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Abstract 
This paper investigates the ability of the depolarization degree, derived from 
the characteristic polarization states at the resonant frequency set, to identify 
corner or swept, i.e. dihedral, changes in same-class targets by a metallic wire 
example. A well-estimated depolarization degree requires a robust extrac-
tion of the fundamental target resonance set in two orthogonal sets of fully 
co-polarized and cross-polarized polarization channels, then finding the null 
polarization states using the Lagrangian method. Such depolarization degree 
per resonance mode has the potential to form a robust feature set because it is 
relatively less sensitive to onset ambiguity, invariant to rotation, and could 
create a compact, recognizable, and separable distribution in the proposed fea-
ture space. The study was limited to two targets with two swept changes of 
fifteen degrees within normal incidence; under a supervised learning approach, 
the results showed that the identification rate converging to upper-bound 
(100%) for a signal-to-noise ratio above 20 dB and lower-bound around (50%) 
below −10 dB. 
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1. Introduction 

In automatic target recognition applications, a radar system operating at the 
target optic region may use radar signature models, such as range profile [1]-[3], 
cross-range (imaging) [4]-[6], and micro-Doppler shifts analysis [7] [8]. Never-
theless, this comes at higher complexity and computation costs. On the contrary, 
a radar system operating at the target fundamental resonance region may apply 
less complex techniques, such as the complex natural resonance (CNR) signature 
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[9]-[12], capable of recognizing the radar target class and even the target type 
when combined with the shape attributes found in the characteristic polarization 
states (CPSs) [13]-[16]. 

According to the singularity expansion model (SEM) of a transient response, a 
series of resonance modes with a set of natural frequencies, damping factor, and 
residue could resemble the late-time transient portion of a pulsed radar return 
covering the target fundamental resonance region. The resonant frequency, which 
is excitation-independent, instills information about the size of the elementary 
structures; the damping factor is excitation-independent and reflects the material 
composition. Subsequently, the resonant frequency and damping factor form the 
first layer in the recognition process to classify or categorize the targets into the 
same class when the targets have similar dimensions and composition, e.g. 
mid-sized jetfighters. 

In contrast, the residue is excitation-dependent and reflects the mode peak 
strength, thus used to construct the polarization scattering matrix required to 
derive the CPS set. Hence, recognizing the target type within the same class 
requires incorporating shape attributes from the CPS in the decision-making 
process of the recognition operation [10]. Interestingly, the CPS of a higher 
fundamental mode has the potential to provide better information about the 
dihedral or swept degree between joint parts of the target as the electrical 
interaction between joint target structures increases with a higher resonant 
frequency. 

The CPS set represents the polarization states of reception at which maxi-
mum, minimum, or null reception exists in the co-polarized and cross-polarized 
directions, such that there will be four co-polarized states for a reception: two 
co-polarized maximums and two co-polarized nulls. Henceforth, evaluated at 
the target resonant frequency, the co-polarized set of the CPS should be able to 
unfold the crude degrees of symmetry, depolarization, and tilt in the target sub-
structures along the incidence plane, for targets of similar axes of symmetry, 
such a symmetry feature becomes redundant for recognition. Meanwhile, the tilt 
degree associated with a single mode is a variant feature that depends on target 
rotation in the incidence plane.  

On the contrary, the depolarization degree is invariant to the target rotation 
within the incidence plane and reflects the dihedral degree in corner structures. 
However, the accuracy or uncertainty in the estimated depolarization set depends 
on the accuracy of the extracted resonance signature, which usually degrades with 
ambiguities in the signature modal order and late time onset, plus noise and low 
resonant to specular return. Therefore, a constraint must apply to how well the 
estimated resonance signature resembles the original late-time response (quanti-
fied by the modal order and variance merit, as explained later) and how this af-
fects the ability of feature samples to form recognizable and separable patterns in 
the feature space [17]-[20]. 

Previously, in [12], the author used a feature space of depolarization and tilt 
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degrees per resonance mode to identify swept changes in a generic aircraft target 
model within a ten degrees azimuthal sector and achieved a recognition perfor-
mance of 85% - 100% from −10 to +15 dB. Instead, the present work will attempt 
to verify the capability of depolarization degree only to identify swept changes of 
fifteen degrees in a wire target model. The identification method uses a supervised 
learning approach under noise variations with a weight distance measure metric 
(depending on the substructure dimension as a fraction of the whole target) to 
select the most discriminative modes from the target’s radar response. The ap-
proach could achieve full recognition at a signal-to-noise ratio (SNR) beyond 20 
dB for a normal incidence when the specular return and onset ambiguity are at 
the high end. 

The paper’s outline is as follows: Sections  2 and 3 outline the mathematical 
background of the CNR signature, the null polarization states, and the identifi-
cation algorithm. Section  4 shows the results of the rate of correct (ROC) identi-
fication results, and finally, Section 5 reaches conclusions and points out the di-
rection of further studies. 

2. Background 
2.1. The SEM Signature 

Due to a wideband pulse incident covering the fundamental resonance region of 
the radar target under examination, the SEM theory approximates the transient 
oscillatory response of the original signal, which begins after some late-time onset, 
TL, as a sum of exponentially decaying sinusoids, expressed as y(t): 

( ) ( )( )
1

e sin argm
M

t
m m m

m
y t c t cδ ω−

=

= ⋅ +∑               (1) 

The parameter M defines the modal order of the signature (by default, set it 
equal to the number of cardinal target substructures); cm defines the complex re-
sidues; δm defines the damping factor; ωm defines the angular resonant frequen-
cies. Notably, the residue and damping factors are essential parameters used to 
estimate the energy of the resonance. As a rule of thumb, the late-time onset 
commences after the incident wave transits the farthest tip of the target along the 
incident plane. The farthest tip appears as the farthest pulse peak in the return 
response and before the commencement of the oscillatory return (see Equation 
(2) in [12]). Another way is to take the reciprocal of the first fundamental fre-
quency (if well excited) and add the pulse width duration.  

The matrix pencil of function (MPOF) algorithm may be used to extract and 
estimate the three resonance parameters in two steps: first, the solution of an 
ill-conditioned matrix of y(t) formed by delays of y(t) and then find the roots of 
a polynomial by the singular value decomposition (SVD) [21].  

The variance amplitude figure (VAF) metric quantifies the degree of uncer-
tainty in the estimated resonance set by measuring the similarity of the approx-
imated signal, y(t), to the original signal, x (t > TL), after the selected onset, TL 
[22]. 
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( ) ( )
( )

var var
VAF 100 1

var
 −

= ∗ −  
 

x y
x

               (2) 

The “var” defines the variance.  
Henceforth, the signature signal y(t) must fulfill two constraints to derive a re-

liable CPS set: have consistent M and sufficient VAF merit in all polarization 
channels.  

2.2. The Characteristic Polarization States (CPSs) 

For quad-polarization directions, the backscattered responses in orthogonal linear 
basis (h, v) of transmission and reception directions form a real-time dependent 
matrix S2 × 2 as follows: 

( ) ( )
( ) ( )

 
=  
 

S hh hv

vh vv

y t y t
y t y t

                      (3) 

The subscripts hh and vv denote the co-polarized scattering directions or 
channels, while hv and vh denote the cross-polarized scattering channels (re-
ciprocal for monostatic case). Since the resonance residue is the only polariza-
tion-dependent term, a reside polarization scattering matrix (RPSM), namely 
C2 × 2, can thus describe the target polarization scattering at a single resonance by 
dropping the time dependence term, i.e. ( )e m mj tδ ω− + , as follows: 

 
=  
 

C xx yx

xy yy

c c
c c

                        (4) 

Therefore, constructing the RPSM requires that the associated residue of this 
resonance be extractable from the temporal response by the MPOF in all polari-
zation channels.   

On reception, the signal is split into co- and cross-polarized channels, with the 
power at the antenna terminals established separately for each channel. The com-
plex residues, chh, and cvv, denote the co-polarized scattering coefficients, with cyx 
and cxy denoting the cross-polarized scattering coefficients, and are equal for the 
reciprocal (monostatic) case. The constraint of having consistent modal order in 
the matrix means that the co- and cross-polarized terms must have the same 
modal order, i.e. hh yx xy vvM M M M= = =  for every extraction trial.  

Next, the related power in the co-polarized channels is a function of the antenna 
polarization state, represented by Stokes vector g, as follows: 

( ) ( ) [ ] [ ]( )( )* 1 T
1 2 3

1, , diag 1,1,1, 1 U
2

P g g g −= ⋅ − ⋅ ⋅ ⋅ ⋅g R C C R g       (5) 

where 

1 0 0 1
1 0 0 1
0 1 1 0
0 0j j

 
 − =
 
 

− 

R , the Stokes vector [ ]0 1 2 3, , ,g g g g=g  defines the  

antenna’s polarization state in terms of g0 as total, g1 as linear h-v, g2 as linear at 
±45˚, and g3 as circular power portions, respectively. The product ([C] ⊗  [C]*) 
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defines the Kronecker product of matrix C and its conjugate. Applying the La-
grangian multiplier method to the power function in (5) subject to the constraint 
function ( ( ) 2 2 2

1 2 3 1 2 3 0, ,g g g g g g gΦ = + + − ) to optimize the received power 
yield the following three simultaneous equations: 

0, 1,2,3.µ∂ ∂Φ
− = =

∂ ∂n n

P n
g g

                  (6) 

where, µ  is the Lagrangian multiplier, which optimizes the power quantity rate 
of change as a function of the constraint variables. Solving (6) produces two pairs 
of co-polarized CPS, the orthogonal co-pol max pair (cm1, 2)and the co-pol null 
pair (cn1, 2), which engulf the copol max of minor power, forming a polarization 
fork around a great circle, as depicted in Figure 1. The variableg3 of the major 
co-pol max reflects the symmetry (0 for the symmetrical target, ±1 for the 
nonsymmetrical target). The co-pol null pair set is not orthogonal but defines a 
characteristic anglerelated to the depolarization degree, γ, as follows:  

( )cn1 cn2

cn1 cn2

dot ,
γ =

g g
g g

                       (7) 

 

 
Figure 1. Characteristic polarization state pairs form a polarization signature (polarization 
fork). 

3. The Method 

The following steps summarize and illustrate the procedures: 
1) Derive the transient response of the co- and cross-polarized directions {hh, 

yx; xy, vv} where x┴y (see Figure 5, for example). 
2) Measure the uncertainty in the resonance extraction (see Figure 6, for 

example). 
3) Use an ensemble average approach to the constraints on the modal order 

and the VAF merit (see Figure 7, for example). 
4) Extract the resonance residue using the MPOF method (see Table 2, for 

example). 
5) Find the co-pol null states of each resonance and then the depolarization 

degree per resonance (see Table 3 and Table 4, for example). 
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6) Determine the weighted feature set for all known targets (two in this case) 
(see Figure 8, for example). 

7) Use a supervised learning approach to calculate the rate of correct identifica- 
tion vs. SNR (see Figure 9, for example). 

3.1. The Feature Set 

Assuming that the targets have identical substructures and dimensions, as in the 
case of same-class aircraft targets, the problem is to discriminate or identify these 
same-class targets by their dihedral shape feature per resonance mode. There-
fore, it is desirable to quantify the shape variant degree ( λ∆ ) of a substructure 
(X), e.g. wings, for i'th target, say qi, compared to a reference target, qref, as fol-
lows: 

( )
λ θ

θ θλ
λ

−

Ω
=
Ω

∆ i refX
X iq                    (8) 

where the angle θ  denotes the substructure swept angle about the main body 
direction ranges from parallel, that is, zero, to perpendicular, i.e. max degree 

θΩ  (=90˚); the term λX  denotes the dimension of the substructure of interest; 
the term λΩ  denotes the total sum of substructure dimensions of interest. 

Then, for the number of training targets (Q) with prior probabilities of P(qi), 
1, ,i Q=  , express the average shape variant ( Xλ∆ ) of a substructure X as fol-

lows: 

( ) ( )
1

1
1

λ λ
=

∆ = ⋅∆ ∆
− ∑

Q

X n X n
n

P q q
Q

               (9) 

For multiple substructures 1, , MX X ′  that are excited by M resonances, 
then the weighting of the depolarization degree, γ, per mth resonance by the av-
erages ( 1, ,X Mλ ′∆



) forms the proposed feature set F in M-dimensional space as 
follows: 

1 1, ,λ γ λ γ = ∆ ∆ ⋅ ⋅F 

MX X M                (10) 

To make the feature set as compact as possible, and hence, fewer distance 
computations and more separable feature patterns of different targets, select the 
1,…., M* resonances with ( Xλ∆ ) above a certain upper threshold or discard the 
ones below a certain lower threshold. 

3.2. The Learning Approach 

In the training stage, the algorithm begins by estimating the expected (mean) fea-
ture set, namely the training prototype, by generating, per resonance, a sample 
distribution of the feature set with noise perturbation per target. Then, in the test-
ing stage, the algorithm assigns the test sample corrupted by noise from a target 
under test to the stored target database with the minimum distance aggregated 
across the M' resonances of interest. The following steps summarize the identifica-
tion approach for trained targets (Qtr) and test targets (Qts) as follows:  
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1) Training stage: For N realizations or trials, generate the noisy sample 
distribution of the set as 0, 1,; ;i i N i−=F F F , then the training prototype ( F ) is 
the expected value, i.e. the first moment, expressed as follows: 

1

0

1
1

−

=

=
− ∑F F

N

n
nN

                       (11) 

2) Test stage: Taking one of the stored targets as the test target qj, where its 
feature set samples are considered the test sample set (Fj), then across M' modes 
of interest, measure the aggregate distance (D) between the nth test sample (Fn, j) 
from target qj and the training prototype iF  of the i'th target qi by a distance 
metric ||.|| as follows: 

( ) ( ) ( ), ,
1

1,
1

′

′
=

= −
′ − ∑ F F

i

M

n M n j
m

D i j m m
M

          (12) 

3) Repeating the previous step for 1, , tri Q=   cataloged targets will generate 
(N.Qtr) distances, i.e. ( ), ,n MD i j′ , 0, , 1n N= −  and 1, , tri Q=  , for a single 
test target qj. 

4) Assign sample Fn, j to i'th target qi if the minimum distance Dn, M'(i, j)min > 
Dn, M'(≠i, j)min + distance threshold (h), or else declare unable to assign and 
discard this result if Dn, M'(i, j)min ≤ Dn, M'(≠i, j)min + h. The user selects the threshold, 
h, as a fraction of the maximum distance 1max Mr rD ′+ +=   where r = max(γ), 
i.e. r = 1. 

5) If the j'th and i'th targets of the minimum distance are the same, i.e. 
( ) mi, n,n MD i j i D′ ==  then declares able to assign to the correct target (correct 

decision), incrementing the number of correct target identification (Aj) for the 
j'th target, else declare unable to assign to the correct target (incorrect decision). 

6) Repeat the previous step for each test target; then, the ROC is the ratio of 
the total number of correct target identifications (A) to the product (Qts. Qtr. N), 
expressed as a percentage. 

1ROC 100
+ +

= ×
× ×



trQ

ts tr

A A
Q Q N

                (13) 

7) Repeat previous steps with different SNRs to establish the curve of the ROC 
vs. SNR levels. For Qts targets with the same prior probability, the lower bound 
of the ROC curve, at least theoretically, will set approximately around 100/Qts, 
e.g. 50% for Q = 2, %33 for Q = 3.  

Henceforth, the results will show how well the identification algorithm per-
forms under modal order and VAF constraints, with shape variant weighting the 
feature set per resonance mode. 

4. Simulation and Results 

The EM software FEKO [23] enables the modelling of a wire target. It calculates 
the frequency response by the method of moments, setting the maximum frequency 
preferably at twice the highest resonant frequency of interest. A wire target 
model is sufficient for our purpose, as the dihedral structures provide sufficient 
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polarization information to implement the identification algorithm. Figure 2 
depicts the configuration of the target dimensions and shape. The angle θw de-
fines the wing’s swept angle, whereas θt defines the tail’s swept angle with the lon-
gitudinal axis.  
 

 
Figure 2. The aircraft wire model configuration with normal incidence looks in the u1 
direction. The angles θw, and θt give the model different shapes but do not change the 
dimensions. 
 

The simulation (with values depicted in Table 1) uses two different swept sets 
(θw, θt) = (30˚, 60˚) and (45˚, 45˚) to have two models with a swept difference of 
15˚ to validate the feature set robustness. Having more than two test targets will 
only decrease the lower bound of the ROC curve, but the approach is still valid 
for two targets. Changing the angles θw and θt does not affect the geometrical 
dimensions (i.e. a similar set of resonant frequencies) but leads to different shapes 
and, subsequently, different polarization characteristics.  
 
Table 1. Feko simulation values. 

Parameter Value 

Start frequency 1.9 MHz 

Stop frequency 1 GHz 

Number of frequency points 512 

Excitation source voltage 1V 

Incidence direction Normal 

Wire radius 0.33 cm 

Number of segments 83 

SEM modal order 4 

Late-time onset 25 ns 
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This configuration led to four dominant resonances, i.e. M = 4, corresponding 
to the mid, the nose-wings, the wings-mid, and the tails, respectively, as depicted 
in Figure 3. However, only the second to fourth-order resonances reflect the di-
hedral features of the target. 
 

 
Figure 3. The current distribution per mode shows the excited section of the aircraft model. 
 

In Figure 4, the current distributions of four selected segments belonging to 
(the nose, wing, mid, and tail) sections of the model demonstrate that the reson-
ances, i.e. reflected by peaks in the response, correspond mainly to sections of the 
mid, the wings, the nose, and the tails, respectively. The jointed nose, mid, and 
skewed wing effect will be more profound on the total response, as seen in Fig-
ure 4. Each section has a different resonant frequency depending on its dimen-
sions, but both models have the same resonant frequency set overall. Therefore, 
both models are assumed to be electrically similar. Figure 5 shows the temporal 
response for both models after Fourier Transforming the frequency response. In 
general, the x-pol returns of both models display less specular reflections and 
better oscillatory returns (more robust modes). Henceforth, with different noise 
levels, anticipate that some resonance residue may be difficult to attain in all qua-
drature polarization channels. 

Figure 6 presents two trials of MPOF extraction against SNR from 0 to +40 
dB, leading to the frequency distribution of four resonances with noise. Both 
models’ resonance sets are generally closely identical, as expected, especially the 
first and second sets. This trial evaluation displays modes around 180, 290, 375 - 
410, and 650 MHz. In addition, there are slight and uncorrelated shifts in the 
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frequency of the extracted modes from channel to channel and from model to 
model. Shifts in the third and fourth sets are more noticeable, suggesting that 
allowing a guard or margin band when grouping residues from the quadrature 
polarization channels is good practice. The fourth-ordered resonance caused the 
most uncertainty in the signature modal as it was very susceptible to noise below 
20dB, suggesting either reducing the modal order with lower SNR or using en-
semble averaging to enhance the SNR. 

To satisfy a well-estimated resonance signature with noise perturbation, i.e. an 
approximated signal of consistent modal order and high VAF, take the ensemble 
average of the original signal before MPOF extraction. As shown in Figure 7, 
applying the ensemble average against noise can guarantee consistency in the 
modal order M and improve the VAF, e.g. by four folds at 0 dB from 20% to 80%. 
 

 
(a) Model A 

 
(b) Model B 

Figure 4. The current-frequency responses in hh-pol of the selected segments belonging 
to the nose (#7), wing(#12), mid(#41), and tail stabilizer (#61), respectively. 

https://doi.org/10.4236/jemaa.2024.166006


F. Aldhubaib 
 

 

DOI: 10.4236/jemaa.2024.166006 95 Journal of Electromagnetic Analysis and Applications 
 

 
(a) Model A 

 
(b) Model B 

Figure 5. Calculated temporal responses of both models in HH and HV channels. 
 

   
(a) Model A 
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(b) Model B 

Figure 6. The fourth-order resonant frequency distributions in (hh and hv) channels against SNR for (a) Model A and (b) Model 
B. There are three distinctive resonances in the ranges 144 - 155, 270 - 300, and 450 - 500 MHz. Generally, higher modes are more 
susceptible to noise, e.g. the fourth mode below 20 dB. 

 

 
Figure 7. Ensemble average per SNR for M = 4 and VAF > 80%. 

 
After applying the MPOF to the temporal backscattered signal of Model A, a 

set of four resonances exist with complex residues as shown in Table 2, inserting 
the complex residues into (4) for each mode and then applying (5) and solving 
the co-pol CPS set at each resonance mode, as listed in Table 3 and Table 4, il-
lustrating that the target models have a different CPS set at each resonance and, 
subsequently, different physical attributes. For the first model, at the first resonance, 
the geometry is forecasted to be highly long as the dot product gcn1∙gcn2 = 1 and 
tilted about 45˚ (as 1/2tan−1(g2/g1) = 45˚ for [gcn1 + gcn2]); thus corresponding 
mainly to the midsection. The second to the fourth have similar CPS sets with 
the non-linear property as gcn1∙gcn2 ≠  1, forecasting a dihedral structure. These 
attributes of the CPS at the dominant resonances agree with what a priori known 
about the target composite is. In particular, the g3 of the co-pol max set, cm1, 2, 
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for all resonances is zero, indicating that all target geometries are symme-
trical.  
 
Table 2. The scattering coefficients of Model A. 

Resonance order chh cyx cvv 

1 0.49 − 0.13j 0.37 − 0.38j −0.49 + 0.13j 

2 0.92 + 0.73j 0.28 + 0.11j −0.92 − 0.73j 

3 −1.44 + 3.64j 0.64 + 0.03j 1.44 − 3.64j 

4 −0.97 − 2.23j -0.65 + 0.15j −0.97 − 2.23j 

 
Table 3. The CPS of Model A. 

Mode order CPS g1 g2 g3 Pc 

1 

cm1 0 1 0 1 

cm2 0 −1 0 0 

cn1 0 −1 0 0 

cn2 0 −1 0 0 

2 

cm1 0 1 0 1 

cm2 0 −1 0 0.34 

cn1 0 −0.26 0.97 0 

cn2 0 −0.26 −0.97 0 

3 

cm1 0 1 0 1.0 

cm2 0 −1 0 0.51 

cn1 0 −0.16 0.98 0 

cn2 0 −0.16 −0.98 0 

4 

cm1 0 1 0 1 

cm2 0 −1.0 0.0 0.32 

cn1 0 −0.27 0.96 0.0 

cn2 0 −0.27 −0.96 0.0 

 
Table 4. Compared to the first model, the CPS results of Model B. 

Mode order CPS g1 g2 g3 P 

1 

cm1 0.0 1.0 0.0 1.0 

cm2 0.0 −1.0 0.0 0.0 

cn1 0.0 −1.0 0.0 0.0 

cn2 0.0 −1.0 0.0 0.0 
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Continued 

2 

cm1 0.0 1.0 0.0 1.0 

cm2 0.0 −1.0 0.0 0.03 

cn1 0.0 −0.72 0.7 0.00 

cn2 0.0 −0.72 −0.7 0.00 

3 

cm1 0.0 1.0 0.0 1.0 

cm2 0.0 −1.0 0.0 0.71 

cn1 0.0 −0.08 1.0 0.0 

cn2 0.0 −0.08 −1.0 0.0 

4 

cm1 0.0 1.0 0.0 1.0 

cm2 0.0 −1.0 0.0 0.0 

cn1 0.0 −0.87 0.49 0.0 

cn2 0.0 −0.87 −0.49 0.0 

 
Next, to demonstrate the ability of the co-null state to discriminate between 

similar type models, the feature space per resonance mode consists of samples or 
realization of the dihedral degree generated at this mode with a predetermined 
SNR. Table 3 derives and lists the CPS set at each resonance for Model A.  

Comparing the results of both tables for Models A and B, their co-null set at 
the second to fourth resonance demonstrates the significant difference, complying 
with the swept angle change made to the wings and tails.  

Figure 8 depicts the distribution of the third and fourth modes at 20dB SNR, 
showing normal distributions that are separable with high VAF. These samples will 
form the test prototypes in the 20 dB testing stage later, whereas the expected pro-
totype constitutes the 20 dB training prototype stored in the cataloged database. 
 

 
Figure 8. The feature space per third and fourth resonances for the perpendicular incidence 
direction. 
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In general, the depolarization degree appears most distinctive along the second 
to fourth resonances since these resonances excite the wing and tail sections of 
the target, respectively. This distinctiveness coincides with the degrees of the two 
targets differing along these sections.  

The evaluation of the ROC performance undergoes a training process under 
SNR levels similar to that of the test sample. Figure 9 depicts the identification 
performances per resonance with only the modal order constraint M = 4 applied. 
Identification improves with more resonance in the feature set, e.g. the ROC of 
the combined third and fourth modes, compared to the individual ROC of the 
third or fourth modes. 
 

 
Figure 9. The identification performance per modes of interest. 

 
Generally, the third and fourth have the best performance, reaching the lower 

bound of 50% near −10 dB.   

5. Conclusion 

The paper evaluated the ability of the depolarization degree to identify swept 
changes in a simple wire target that resembles an aircraft. Such a feature set is 
compact, reflects the target’s dimensions and configuration attributes, is inva-
riant to orientation, forms a recognizable pattern in the proposed feature space, 
and is resilient to ambiguity in the late time onset and noise compared to the 
symmetry and tilt degrees. Adding the constraints on the modal order M and 
VAF improved the certainty in the resonance set and thus the performance of 
the ROC; in this case, it achieved an identification rate with a lower bound below 
−10 dB and an upper bound of 100% at 20 dB. In future work, the identification 
approach must consider estimating the expected feature set with aspect varia-
tion. Therefore, the diversity of the target’s look angle should be considered, and 
other decision-making algorithms, such as the nearest neighbor or statistical 
methods, should be exploited, especially nonparametric types and fuzzy logical 
approaches. 
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