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Abstract 
The following material is devoted to the generalization of the chaos modeling 
to random fields in communication channels and its application on the 
space-time filtering for the incoherent paradigm; that is the purpose of this 
research. The approach, presented hereafter, is based on the “Markovian” 
trend in modeling of random fields, and it is applied for the first time to the 
chaos field modeling through the well-known concept of the random “treat-
ment” of deterministic dynamic systems, first presented by A. Kolmogorov, 
M. Born, etc. The material presents the generalized Stratonovich-Kushner 
Equations (SKE) for the optimum filtering of chaotic models of random fields 
and its simplified quasi-optimum solutions. In addition to this, the applica-
tion of the multi-moment algorithms for quasi-optimum solutions is consi-
dered and, it is shown, that for scenarios, when the covariation interval of the 
input random field is less than the distance between the antenna elements, 
the gain of the space-time algorithms against their “time” analogies is signifi-
cant. This is the general result presented in the following. 
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1. Introduction 

Chaos modeling of real physical processes, particularly in information engi-
neering, is not a new topic and started long ago (see for example [1] and refer-
ences therein). However, overview of this topic is apart from the goals of this 
material. 
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This material is dedicated to extending the ideas of chaos filtering to space-time 
processing in wireless (MIMO) communications. This intention was inspired by 
the following reasons: 
• Chaos filtering in the time domain and in its multi-moment fashion as well, 

has recently been demonstrated [2] [3] to be an efficient approach for weak 
signal filtering (with SNR values less than 0 dB) with rather high accuracy 
expressed in a normalized mean square error (NMSE) around units of per-
centage for rather computationally simple algorithms, such as the Extended 
Kalman Filter (EKF). 

• In general, due to its “deterministic” nature, chaos filtering provides “singu-
larity” features for the filtering algorithms. This allows us to obtain surpri-
singly “spectacular” characteristics for the accuracy as mentioned above. 

• Those features, applied for the filtering and detection of “weak” signals of rather 
“different physical” nature (see [3] [4]) with reduced processing times are a high 
motivation for recommending such approach for practical implementation. 

One must notice that, nowadays, the modern signal processing algorithms in 
many areas such as: communications (wireless), Radiodetection, hydro location, 
measurement and instrumentation, etc. are implemented in space-time (see for 
example [5] [6] and many, many others). 

Though, some natural questions arise: how effective the ideas of chaos filter-
ing for space-time processing might be? What kind of corresponding algorithms 
might be considered? Where and how can the current algorithms (in time do-
main, with limited computational complexity) be generalized for space-time 
processing and so on? 

All the above questions are absolutely nontrivial and require accurate study of 
some related results. But, before that, it is necessary to recall and pay attention to 
the following: 

First, the input signal for the space-time processing algorithms is a random 
field and there are numerous ways ([5] [6], etc.) to describe it, and it was done 
and published before (see the list of References). So, how they might be inter-
preted (if possible?!) for the chaotic field dynamics? For reasons that might be 
clear a bit later, in the following, the main ideas of S. Tzafestas [7] about the 
Markovian description of random fields will be applied. 

Secondly, the Markovian description of a random field contains causality and 
Markovian properties both in time and space which are always necessary to con-
sider for practice. Then, how this will affect the computational complexity of the 
processing algorithms and therefore their practical implementation? 

Thirdly, what is the reasonable trade-off between the computational complex-
ity of the space-time algorithms and their accuracy? This certainly depends on 
the initial formulation of the random field model, generally and implicitly, as-
sumed to be a statistically Non-Gaussian process. 

All these aspects of the problem will be analyzed in the present material. The 
paper is organized as follows. Section 2 is completely dedicated to the Markovian 
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model of the random field. Section 3 presents the generalization of the Stratono-
vich-Kushner Equation (SKE) for the optimum filtering of chaotic fields. Section 
4 is devoted to the quasi-optimum algorithms with details about their multi-time 
formulation. Finally, Section 5 presents the concluding remarks. 

2. Chaotic Modeling of the Random Field: Markovian  
Approach 

As it was already mentioned above, the main goal of the outgoing material is to 
generalize effective filtering algorithms based on the chaos modeling of the input 
random signals, to the space-time case, i.e. to random fields. 

The natural way to do it is to assume, that the nonlinear dynamics of a hypo-
thetic generator of the “chaos” field is also a generalization of the continuous 
dynamic system (in time domain) to the appropriate dissipative non-linear sys-
tem, i.e. space-time “strange attractor”. It seems natural as well, to apply to this 
hypothetical space-time nonlinear dynamics all the basic assumptions for the 
stochastic motion of the deterministic dynamic systems as well as the ideas of A. 
N. Kolmogorov, Max Born, etc. [8]. 

Those ideas are broadly and well described in the existing literature (see [8] 
[9], etc.) and therefore they will not be repeated hereafter. At the same time, it is 
necessary to stress one important point. The most frequent approach for chaos 
modeling of continuous phenomena is related to the Markovian properties of 
random processes, which for the space-time case implicitly assumes the causality 
property not only in time, but in space as well. What does this mean, for exam-
ple, when it is applied to the MIMO receiving terminals? 

It means that the causality takes place not only in time, but also in the aper-
ture of the elements of the MIMO antennas. But, in this case, the assumption of 
causality of the field along the aperture of the antenna elements, clearly might be 
neglected (approximately) if the spacing between receiving elements is signifi-
cantly less than the “space correlation parameter” of the receiving field. 

Such kind of limiting assumption, obviously, reduces the complexity of the 
processing algorithms as well: as causality in both, time and space depends on 
the results of accuracy of the processing in both channels, space and time to-
gether, and so, the processing errors might mutually affect the result. 

Though, such models preserve causality and Markovian properties only in 
time, but not in space [7] [10] [11] and the fundamental idea of S. Tzafestas [7] 
for random fields as a generalization of infinite dimensional Markovian 
processes with the values taken from the Gilbert space, might be successfully ap-
plied in the following. Moreover, the possible “benefit” of those models might 
simplify the “bridge” between space-time algorithms and the already obtained 
filtering algorithms (only in time domain). 

Now, it is time to clarify, what does the Markovian model of the random field 
mean? 

First, could it be possible to assume that, it is a simple infinite dimensional 

https://doi.org/10.4236/cn.2024.163004


V. Kontorovich 
 

 

DOI: 10.4236/cn.2024.163004 77 Communications and Network 
 

generalization of the Markov processes? In order to make true this assumption, 
let us suppose that the radii-vector of the random field r is represented by “m” 
points ri ( )1,i m=  in some area D and values of the field ( ) ( ){ },

m
i ix r t x t=  

form an m-dimensional Markovian process (see [7] [10] [11]) described by 
m-dimensional stochastic differential equation SDE of the type [12]: 

 ( ) ( ), t t= +x f x ξ  (2.1) 

where x = x(t), x(t0) = x0, f(∙) is a nonlinear vector function and ( )tξ  is an 
m-dimensional vector of the exitation “white noises” with the matrix mxm of its 
intensities N(t). 

If “m” in (2.1) tends to infinity in the way that all the above-mentioned points 
uniformly and continuously cover the area D, then (2.1) might be rewritten by 
the following SDE: 

 ( ) ( ) ( ), , , ,t t t= +x r f r x r ξ  (2.2) 

with x(t0, r) = x0(r), ( ),t rξ  is a “hypothetical” field of the external random 
white noise excitations. 

One can see that the model of the random field from (2.2) considers the coor-
dinate vector “r” as a parameter. 

Considering the natural and practical assumption of a limited average energy 
of the field in the area D, then the space of functions x(t, r) in a fixed time in-
stant “t” is of Gilbert type and x(t, r) is a function of “t”. 

This is the essence of S. Tzafestas’ idea of the Markovian approach of the ran-
dom field modeling [7], which was further developed and generalized by A. 
Shmelev in [10] [11]. 

Thanks to this idea, it was possible hereafter to apply all the “richness” of the 
Markovian methods of the optimum filtering: Stratonovich-Kushner Equations 
(SKE), A. Kolmogorov-Max Born ideas of the stochastic dynamics of determi-
nistic systems [8] [9], etc. to the chaotic filtering of the fields (see [2] [4] and 
references therein). 

Applying all this to the chaotic random fields might be done in a rather 
straightforward way from the previously developed chaotic models for random 
processes [2] [4] [9]. For chaos models [8] [9] the random force ( ),t rξ  must 
be delta-correlated (in time) in the way: 

 ( ) ( ) ( ) ( ), , , ,t t t t tκ δ′ ′ ′ ′= −r r r rξ ξ , (2.3) 

with matrix of intensities N(t, r, r') being “very small” according to the idea of 
Kolmogorov-Born to “provide” the stochastic dynamics of the deterministic 
continuous nonlinear system: 

 ( ) ( ), , ,t t=x r F r x , (2.4) 

and “generate” the stochastic chaos [8] [9] [13]. 
The idea of Kolomogorov-Born means, that the “coordinates” of the chaos 

trajectory might not be determined precisely, but only with a small error which 
is actually “provided” by the process noise. In simple words it is a “statement” of 
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the Kolmogorov-Born stochastic principle,and it is a “bridge” between ODE 
(2.4) and the SDE (2.2). Though, in the following, everything which depends on 
SDE (2.2), depends (in the same sense) on (2.4), modified with the small process 
noise of (2.3) type. 

In the following, the small external “noises” which are “artificially” inserted 
into the chaos model (2.4) are called “process noises”. The vector-function in 
(2.4) and the vector-function in (2.2) are not the same, besides formally those 
equations are similar. 

To clarify this “controversial” issue, imagine that for the Non-Gaussian ran-
dom field the m-dimensional Markov model, in the form of SDE (2.1), was 
“synthesized” with a priority given PDF W(x). In [2] [3] [13] etc. it was already 
discussed how to do this and so, it will not be repeated hereafter. By making 
m→∞, SDE (2.1) is transformed into SDE (2.2), where r is a fixed parameter. 

Then if ( ),t rξ  = 0 in (2.2), then it is an ordinary differential equation 
(ODE), which follows from (2.2). One might ask if this ODE is “obliged” to 
produce the same chaos as it is assumed from (2.4). Definitely not! So, the logic 
of how to generate chaos must be chosen in a somehow opposite way. 

First, assuming “homogeneity” of the field in all { }1

m
ir , one has to select the 

chaotic attractor algorithm for the given PDF on each { }1

m
ir  (see examples in 

[2] [13], etc.) 
Secondly, with the hypothesis of a homogeneous field in all { }1

m
ir , following 

(2.2), the nonlinearity of the attractor can be applied as ( ), ,tF r x  for ODE 
(2.4), where, F(∙) is determined by the attractor type: for example, Lorenz, Chua, 
Rossler, etc. 

Thirdly, by selecting the intensity of the process noise for the “observable” 
component in the equation of the attractor, as it was recommended in [2] [13], 
one transforms the ODE (2.4) into the corresponding SDE of the random chao-
tic field model: 

 ( ) ( ), , ,t t= +x F r x r ξ . (2.5) 

The equation (2.5), which is formally similar to (2.2), might be applied, as well 
as SDE (2.2), to the optimum synthesis procedure of the chaotic filtering algo-
rithms due to the generalized Stratonovich-Kushner Equation (SKE). 

To conclude this part, it might be stated that, in any case, the above material 
does not pretend to be a “rigorous” explanation for the introduction of chaos 
into the random field modeling. Not at all! 

It is just a qualitative illustration of the basics of Markovian modeling for 
random chaotic fields and it only provides a natural approach to prepare the 
synthesis of the optimum filtering algorithms (see next section). 

3. Generalization of the Stratonovich-Kushner Equations 
(SKE) for the Chaotic Filtering: Quasi-Optimum Solutions 

3.1. Introductive Comments 

The theory of optimum filtering, detection and estimation has a rather long his-
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tory (see [5] [14]-[16] and references therein) and so, there is no need to repeat 
it hereafter. Applying as a criterion, for the optimal processing, the well-known 
criterion of the maximum a posteriori probability density function Wps(∙), or its 
probabilistic functional, the whole theory of the optimum filtering, detection, es-
timation, etc. (and its quasi-optimum modifications, see [5] [14]-[16] etc.) was 
created and developed. This theory is based on the differential equation for the 
time evolution of Wps(∙), applying the a priori characteristics of the Markovian 
model of the observed stochastic process. 

This was already done, and it is called the Stratonovich-Kushner Equation 
(SKE). The interested reader might find numerous references related to it and its 
quasi-optimum modifications (see also the already mentioned References), for 
convenience it is introduced in (3.3). For the chaotic filtering based on the Mar-
kovian approach, the related modifications of the SKE (3.1.a) and its qua-
si-optimum solutions were also detailed in rather numerous sources [2] [5] [13], 
etc. It is worth noticing that all this was done for the time domain. 

The current material is dedicated to random fields (space-time) with applica-
tion of the Markovian approach for their chaotic modeling as well. So, what are 
the specific features of this case? Actually, they are well known (see [7] [10] [11]) 
and they will be briefly outlined hereafter. One must notice that when m → ∞, 
and the SDE (2.2) is transformed into SDE (2.5) the probability density function 
(PDF) of its solution is transformed as well to the probability density functional 
P(x(r, t)) - (PDFn). 

So, the way of stochastic description of random fields x(r, t) is drastically dif-
ferent from the random processes x(t): it is a “functional” description by means 
of probabilistic functionals i.e. “functions of functions x(r, t)”. Though, all the 
derivatives in terms of the Markovian approach: ordinary and partial derivatives, 
integrals, etc., start to be “functional (variation) derivatives”, “functional inte-
grals”, etc.—components of the so-called well known long ago functional calcu-
lus (see, for example, [17]) for the fields1. 

Note, that for the current material all the forthcoming equations for the a pri-
ori and a posteriori probability density functionals (PDFn) have to be considered 
somehow in “symbolic” sense in order not to be involved with the “tiny” ma-
thematical details which actually are not so important in the following. 

This statement is true both for the scalar and the general vector random fields 
(for example MIMO case) ( ) ( ) ( ) T

1, , , , ,nt x t x t=   x r r r  both stochastic and 
chaotic. Here “T” means transpose. 

Returning to the Markovian approach, one has to remember, that a priori de-
scription of the corresponding PDFn - Ppr(x, t), must be presented in the way 
similar to the Fokker-Plank-Kolmogorov Equation (FPKE) for m-dimensional 
Markovian processes. This equation, in the following, will also be called as 
Fokker-Plank-Kolmogorov Equation (FPKE) [12] [14] [15] but with “functional 
derivatives” and is given by: 

 

 

1Please do not mix this term with the “Functional Analysis in Mathematics”. 
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1
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r

P x
r r r r

r r

, (3.1) 

( ) ( ) ( )0 0, t δ= −  P x x r x r , 

where 
( ) ( )ix
δ

δ
⋅

F
 is a functional derivative, and ( )

D

⋅∫  is a functional integral 

along the area D. The operator for Ppr(x, t) in (3.1) is linear though, the inter-
pretation of (3.1) can be seen in the way: 

 
( ) ( ){ },

,pr
pr

t
L t

t
∂

=
∂

P x
P x , (3.2) 

where L{} is a linear operator with functional derivatives. This form of the FPKE 
might be applied later, but notice once more, that all those formulas (for the 
moment!) have to be considered as “symbolic” and are just an illustration of the 
“idea” how the input signal must be treated. That is why, in the following, the 
way how to make concrete calculus is not discussed. Comparing FPK (3.1) with 
the FPK for the Markovian processes (see for example [12] [14] [15]) and (3.3) 
one can easily see the complete formal similarity. 

 
( ) ( ) ( ) ( )

2

1 1 1

, 1, , ,
2

n n n
pr

i pr ij pr
i i ji i j

t
f t t t

t x x x
κ

= = =

∂ ∂ ∂   = − +   ∂ ∂ ∂ ∂∑ ∑∑
P x

x P x P x . (3.3) 

3.2. Generalized SKE for the Pps(x, t) 

In the previous section the complete similarity between FPKE for Markovian 
processes and fields was presented (in symbolic way for the case of fields). Ab-
solutely the same issue takes place for the SKE for Pps(x, t) which is nothing else, 
but an algorithm for optimum filtering (see [5] [14]-[16], etc.) with the criterion 
of maximum a posteriori probabilistic functional. Omitting details about the 
development of the SKE (which almost coincide with those for the Markovian 
processes2) it finally yields: 

 
( ) ( ){ } ( ) ( ) ( )

, ,
, , , , , ,ps

ps ps

t
L t t t t

t
∂

 = + − ∂

P r x
P r x P r x F x F x , (3.4) 

where 

 ( ) ( ) ( ) ( ) ( )1, , , , , , , d d
2n

D

t Q t t t ′ ′ ′= −  ∫∫F x r r S r x y r S r x r r , (3.5) 

 ( ) ( )( ) ( ), , , , ,t t t t= +y r S r x r n r , (3.6) 

n(t, r)—Gaussian white noise field (δ-correlated in time) with covariation 
function: 

 ( ) ( ) ( ), , , ,n nt t t tδ′ ′= −′ ′K r r rKr , (3.7) 

 

 

2Certainly taking into account the difference between partial and functional derivatives [10] [11]. 
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S(t, r, x(t, r))—Generally is assumed as a desired signal which depends on the 
desired field x(t, r)—object of filtering. Qn(r, r') can be found from the integral 
equation: 

 ( ) ( ) ( ), , dn n
D

Q δ′ ′ ′ ′= −∫ r r K r r r r r , (3.8) 

( ),tF x  means the averaging procedure for F(t, x) over Pps(t, r, x). 
For convenience let us present the SKE version for Markovian processes in the 

way 

( ) ( ){ } ( ) ( ) ( ) ( )
, 1, , , , d ,

2
ps

pr ps ps ps

t
L t t t t t

t

∞

−∞

∂  
= − + − ∂  

∫
P x

P x F x F x P x x P x , (3.9) 

where Pps is the a posteriori Probability Density Function which has to be found 
by solution of the SKE [12] [14] [15]. 

The reader can compare the above presented sketch of the development of 
SKE, using Pps(t, r, x), for Markovian random fields with the result of the stan-
dard procedure for Markov processes or chaos presented in [5] [14]-[16] and 
find out, that they are completely identical, for sure taking into account that the 
formulas for processes are “physical” and symbolic for fields. The latter offers 
really spectacular opportunities to obtain a powerful way to drive many results 
already obtained for processes, to fields, (with certain caution related to the 
above made comments regarding derivatives). 

Now, it is time to make another main statement. The SKE as an optimum al-
gorithm for filtering, estimation, identification, etc. (either for processes, fields, 
chaos, etc.) practically never (except for the Gaussian case) offers exact analytical 
solutions. Therefore, for application in Non-Gaussian cases quasi-optimum al-
gorithms are always recommended. 

The final comments here might help to understand why chaotic filtering (for 
both, processes and fields) offers high accuracy for low SNR. For this matter re-
turn once more to SKE (3.1), from where it can be seen that the SKE is made of 
two parts, the first is related to a priori data and the second to results of the fil-
tering processes (a posteriori data). When the desired signal is a random process 
(field) then, the instantaneous value of the a priori part is certainly random (un-
certain) and the analysis of the a posteriori part “compensates” this uncertainty 
of the a priori data and gives acceptable accuracy when SNR 1 . 

When the model of the desired signal is chaotic (almost deterministic) then, 
the a priori part is somehow “predefined” or almost certain (known). Then, a 
posterior analysis is “practically” not needed, and SNR might be less than one (0 
dB). Anyway, its influence on the filtered signal is practically negligible. This is 
in short words an illustration of the effect of “singularity” of chaos filtering. A 
more rigorous explanation can be found in [13]. 

Note that in the framework of the statistical theory of communications, the 
singular scenarios are mainly considered to be non-practical when the accuracy 
does not depend on the SNR. But, if the models of the desired signals are some-
how “shifted” from the random concept to the almost deterministic concept, like 
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chaotic, then those scenarios seem to be rather opportunistic. This gives a 
“chance” to determine (identify, classify) many signals, images, etc. in “hard” 
conditions such as: low SNR, many targets, many users, etc. (see [18] [19] for 
example). 

As a “last” thought, one might ask: what for these “symbolic equations” are 
presented if they are actually not real for calculus!? The answer is: to take ad-
vantage of the analogy of the real development of their analogues in time do-
main, which are absolutely real! (see the following) and apply them for concrete 
scenarios. 

3.3. Some Quasi-Optimum Solutions for Field Filtering Problems 

As it was mentioned in the previous subsection the SKE is a very important ap-
proach for optimum filtering however, it does not give any opportunity to get 
solutions for non-Gaussian scenarios, for which quasi-optimum (suboptimum) 
algorithms might be much more useful. The list of suboptimum solutions is ra-
ther long3 and the reader can find a rather “contemporaneous” version in [13]. 
Also, in [13], an experimental study was presented, and showed that in the 
framework of the trade-off between computational complexity and filtering ac-
curacy, the Extended Kalman Filter algorithm (EKF) seems to be a reasonable 
option. In the following, the EKF algorithm is presented for vector fields (both 
physical and chaotic) with the help of functional derivatives. It follows then: 

( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

1

2

1 2 1 2
1 2

, 1 2 1 2
2 1

2
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ˆ, , , , d
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il jm
i jD
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K K

x x

t

δ δ

κ+

∫∫ r r r r
r r

ρ ρ

ρ ρ

 (3.10) 

where ( )ˆkx ρ  is an averaged a posteriori estimation of the k-th component of 
the vector field at the “ρ” coordinate and the “t” time moment. In other words it 
is the result of the filtering process; ( )1 2, ,ij t r rκ  is a space covariation function 
for the external vector stochastic force (noise) delta-correlated in time, in the 
SDE (2.3) and (2.5); ( ), 1 2,l mK ρ ρ  is a posteriori covariation matrix of the fil-
tered field (which as usual is an error matrix or an evaluation of the filtering ac-
curacy, for each component of the vector field!). 

Once more, the above equations (3.10) are completely symbolic and are pre-
sented just to illustrate that they are identical to the EKF algorithm for random 
processes in continuous time (assuming, of course, the difference in notations 

 

 

3Hereafter the “analogy” between the “physical” representation of the algorithms for processes and 
“symbolic” for the fields will be significantly applied. 
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for the derivatives, see [2] [13] and the references therein). Though, there is a 
clear opportunity to establish a “bridge” between the results for processes and 
fields (never mind random of chaotic) and apply the well-known results to new 
scenarios. In this context the next section will be dedicated to an application of 
the above results (certainly adapted) to MIMO terminals. 

4. Chaos Filtering in MIMO Receiving Antennas 
4.1. Problem Statement 

One must notice (as it was already stressed above) that all the presented material 
is considered in the framework of the Incoherent paradigm for 6G in 
NOMA-RIS-MIMO wireless communications, in the corresponding frequency 
bands [18] [20] [21]. The purpose of the filtering might be focused on the “iden-
tification” of the NOMA transmission users by means of the chaos filtering ap-
proach. Note that, the first attempt to do it for SISO case was presented in [18] 
with a rather high efficiency due to the “determinism” of the chaos modeling of 
the users’ received signals at the terminal. Tentatively, the same idea is behind 
the MIMO case but for the space time field scenario. 

The necessary theoretical results were presented above, including the rational 
quasi-optimum chaos filtering algorithms as the Extended Kalman Filter. In or-
der to properly adjust the previous theoretical results, it is reasonable to make 
some preliminary comments. 
• In the framework of the incoherent paradigm for 6G, it is reasonable to as-

sume (as a first approximation) that, according to wave propagation condi-
tions (in the GHz band), the fading on each “artificial trajectory” of the 
MIMO channel after its Orthogonalization (see [19]) can be neglected [18] 
[20] and the received signal is: 

 ( ) ( ) ( )0, cos ,y t A t tω= + +  r x r n r , (4.1) 

where n(t, r) is a noise, delta correlated in time and space; x(r) is a vector of 
random chaos field, modeled as SDE (2.5) with a “weak” processes noise. Ap-
proximately SDE (2.5) is: 

 ( )d
0

dt
=

x r
. (4.2) 

• Regarding x(r) and MIMO antenna parameters, two asymptotic assumptions 
can be taken: 

a) If the interval between antenna elements Δa for a linear planar antenna 
(PA) is much less than τf—a posteriori space correlation interval for the field 
x(r), then for x(r) the antenna aperture is somehow “solid” or “complete” and 
actually there is no MIMO, only a SISO scenario, and all the results related to 
chaos filtering (see [2] [13], etc.) are valid for this case. 

b) If Δa ~ τf, then chaos filtering is actually “space-time” and the latter must 
influence the filtering accuracy. The interested reader might have already figured 
out, that the Markovian concept of random field modeling might be applied only 
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for each of the antenna elements of the aperture, if and only if, they are statisti-
cally independent. Otherwise, all the volume of the ri coordinates have to be 
taken into account, i.e. admit field causality. Though, the algorithm (3.10) must 
be concretized for this case. 

An additional assumption also must be taken into account, when Δa ≥ τf, then 
the MIMO antenna elements are decorrelated and the difference ri - rj is nothing 
else but a difference of the location of the antenna elements. 

As processing is assumed to be held on each element of the MIMO antenna 
(i.e. {rj} are known and fixed), then the processing algorithms have to be pre-
sented in digital way for the antenna elements and then summarized for all the 
area D. The latter gives a hope, that this “last stage”, can be considered as some-
thing like to the linear incoherent diversity addition that, might provide an addi-
tional increment on the filtering’s accuracy (diversity effect). This issue deserves 
to be detailed. 

As was shown in [18], even for the SISO case, the normalized MSE (mean 
square error) for SNR ~ 0 dB is characterized with small percentage values. With 
the effect of diversity addition, it might diminish even to fractions of the per-
centage! Note that, an accurate analytical study of this, is hardly possible, but 
anyway, some evaluations might be done. 

4.2. Quasi-Optimum Algorithms for the MIMO Terminal 

Taking into account the concretization scenario in the form (4.1), it is possible 
to rewrite the quasi-optimum algorithms (3.10) in the following way: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0
0

1 2
1 2 0

0

ˆd ,
ˆ, , sin , d

d
d ,

ˆ, , , cos , d
d

D

D

t A t t t
t N

A t t t
t N

ω

ω

= − +  

= − +  

∫

∫

x
y r B r x r r

B
y r B r B r x r r

ρ
ρ

ρ ρ
ρ ρ

 (4.3) 

The second equation in (4.3) can be additionally simplified for the band-pass 
equivalent signal processing approach, if all “high-frequency” components are 
neglected. 

 
( ) ( ) ( )1 2

1 2

d ,
, , d

d D

SNR
t

= − ∫
B

B r B r r
ρ ρ

ρ ρ , (4.4) 

here 
2

02
ASNR
N

= −  is signal to noise ratio on each element. 

Then, for each element of the MIMO antenna, the digital version of (4.3) is 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

0
0

ˆd
ˆ, sin

d
d ,

, ,
d

i
j j

j

m

x t A y t B t i j t x t
t N

B t l
SNR B t m B t l m

t

ω

∞

=−∞

 = − − + 

= − −

∑

∑
 (4.5) 

Please note, that the “m’s” here are simply the number of antenna elements, 
but “l” denotes actually, the “distances Δa” taken between the corresponding an-
tenna elements and might be either, positive or negative. The “addition” opera-
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tor in the second equation in (4.5) is concretely, the linear incoherent diversity 
addition operation and ( ),B t i j Q− =  is the number of “effective” diversity 
“branches” taking part in the addition operation and can substitute “m” in (4.5). 

If the “branches” are assumed to be homogeneous and statistically indepen-
dent, then as a first approximation (roughly!) the resulting MSE can be consi-
dered as: 

 ( )MSE ~ MSE Q
iΣ . (4.6) 

If 1Q  it can be seen from (4.6), the resulting MSEΣ might be negligible or 
very small. 

In some sense, this statement might be seen beforehand, but one more im-
portant question arises: when is it reasonable to apply space-time processing? 
(see comments above as well). The answer is evaluated according to the degree 
of reduction of the MSE with the chaos space-time filtering on each antenna 
element compared with the MSE for the only time filtering case. 

In order to make an analytical illustration of this, let us assume that the co-
variation of the fields, along the antenna elements, is exponential: 

 ( ) ( )~ expK m mβ− , (4.7) 

where 1/β is the covariation interval. 
As before, considering two limiting cases 1

aβ − ∆  and 1
aβ − ∆ , it fol-

lows that, physically one is dealing (for the first case) with a complete (conti-
nuous) antenna aperture and there is no sense to use space-time processing (see 
above). But for the second case ( 1

aβ − ∆ ) the situation is completely different. 

Introducing for each antenna element the parameter 1 T

S/T

MSE
MSE

g − = , where  

MSET is the mean square error of the filtering for pure time processing and 
MSES/T is the same, but for the space-time case, one can see, that g-1 is nothing 
else but a metric of how much the MSE is reduced due to the space-time 
processing. So, when g takes its minimum value, the gain of the space-time 
processing is maximum. 

It might be shown that, when it is possible to neglect the time fluctuations of 
the field (fadings), one has: 

 ( )min 1 exp 2g β= − − . (4.8) 

From (4.8) it follows that, when 1β   (for example β ~ 0.1) then, the gain 
of the space-time filtering (i.e. the MSE) might be more than twice, which is re-
ally outstanding taking into account that the real gain is ~ 2Q. 

4.3. Multi-Moment Approach 

As it follows from the earlier presented data, even a rather “modest” (no more 
than twice) improvement for the MSEi of the filtering on each antenna element 
might be a significant improvement on the resulting MSEQ due to the diversity 
effect. 
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The latter might be encouraging for intentions to, even lightly, improve the 
filtering accuracy of the space-time processing on the antenna elements. Tenta-
tively, one of the possible trends might be the “multi-moment” approach pre-
sented in [13], etc., which showed very good results for “pure time” processing. 

Remind that the essence of the multi-moment approach is the introduction of 
the time instants [13]: 1 2 nt t t< < < , and the consideration of ( )i it=x x , 

1,i n=  which forms a new vector ( ) ( ) ( ) T
1 , , nt t t =  x x x , as a new “input” 

to be processed in an “aggregate” way. 
The possible “improvement” of the filtering accuracy might follow from the 

aggregate processing of the field x(t, r), (r fixed), of “n” instants (some kind of 
“time diversity”) (see [2] [13]). 

For this matter, it is reasonable to invoke Equations (3.1)-(3.4). The first two 
are dedicated to the description of the a priori Probability Functional, PPR(t, x), 
of the input chaotic field and the last one to the generalized SRE processing of 
chaotic space-time filtering. 

Applying then the straightforward analogy between the generalized SRE for 
filtering in partial derivatives and the variation (functional) derivatives (see sec-
tion 3 above) one can write the multi moment generalized SRE in the way 

 
( ) ( ){ } ( ) ( ) ( )

1

, ,
, , , , , ,ps

pr ps ps
n

t
L t t t t

t t
∂

 = + − ∂ ∂

P r x
P r x P r x F x F x



, (4.9) 

with [ ]T1 2, , , nt t t t= 
. 

It is obvious (and there is no need for additional comments), that the real 
multi-time space-time filtering (4.9), even in the quasi-optimum fashion, might 
be rather complex in computational sense and therefore impractical. But for 
each antenna element and applying the simplest EKF algorithm (for two-moment 
scenario) the possible improvement for the MSEi (and some illustrations about it) 
can be seen from the following tables [22]. 

In order to interpret correctly the data from the following tables, some com-
ments are necessary: 
• The filtering (identification) experiment for was focused on 2 scenarios: one 

for filtering 52 orthogonal carriers in presence of AWGN (≠1)—Table 1; and 
the other for 52 non-orthogonal carriers (≠2)—Table 2. 

• All the signals were processed in a regime of low Signal to Interference plus 

Noise ratios 
SignalSINR

Interference AWGN
=

+
 with sample values −3 dB and  

−10 dB; AWGN denotes the white Gaussian noise of the channel; the inter-
ferences were considered as the total interference signal of all carriers, which 
do not depend on the concrete selected signal for filtering. 

• For modeling each carrier, the x-components of the chaotic attractors Rossler 
and Chua were considered [13]. For the filtering (by means of the Extended 
Kalman Filter, EKF) the “process noise” concept was applied with intensity 

1Q  (see the details in [13]). 
• 1MM and 2MM, denote the one moment and the two moment filtering ap-
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proaches. 
 

Table 1. Chaos Filtering for 52 orthogonal carriers in presence of AWGN. 

SINR 
EKF (Rossler) EKF (Chua) 

−3 dB −10 dB −3 dB −10 dB 

1MM 0.0119 0.0504 0.0143 0.0730 

2MM 0.0107 0.0487 0.0134 0.0677 

 
Table 2. Chaos Filtering for 52 non-orthogonal carriers in presence of AWGN. 

SINR 
EKF (Rossler) EKF (Chua) 

−3 dB −10 dB −3 dB −10 dB 

1MM 0.0109 0.052 0.0139 0.0705 

2MM 0.0103 0.047 0.0138 0.0672 

 
As it can be seen from the tables, for the simple EKF algorithm with low SINR 

(less than 0 dB), the chaotic filtering operates with an MSEi of less than 10% (on 
each antenna element), i.e. it gives rather good results for extremely tough sce-
narios. Next, the difference in the filtering efficiency between 1 MM and 2 MM 
approaches is not significant (less than 10%), but taking into account the diver-
sity effect for MSEQ, it might be seen as an important factor (see above) for the 
MIMO space-time processing with 1Q . 

5. Concluding Remarks 

The above presented material is dedicated to one of the possible theoretical 
trends for the space-time processing of random fields in communications and 
related areas. It can be called “Markovian” and it was first proposed by S. Tza-
festas in the early '70s of the last century and it was further developed by A. 
Shmelev, etc. (see the list of references to this material). 

In this paper, this approach was applied to the so-called chaotic models, which 
according to the ideas of A. Kolmogorov, Max Born, etc. might be also “treated” 
in the framework of the Markovian approach. Therefore, it was found reasona-
ble to apply the ideas of chaotic filtering (rather effective in the time domain) to 
space-time chaos filtering, particularly for the MIMO-type systems. 

Though, this material can be considered as well as an opportunistic tool, 
which might be adjusted for the Incoherent paradigm in 6G MIMO systems de-
sign in the sense, that applying chaos filtering for space-time processing gives a 
“hope”, for example, to considerably reduce the MSE for user’s identification in 
6G transmissions in NOMA regime, which gives additional “chance” for NOMA 
to be used in 6G. 

The latter, as it was shown, follows from the properties of the space-time 
chaos filtering together (maybe) with multi-time properties of chaos filtering. 
These spectacular features were demonstrated above. 
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Finally, including the space-time chaos filtering into the list of the Incoherent 
paradigm “tools” [19] [21] could make it more attractive engineering practice. 

But, it is very important at the same time, that one has to notice that the pre-
sented material is (in some sense) one of the first steps and, for sure, requires fur-
ther significant development. 

In this regard, it is time to make some important remarks which were not 
touched on above. 
• In order to apply all the presented material to the “Incoherent paradigm for 

6G” it is necessary to ensure, that for the frequency bands assigned to 6G, the 
Markovian model for the propagation channel (see above) is valid. 

• Next, what it is necessary to prove is, whether or not the concept of the 
double selectivity of the channel might be applied? 

For the moment some physical analysis of those issues shows that this is cor-
rect, but careful studies must be carried out as well. 

Then, there is real hope for taking advantage of the spectacular characteristics 
of the chaos filtering accuracy. 

As time passes and the demand and requirements for wireless communica-
tions from the users grow drastically, the optimum solutions for space-time fil-
tering, as well as its quasi-optimum versions (see sections 2 and 3), have to be 
constantly and critically revised in order to reduce the processing errors (MSE) 
and work on optimization strategies to reduce the computational complexity tak-
ing into account the broad application and modern advances in the AI and 
cheap design. 

The Incoherent paradigm for 6G and beyond certainly might provide great 
opportunities in this field. 
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