenario, where the goal is to display ongoing score information
for a recent event or match, a Key-Value DB is the optimal choice. The simplici-
ty lies in accessing and updating the value corresponding to a particular match
per key, making it a lightweight solution. Another example involves the current
location of cabs in Uber-like systems. For displaying the live location of cabs, the
choice depends on whether location history is required. If location history is
needed, a Column-Family DB emerges as the best choice. By using the cab as a
sharding key and a column family for location, fetching the first few records of

the Location column family for a specific cab suffices. Additionally, new location

DOI: 10.4236/jcc.2024.128001

8 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

records can be seamlessly inserted into the Location column family. On the oth-
er hand, if only the current location is needed and historical data is irrelevant, a
Key-Value DB becomes the more sensible choice. This approach allows for the

straightforward retrieval and updating of the value corresponding to the cab
(key).

4. NoSQL Internals

In contrast to SQL, NoSQL is unstructured and lacks a fixed size. Designing a
system to ensure efficient updates is crucial. While SQL typically involves both
write and read operations taking log (N) time, how can we approach the design
of a NoSQL system? Moreover, what adjustments can be made for systems with
a heavy emphasis on either reads or writes?

Most NoSQL systems incorporate two types of storage: Write-Ahead Log
(WAL) and the current state of data. The Write-Ahead Log is essentially an ap-
pend-only log capturing every write (new write/update) occurring in the data-
base. Theoretically, starting from scratch, one can replay these logs to recon-
struct the final state of the database. Visualize this as a sizable file where entries
are only appended, and in most cases, seldom read. If reads are performed, they
typically involve requesting a tail of this file, representing entries after a specific
timestamp (the last Y number of entries in the file).

Now, if we were to consider fixed-size entries for each row-column pair, as
seen in SQL, B-Trees could be employed to store these entries. For simplicity, let
us focus on a key-value store. How would one rudimentarily store key-value
pairs? A straightforward approach might involve storing all keys and values in a

file as shown in Table 3.

Table 3. Key-value.

Key Value
ID 001 John
ID 002 Karen
ID 005 Bill
ID 003 Scott

Now, envision a scenario where a request is made to update the value of “ID
002” to “Ram”. The brute force method would involve searching for “ID 002” in
the file and modifying the corresponding value. However, if there is a subse-
quent read request for “ID 002”, the entire file must be scanned again to locate
the key “ID 002”. This process appears notably sluggish; resulting in both reads
and writes being slow. It is crucial to acknowledge that the value is not of a fixed
size. Additionally, in situations where multiple threads attempt to update the
value of “ID 002”, they would need to acquire a write lock, further impeding ef-
ficiency. No-Sqldata stores devise a more efficient solution to address these

challenges. All new writes were just appended to the file as shown in Table 4.

DOI: 10.4236/jcc.2024.128001

9 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

Table 4. Add updated entry in last.

Key Value
ID 001 John
ID 002 Karen
ID 005 Bill
ID 003 Scott
ID 002 Ram

This approach introduces the possibility of duplicate keys, but it significantly
boosts the speed of my write operations. To address reads, data stores can search
for keys from the end of the file and halt at the first matching key encountered,
representing the latest entry. Consequently, while reads may remain slow, data
stores have successfully accelerated write processes. However, a drawback
emerges as this method leads to duplicate entries and may necessitate additional
storage. Essentially, this approach implies that each entry is immutable, signify-
ing that once written, an entry is not subject to editing. Consequently, writes no
longer require locks. Despite the enhancement in write speed, reads still pose a
challenge, operating at O (N) in the worst-case scenario. Is there a way to further
optimize this process? What if data stores could establish an index for the keys?
Figure 2 having an in-memory index (like a hashmap) that stores the locations
of the keys in the file, indicating the offset in bytes to seek and read the latest en-
try pertaining to a specific key as shown in Table 5.

Table 5. In-memory [key, offset].

Key Value In-Memory Key Offset
ID 001 John ID 001 0
ID 002 Karen 1D 002 80
ID 005 Bill 1D 005 40
ID 003 Scott 1D 003 60
ID 002 Ram

This way, Figure 2 shows the read operation flow:

def read(key):
offset = InMemoryHashmap[key]
bytes = Read 'n" bytes from file with key-value starting at offset “offset’

key, value = parse(bytes)
return value

Figure 2. Read operation.

Now, the write operation is no longer a simple append to the file; it includes
an additional step of updating the in-memory hashmap. This modification en-

sures that reads no longer necessitate scanning the entire file, alleviating the

DOI: 10.4236/jcc.2024.128001

10 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

O(N) constraint. However, a significant flaw arises in assuming that all keys and
offsets can fit into memory. In reality, a key-value store may have billions of
keys, making it impractical to store such a map in memory. How do No-SQL
datastores tackle this challenge? Additionally, considering the need for substan-
tial memory to store duplicate older entries, datastore must address this issue as
well. Let us address these concerns one by one. To enhance storage efficiency,
one solution is to implement a background process that reads the file, eliminates
duplicates, and generates another file while updating the in-memory hashmap
with new offsets. Although the idea is sound, its implementation is complex due
to the enormity of these files. Quickly identifying duplicates and reading the en-
tire file in chunks present challenges. Datastores reads the file in 100MB chunks,
which are structured it as separate files for each chunk instead of a single file?
This approach allows the latest chunk to be in memory (referred to as the
“memTable”), writable to disk when near full. The latest chunk, being the most
frequently written to, is likely to contain the most recent entries for frequently
queried items. Notably, MemTable, being an in-memory hashmap, avoids du-
plicate entries.

Concurrently, node can merge existing immutable chunks (e.g., chunkX,
chunkY) into new chunks (e.g., chunkZ). After removing duplicate entries, node
delete chunkX and chunkY once chunkZ is created, updating the in-memory
hashmap. This process is termed “compaction.” While temporary duplicates
may exist across older chunks, periodic compaction ensures the consolidation of
duplicate entries. The compaction process can be scheduled during off-peak
traffic hours to minimize performance impact during peak times. Despite these
improvements, the challenge remains regarding the in-memory hash map’s size
and its potential to exceed available memory. Now that new writes are directed
to the memTable, the question arises: is storing keys in a random order truly op-
timal. How can No-Sql Data stores enhance file searching without relying on a
hashmap that stores entries for all keys? Here data store do sorting.

What if the memTable had all entries sorted? One way to achieve this is by
utilizing a balanced binary tree, such as a Red-Black Tree, AVL tree, or Binary
Search Tree with rotations for balancing. When the mem Table is full and its
content is flushed to disk, it can be done in sorted order of keys, similar to how
a TreeMap allows iteration in sorted order. These sorted files can be termed
SSTables (Sorted String Tables). With a sorted order, binary search becomes
feasible within the file. However, performing a binary search in the file poses a
challenge because landing on a random byte in the file offers no indication of
which key/value this byte corresponds to. To address this, the file can be parti-
tioned into blocks of 64KB each. For example, a 1GB file would consist of ap-
proximately 16,000 blocks. In an index associated with each block, one entry is
stored, representing the first key in that block. This index, too, maintains sorted
entries, resembling a TreeMap. Consider the following schematic representa-

tion in Figure 3.

DOI: 10.4236/jcc.2024.128001

11 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

Consider Figure 3: Picture a scenario where a request is made for ID-1234. In
this case, a binary search would be conducted to find the last entry or the highest
entry with a block_key less than or equal to the current key being sought (essen-
tially, the block before index. upper_bound (current_key)). By doing so, it be-
comes evident in which block the desired key is located, requiring the scanning
of only 64KB of data to retrieve the necessary information. It is worth noting
that this index is assured to fit within the available memory. The concept we
have outlined is commonly referred to as the LSM Tree.

In summary: There is an in-memory MemTable structured with entries stored
as a TreeMap. All new writes are directed here, and if a key already exists, the
entry in the MemTable is overwritten. A collection of SSTablesis maintained,
where keys are sorted and segmented into blocks. Multiple SSTablescan be envi-
sioned as being linked together in a manner reminiscent of a LinkedList, with
the newest SSTable positioned at the forefront. An in-memory index of blocks
within SSTables is established. Periodically, a compaction process is initiated to
merge multiple SSTables into a single SSTable, thereby eliminating duplicate en-
tries. This process closely resembles performing a merge sort on multiple sorted

arrays stored on disk.

SSTable Index
, Byte

e ID-001 Key Offset

]]):002 —> Block 1D-001 0
65000 64K 1D-6002 65000

1D-6002 TD-40,000 128000

1D-6005
128000,

1D-40,000

1D-50,000

Figure 3. SSTable.

Write Operation: This is plainly an addition/update to the MemTable

TreeMapas shown in Figure 4.

def write(key, value):

memTable[key] = value;

Figure 4. Write operation.

Read Operations: If the entry is located in the MemTable, excellent! Retrieve
and return it. In case it’s not found, proceed to the newest SSTable, attempt to lo-
cate the entry there (using upper_bound - 1 on the index TreeMap to find the rel-
evant block, and then scanning the block). If the entry is found, return it. If not,
move on to the next SSTable and repeat the process (see Figure 5). If the entry is
not found in any SSTable, then return “Key does not exist”. As shown in Figure 6.

DOI: 10.4236/jcc.2024.128001

12 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

def flushProcess():
if memTable.size() <= THRESHOLD:
return
ss_new = new SSTable
block = []
key = memTable first key
for k,v in memTable.items():
#memTable is a TreeMap. So sorted order.
newEntry = entryCk, v))
if size(block) + size(newEntry) > BLOCK_THRESHOLD:
index[ss_new.id][key] = size(ss_new) + 1 #last byte in ss_new file
ss_new.write(block) # Flush block to SSTable
block = [] # Start a new block
key = k
block.append(newEntry)

if size(block) > 0:
index[ss_new.id][key] = size(ss_new) + 1
ss_new.write(block)
ss.writeToDisk() # SSTable is ready.
1ist0fSSTables.add(offset of ss, number of blocks in ss).

Figure 5. Flush MemTable to disk.

def readCkey):
if memTable.hasKey(key):
return memTable[key]
for ss in 1istOfSSTables:

relevantKeyBlock = the block before index[ss.id].upper_bound(key)
if key found in scan of block:
return value
return "key does not exist"

Figure 6. Read operation.

What occurs when the machine containing this entry undergoes a reboot or
restart? Given that everything in the MemTable is stored in RAM, it would be
lost. The Write-Ahead Log (WAL) comes to our aid in this situation. Prior to
resuming operations, the machine must replay logs generated after the last disk
flush to reconstruct the accurate state of the MemTable? As all operations are
performed in memory, the replaying of logs can be executed rapidly, with the
slowest step being the reading of Write-Ahead Log logs from the disk.

SST (Sorted String Table), LSM (Log Structure Merge) Tree, and Memtable
extend to column family stores, where updates are appended to a specific col-
umn family (CF), and read requests seek the last X entries (last X versions)? The
fundamental structure remains mostly unchanged, with a few adjustments:
During compaction, merging involves both entries rather than solely relying on
the latest entry. In the case of writes, entries are appended in the MemTable to
the combination of rowKey and column Family. For reads requesting the last X
entries: Check the number of entries available in the MemTable. If there are X
entries, return them. If not, continue reading from SSTables until X entries are
found or there are no more SSTables left. How does the deletion of a key oper-
ate? No-SQLData store employs an approach where deletion is treated as anoth-
er (key, value) entry, where a unique value is assigned to denote a tombstone. If
the most recent value encountered is a tombstone, the system can promptly re-

turn “key does not exist”, a read operation for a key that is not found can be

DOI: 10.4236/jcc.2024.128001

13 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

quite costly. Searching through every sorted set implies scanning multiple 64KB
blocks before determining that the key does not exist, resulting in a significant
amount of work for minimal returns. Adding the probabilistic data structure
called as Bloom Filter—a filter that operates as follows: Function: doesKeyExist
(key): Returns false: Key definitely does not exist. Returns true: Key may or may
not exist. Therefore, if the function returns false, data store can promptly con-
clude that the “key does not exist” without the need to scan SSTables. The accu-
racy of bloom function directly correlates with the level of optimization
achieved. Additionally, a crucial prerequisite is that the Bloom Filter must be

space-efficient, fitting into memory while utilizing as little space as possible.

5. Acid vs Base Datastores

The CAP theorem asserts that achieving both consistency and availability in a
partition-tolerant distributed system is impossible, especially during temporary
communication breakdowns. The ACID model ensures system consistency,
making it well-suited for businesses engaged in online transaction processing
(e.g., financial institutions) or online analytical processing (e.g., data warehous-
ing). ACID transactions guarantee consistent states, and choosing a relational
database management system like MySQL, PostgreSQL, Oracle, SQLite, or Mi-
crosoft SQL Server is a reliable way to ensure ACID compliance. While some
NoSQL database management systems, such as Apache’s Couch DB or Apache’s
Casandra, exhibit a certain degree of ACID compliance, the overall philosophy of
NoSQL contradicts strict ACID rules. Consequently, NoSQL databases are not
recommended for environments that demand strict adherence or total order
broadcasting. The emergence of NoSQL databases introduced a flexible approach
to data manipulation, leading to the creation of a new model reflecting these
properties: Basically Available: BASE-modeled NoSQL databases prioritize data
availability by distributing and replicating it across database cluster nodes. Soft
State: The BASE model deviates from enforcing immediate consistency, leaving it
to developers to manage. Eventually Consistent: BASE achieves consistency over
time, allowing data reads even before full consistency is reached. Marketing and
customer service companies engaged in sentiment analysis favor BASE’s elasticity
for social network research, handling vast amounts of unstructured data found in
social network feeds. Similar to how SQL databases are predominantly
ACID-compliant, NoSQL databases tend to align with BASE principles. Mon-
goDB, Cassandra, Redis, Amazon DynamoDB, and Couchbase are popular
NoSQL solutions. Choosing between ACID and BASE depends on project con-
siderations. ACID-compliant databases are preferable for those valuing con-
sistency, predictability, and reliability due to their structured nature. Conversely,
those prioritizing growth might opt for the BASE model, offering scalability and
flexibility at the expense of developer familiarity with its limitations.

6. Database Abstraction

Various abstraction layers are available in the Java/Spring ecosystem, such as

DOI: 10.4236/jcc.2024.128001

14 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

Spring Data JPA and Spring Data JDBC, which emphasize the development of
business rules and models by concealing the internal implementation details of
databases. This approach aligns with the dependency inversion principle. Our
code relies on the abstraction layers provided by Spring Data interfaces, effectively
concealing the intricate low-level details of different implementations. As applica-
tion developers, our primary focus is on crafting business and enterprise applica-
tions while providing simplified configurations, allowing the Spring abstraction to
handle Object-Relational Mapping (ORMs) and data stores [3]. Within this eco-
system, Spring Data JDBC, a component of the extensive Spring Data family, sim-
plifies the implementation of JDBC-based repositories. This module offers en-
hanced support for data access layers based on JDBC, streamlining the develop-
ment of Spring-powered applications that harness data access technologies.
Similarly, Spring Data JPA, another component of the broader Spring Data
family, facilitates the seamless implementation of repositories based on the Java
Persistence API (JPA) [4]. It simplifies the process of building Spring-powered
applications that rely on data access technologies. Creating a data access layer for
an application can be a cumbersome task, often involving the writing of exten-
sive boilerplate code for even the most straightforward queries. When additional
features like pagination, auditing, and other commonly required options are
added, the complexity can become overwhelming. Spring Data JPA aims to ad-
dress this challenge by significantly reducing the effort required for implement-
ing data access layers to only the essential elements. As a developer, one can de-
fine repository interfaces using various techniques, and Spring will automatically
handle the wiring. Additionally, developers have the flexibility to use custom
finders or employ query-by-example, with Spring taking care of generating the

queries for developers [5].

7. Transaction Management

All databases offer transaction support, but they vary in their levels of isolation
and consistency models to ensure high availability, which encompasses both
liveliness i.e. availability and safety, i.e. correctness such as consistency [6].
There are four levels of Isolation, Read Uncommitted, Read Committed, Re-
peatable Read, and Serializable, and four consistency models like Linearity,
Causal Consistency, Eventual Consistency, and Majority Quorum, are crucial
features supported by general-purpose databases. Table 6: Isolation Vs Efficien-
cy compares Isolation level and efficiency i.e. Liveliness or availability. Read
committed is a very popular isolation level, it is the default setting in Oracle 19c,
PostgreSQL, SQL Server 2022, MemSQL.

[1] The Read Committed isolation level presents an anomaly known as
non-repeatable reads or read skew. To address this issue, Snapshot Isolation
emerges as a prevalent solution. The concept revolves around each transaction
accessing a consistent snapshot of the database, ensuring that the transaction
perceives all data committed in the database at the transaction’s initiation. Even

if subsequent transactions alter the data, each transaction exclusively observes

DOI: 10.4236/jcc.2024.128001

15 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

the old data from the specific point in time. Snapshot isolation enjoys wide-
spread adoption and is supported by databases such as PostgreSQL, SQL Server
2022, and MySQL with the InnoDB Storage engine. Similarly, Repeatable Reads
entail anomalies like Lost Updates, Write Skew, and Phantom Reads, which can
be mitigated through Serializable isolation. Weak isolation levels provide partial
protection or correction against these anomalies but necessitate manual han-
dling by the application developer using explicit locking. Only Serializable isola-
tion guarantees defense against all anomalies. Achieving Serializable isolation
can be approached through three different methods: executing transactions in a
literal serial order, employing Two-Phase Locking, and implementing Serializa-

ble Snapshot Isolation at the cost of compromising liveness or availability.

Table 6. Isolation vs Efficiency.

Isolation Level Efficiency Implementation Explanation
Read Highest Single Data ~ Only need a single entry in the database and
ighes
Uncommitted 8 Entry it is overwritten whenever there is an update.

If clients are making an update to a key then
Read Local Copy of the older value of the key stays in the database

Average

Committed changed values and the newer value is kept in the local copy

till the commit finally goes through.

Transaction takes the value that it cares about
but transaction are not changing and keep a

Versioning Of

Repeatable version of them. For every key txn will store

Read Average Unchanged

all the values that it has ever has in different
Value

transaction commits. It achieves my Multi
Version Concurrency Control.

Transaction uses causal ordering here. If two

transactions use queries, foe the same ke
Serializable Low Queued Locks 4 . Y
then they must be ordered. Transactions that

do not have any conflict can run concurrently.

We have delved into Transaction Isolation levels, but it’s equally essential to
explore data consistency levels when selecting the appropriate data store for spe-
cific use case. Among the four consistency levels are linearizability, eventual
consistency, causal consistency, and Quorum. Table 7: Consistency vs Efficiency

compares consistency levels with respect to efficiency.

Table 7. Consistency vs Efficiency.

Level Consistency Efficiency
Linearizability Highest Lowest
Eventual Consistency Lowest Highest

Higher than eventual . . o
. . Higher than Linearizability but
Causal Consistency Consistency but lower than .
. . lower than eventual consistency
Linearizability

Quorum Configurable Configurable

DOI: 10.4236/jcc.2024.128001

16 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

At Linearizability level of consistency, datastores objective is to display all da-
tabase changes up to the moment of the current read request [7]. This entails
ensuring that all alterations occurring in the database prior to the read operation
are accurately reflected in the query results.

For example, suppose initially txn had x = 10.

Transaction [

update x to 13

update x to 17

read x --> Returns 17

update x to 1

read x --> Returns 1

]

To achieve linearizability, txn use a single-threaded single server, ensuring
that every read and write request is ordered. For example, a read operation on X’
would execute only after updating its value to 17. This approach is essential for
systems requiring perfect consistency and high reliability.

With eventual consistency, a read request might initially return stale data, but
it will eventually provide the latest data, as long as no new updates occur. During
the period of returning stale data, the system is not fully consistent, but it will
become consistent over time. This can be achieved by processing read and write
requests in parallel using multiple servers or concurrently using multiple
threads. For instance, if a write request is made before a read request, the read
request might still be processed first.

Whereas causal consistency requires that if a previous operation is related to
the current operation, the previous operation must be executed before the cur-
rent one.

For example

Transaction [

i. update x = 20

ii. update y = 10

iii. read x

iv.update x =2

v. read y]

The value of the read operation for x depends entirely on the prior update op-
eration where x is set to 20. Therefore, it is crucial that the update operation for
x is completed before the read operation. Conversely, the update operation for y
does not affect the value of x. Thus, the order of execution regarding y in rela-
tion to the read operation for x does not matter. As a result, the first, third, and
fourth operations will be processed on one server/thread, while the second and
fifth operations will be handled on another server/thread. Causal consistency is
superior to eventual consistency because operations related to the same key are
processed in order, ensuring better consistency. It also offers advantages over
linearizability because it doesn’t require waiting for all previous operations to

finish, thus improving availability. However, causal consistency faces difficulties

DOI: 10.4236/jcc.2024.128001

17 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

with aggregation operations [8]. In the quorum consistency model, data stores
work with multiple replicas of the database that may not always be in sync.
When performing a read query, data is fetched from all replicas, and the most
appropriate values (such as the majority value or the latest updated value) are
returned. This approach relies on some form of consensus within the distributed
system and usually achieves eventual consistency. For example, consider three
replicas where initially x = 20 in all. If the value is updated to x = 40 in the sec-
ond replica and this replica then crashes, a read request would return x = 20
from the remaining two replicas, providing outdated data. However, this incon-
sistency is temporary because once the second replica is restored, the correct re-
sult is obtained. To enforce strong consistency, we can specify a minimum
number of replicas from which data must be read. This can be achieved using
the formula R + W > N, where:

® R represents the minimum number of replicas required for reading data.

® W denotes the number of replicas involved in writing data.

® N signifies the total number of replicas.

For example, with N = 5 and W = 2, R should exceed 3 (i.e., R > 4). If data
cannot be retrieved from at least 4 replicas, an error response is generated. This
approach offers fault tolerance, and by adjusting the values of R, W, and N, we
can establish either an eventually consistent system (R + W < N) or a strongly
consistent one (R + W > N) [9]. However, utilizing quorum has its drawbacks: It
necessitates multiple replicas, resulting in higher costs. In cases where the num-
ber of replicas is even, it can lead to the split-brain problem hence to eliminate

split-brain problem, number of nodes in cluster should be 2N + 1.

8. Research Result

This research employs a comparative analysis methodology to examine the fea-
tures, advantages, and limitations of SQL and NoSQL databases. The study
evaluates these database types based on their performance in various application
scenarios, particularly focusing on read-heavy and write-heavy systems, scalabil-
ity, and consistency requirements. Data collection involved an extensive litera-
ture review, including academic papers, industry reports, and case studies. Prac-
tical experiments were conducted to assess database performance, using bench-
mark tools to simulate different workloads. The collected data was analyzed to
identify trends and draw conclusions about the optimal use cases for SQL and
NoSQL databases. The findings are presented with detailed comparisons and
recommendations, providing a comprehensive guide for selecting the appropri-
ate database technology based on specific application needs.

Our research explores the nuances between ACID and BASE data stores,
highlighting the trade-offs dictated by the CAP theorem. ACID-compliant data-
bases such as MySQL, PostgreSQL, Oracle, SQLite, and Microsoft SQL Server
ensure consistency and reliability, making them suitable for online transaction
processing and analytical applications. These systems are pivotal for environ-

ments where data integrity and predictability are paramount. Conversely,

DOI: 10.4236/jcc.2024.128001

18 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

BASE-modeled NoSQL databases like MongoDB, Cassandra, Redis, Amazon
DynamoDB, and Couchbase prioritize availability and scalability, making them
advantageous for applications handling vast amounts of unstructured data, such
as those in marketing and social network analysis. In the Java/Spring ecosystem,
abstraction layers like Spring Data JPA and Spring Data JDBC facilitate the de-
velopment of business applications by concealing database implementation de-
tails. This allows developers to focus on business logic rather than data access
boilerplate code. These frameworks streamline the creation of robust, scalable
applications by handling complexities like pagination, auditing, and query gen-
eration automatically. Transaction management in databases is a critical aspect
examined in our study, with various isolation levels (Read Uncommitted, Read
Committed, Repeatable Read, and Serializable) and consistency models (Linear-
izability, Eventual Consistency, Causal Consistency, and Quorum) being as-
sessed. Our findings indicate that Read Committed is the most popular isolation
level due to its balance between data consistency and efficiency. However,
Snapshot Isolation is widely adopted to address anomalies in Read Committed
transactions, ensuring a consistent view of data for each transaction.

We also delve into the effectiveness of different consistency models. Linear-
izability offers the highest consistency but at the cost of efficiency. Eventual
Consistency provides the highest efficiency, though it may initially return stale
data. Causal Consistency ensures operations related to the same key are pro-
cessed in order, offering a compromise between consistency and availability
[10]. Quorum Consistency balances consistency and efficiency by relying on
consensus across multiple replicas. Ultimately, the choice between ACID and
BASE databases, as well as the appropriate isolation and consistency levels, de-
pends on the specific needs of the application, whether it prioritizes data integ-

rity or scalability and availability.

9. Conclusion

We have explored data storage and retrieval Models such LSM Tree, MemTable.
Replication, Sharding, Transaction Support, Consistency Model, Database ab-
straction by frameworks, tunable consistency through features like Quorumin
the paper. It is the developer’s responsibility to evaluate their use case and
choose the correct data store to solve their specific problem by analyzing such as
need of High Availability vs High Consistency, High Latency vs High Con-
sistency, Tunable Consistency and Availability Model.

Future Scope

Exploring consistency and consensus in clusters of replicated sharded databases,
to address the distributed nature of next-generation enterprise systems, presents
significant opportunities for research. While beyond the scope of this paper, av-
enues worth investigating include master-slave replication and multi-master
replication using PAXOS and RAFT algorithms. Additionally, protocols like the
GOSSIP protocol in leaderless replicated clusters are noteworthy. This challenge

DOI: 10.4236/jcc.2024.128001

19 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001

S. Sethi, S. Panda

traces back to Lamport’s 1985 research papers and remains relevant, warranting
further exploration to identify the most suitable conflict resolution and

fault-tolerant algorithms for replicated sharded clusters in distributed databases.

Acknowledgments

We extend our appreciation to all the developers we have collaborated with and
their valuable contributions have played a crucial role in identifying data store
solutions in the market and implementing diverse data store solutions across
various enterprise applications over the years. Authors would like to specially
thank to Apper, Saravanan, VP-Morgan Stanley for valuable comments and

proofreading this article.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Athanassoulis, M., Kester, M.S., Maas, L.M., RaduStoica, et al (2016) Designing
Access Methods: The RUM Conjecture. EDBT, 2016, 461-466.

[2] Kleppmann, M. (2017) Designing Data-Intensive Applications: The Big Ideas Be-
hind Reliable, Scalable, and Maintainable Systems. O’Reilly Media, Inc.

[3] Gierke, O. (2012) Spring Data JPA-Reference Documentation.
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/

[4] Shivakumar, S.K. and Sethii, S. (2019) Introduction to Digital Experience Platforms.
In: Building Digital Experience Platforms. Apress.
https://doi.org/10.1007/978-1-4842-4303-9 1

[5] Pollack, M, Gierke, O., Risberg, T., et al (2012) Spring Data: Modern Data Access
for Enterprise Java. O'Reilly Media, Inc.

[6] Meier, A., and Kaufmann, M. (2019) SQL & NoSQL Databases. Springer Fachme-
dien Wiesbaden.

[7] Venkatraman, S., Kaspi, K.F.S. and Venkatraman, R. (2016) SQL versus Nosql
Movement with Big Data Analytics. International Journal of Information Technol-
ogy and Computer Science, 8, 59-66. https://doi.org/10.5815/ijitcs.2016.12.07

[8] Parker, Z., Poe, S. and Vrbsky, S.V. (2013). Comparing NoSQL MongoDB to an
SQL DB. Proceedings of the 51st ACM Southeast Conference, Savannah, 4-6 April
2013, 1-5. https://doi.org/10.1145/2498328.2500047

[9] Shivakumar, S.K., and Sethii, S. (2019) Building Digital Experience Platforms: A
Guide to Developing Next-Generation Enterprise Applications. APress.

[10] Petrov, A. (2019) Database Internals: A Deep Dive into How Distributed Data Sys-
tems Work. O’Reilly Media.

DOI: 10.4236/jcc.2024.128001

20 Journal of Computer and Communications

https://doi.org/10.4236/jcc.2024.128001
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://doi.org/10.1007/978-1-4842-4303-9_1
https://doi.org/10.5815/ijitcs.2016.12.07
https://doi.org/10.1145/2498328.2500047

	SQL or NoSQL—Practical Aspect and Rational behind Choosing Data Stores
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Datastore Analysis Methodology
	Choosing Database

	4. NoSQL Internals
	5. Acid vs Base Datastores
	6. Database Abstraction
	7. Transaction Management
	8. Research Result
	9. Conclusion
	Future Scope
	Acknowledgments
	Conflicts of Interest
	References

