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Abstract 
Traditional traffic management techniques appear to be incompetent in com-
plex data center networks, so proposes a load balancing strategy based on 
Long Short-Term Memory (LSTM) and quantum annealing by Software De-
fined Network (SDN) to dynamically predict the traffic and comprehensively 
consider the current and predicted load of the network in order to select the 
optimal forwarding path and balance the network load. Experiments have 
demonstrated that the algorithm achieves significant improvement in both 
system throughput and average packet loss rate for the purpose of improving 
network quality of service. 
 

Keywords 
Data Center Network, Software Defined Network, Load Balance, Long 
Short-Term Memory, Quantum Annealing Algorithms 

 

1. Introduction 

With the development of cloud computing, 5G and other technologies, under 
the trend of explosive traffic growth, increasing scale and complex topology in 
Data Center Network (DCN) [1], the traditional network management architec-
ture gradually exposes some deficiencies. Therefore, designing more effective 
and intelligent load balancing algorithms is of great research significance to im-
prove the network performance in cloud data centers. 

The proposal of SDN [2] provides strong technical support for the effective 
detection and management of networks. SDN separates the control plane from 
the data plane, so that the data plane is only responsible for routing and for-
warding, and the control plane implements forwarding decisions, realizing uni-
versal forwarding and efficient manipulation of network data streams, thus in-
creasing the flexibility of the network. 
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We first use machine learning to dynamically predict the network flow and 
design a multipath forwarding policy based on the current and predicted net-
work load characteristics to dynamically adjust the network load situation. The 
effectiveness of this algorithm is verified by comparing it with other load ba-
lancing algorithms through simulation experiments. 

2. Related Work 

In recent years, SDN-based network load balancing technology has received 
widespread attention because of its high flexibility and adjustability, and re-
searchers at home and abroad have conducted a series of studies on it and pro-
posed a variety of solutions. 

Fu Wang [3] and others proposed a Dynamic Distributed Multi-path (DDMP) 
load balancing algorithm, which quickly responds and adjusts the traffic ac-
cording to the inverse of the buffer occupancy when certain paths in the network 
are loaded to prevent severe congestion. However, as the scale of the data center 
network expands, its energy consumption will become an important issue. M. A. 
Saifullah [4] et al. proposed EHLBOF (Extended Health monitoring for Load 
Balancing in OpenFlow based network) algorithm, which not only takes into 
account the current load of the servers, but also their health status, thus im-
proving service availability and response speed. In addition, Zhang Chaohui [5] 
et al. proposed an energy efficient routing algorithm based on bandwidth 
matching, which is able to reserve sufficient space for the upcoming data 
streams, preventing link congestion and saving network energy consumption. 

A. Montazerolghaem [6] proposed a modular energy and load control system 
in IoMT that both reduces the number of loMT active servers and switches and 
balances the load distribution. Literature [7] proposed a network control me-
chanism based on SDN and AI, and proposed three operator network optimiza-
tion algorithms, which provide effective solutions and theoretical support for 
telecom operators to implement intelligent network control and traffic optimi-
zation in SDN. 

The MTDLR [8] algorithm integrates path-level metrics to select forwarding 
paths and adapts to different topologies by adjusting the weights of network in-
fluences. However, MTDLR determines the weighting parameter to select the 
optimal path only through the average flow bandwidth utilization, which may 
cause the algorithm to fall into a local optimal solution and is not flexible 
enough for the dynamically changing network load problem. 

3. Load Balancing Algorithm Based on Dynamic Flow  
Prediction and Multi-Constraint Routing 

3.1. Dynamic Flow Forecasting 
3.1.1. Long Short-Term Memory 
The LSTM model [9] was proposed by Hochreiter and Schmidhuber in 1997, 
which effectively solves the problem of gradient vanishing and gradient explo-
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sion encountered when dealing with long sequential data. The structure of 
LSTM is shown in Figure 1. 
 

 
Figure 1. LSTM structure. 
 

The LSTM model adds three parts to the RNN (Recurrent Neural Network), 
namely, forgetting gate, input gate and output gate, and each gating unit consists 
of σ  and tanh activation function. 

1) Forgetting gate: determines which old information is forgotten. ( )f t  in-
dicates the importance of the old information, the higher the value, the more 
important the information. 

( ) [ ]( )1,f t t ff t W h x bσ −= +                     (1) 

2) Input gate: ti  decides which new information is stored. is the output of the 
input gate, indicating the importance of the new information. iC  indicates new 
information can be stored to the current cell state. 

[ ]( )1,t i t t ii W h x bσ −= +                       (2) 

[ ]( )1tanh ,t c t t cC W h x b−= +                     (3) 

At this point, the cell state is updated and the updated state is tC . 
3) Output Gate: Determines what information will be output. 

1t t t t tC f C i C−= +                          (4) 

( ) [ ]( )1,o t t oh t W x h bσ −= +                     (5) 

In Equations (1) to (4), W is the network weight coefficient, 1th −  is the out-
put of the previous time step, th  is the output of the current time, and b is the 
bias of the activation value. 
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3.1.2. Model Evaluation Indicators 
The average absolute error (MAE), root mean square error (RMSE), average ab-
solute percentage error (MAPE) and Symmetric Mean Absolute Percentage Er-
ror (SMAPE) are usually used to evaluate the prediction effect of the model, and 
the lower the value of the indexes, the more stable the model is and the more 
accurate the prediction results are. The formulas are as follows: 

( )
1

1 ˆMAE
m

t t
t

h h
m =

= −∑                        (6) 

( )2

1

1 ˆRMSE
m

t t
t

h h
m =

= −∑                      (7) 

1

ˆ100%MAPE
m

t t

t t

h h
m h=

−
= ∑                      (8) 

1

ˆ100%SMAPE
ˆ

m t t

t t t

h h

m h h=

−
=

+
∑                     (9) 

where m, th , and t̂h  are the total number of samples, measured values, and 
predicted values, respectively. MAE measures the average size of the absolute 
value of the difference between the predicted and actual values; RMSE is the 
square root of the mean of the squares of the difference between the predicted 
and actual values; MAPE is the average percentage of the absolute value of the 
ratio of the prediction error to the actual value; SMAPE reduces the problem of 
numerical inflation that may occur with MAPE by taking the absolute value of 
the predicted value and the actual value and averaging them. 

3.2. Quantum Annealing Algorithms 

Metropolis et al. [10] proposed the idea of Simulated Annealing (SA) in 1953, 
which has since been widely used in combinatorial optimization [11] problems. 
SA, as a heuristic global optimization algorithm, simulates the physical process 
of atoms rearranging to reach thermodynamic equilibrium during annealing of 
solid materials. Although SA can handle complex optimization problems, its 
convergence speed and and solution quality depend on the parameter settings, 
and the temperature of the object is directly proportional to the energy, at lower 
temperatures, according to the Metropolis criterion, it only accepts new solu-
tions that are smaller than the current solution, or when the temperature de-
creases at too fast a rate, it may skip many potential globally optimal solutions, 
and thus easily causes the system to stay at the local optimal solution. 

With the development of quantum technology, Quantum Annealing (QA) al-
gorithm [12] based on quantum tunneling effect is proposed. The so-called 
quantum tunneling effect, i.e., the quantum leap gives the quantum the ability to 
penetrate the potential barrier higher than its own energy. Simulated annealing 
algorithm and quantum annealing algorithm over the potential barrier are 
shown in Figure 2, the particle reaches the local optimum at point A, the simu-
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lated annealing algorithm needs to go over the potential barrier in order to 
achieve the global optimum, and the quantum annealing algorithm only needs to 
reach the global optimum point B directly through the quantum tunneling ef-
fect. 
 

 
Figure 2. Comparison of SA and QA. 

 
The process of realizing quantum annealing requires 6 steps: 
Step 1: Construct the evaluation function q pot kinH H H= +  of the quantum 

system, where potH  is the potential energy to represent the objective function 
of the optimization problem and kinH  is the kinetic energy; 

Step 2: Set the initial temperature T, the transverse magnetic field strength Γ, 
and the maximum number of iterations Steps. Select an initial state x randomly 
at temperature T and calculate ( )qH x ; 

Step 3: Generate a new state x' by randomly perturbing state x and calculate its 
( )qH x′ ; 

Step 4: Calculate ( ) ( )q q qH H x H x∆ = − ′ . If 0qH∆ > , or 0qH∆ <  and  

( )e random 0,1
qH

T
∆

−
< , the new state x' is accepted, otherwise, return to step 3; 

Step 5: Perform a de-tempering and magnetic field attenuation operation; 
Step 6: Determine whether the maximum number of iterations or the termi-

nation condition is reached, if so terminate, otherwise return to step 3. 
According to the above steps, the flowchart of quantum annealing algorithm 

is shown in Figure 3: 

3.3. Multi-Constraint Based Path Forwarding Policy 

After a data stream is generated, there are multiple paths between its source and 
destination nodes in the data center, and choosing the appropriate path for for-
warding can effectively maintain network load balancing. In this paper, we de-
sign the optimal forwarding path policy that satisfies the constraints through the 
current and predicted load balancing degree. 
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Figure 3. Flowchart of QA. 
 

Construct the data center network as a directed graph ( ),G S L= , with S be-
ing the set of all nodes in the network and L being the set of all links in the net-
work. Denote the path between the data flow source node s and the destination 
node d as Ps,d. 

3.3.1. Path Available Bandwidth 
In a data center network, choosing a path each time to forward with the maxi-
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mum available bandwidth between source and destination nodes can effectively 
alleviate and prevent load imbalance problems. Get the switch port statistics to 
get the number of bytes sent and received by the port and calculate the transmis-
sion rate ,i jspeed  of the port based on the last recorded number of bytes 
transmitted: 

, , , , 1
,

i j t i j t
i j

stats stats
speed

pd
−−

=                   (10) 

In Equation (10), i and j respectively denote the source and destination 
switches, stats denotes the number of bytes transmitted on the port, and pd de-
notes the time interval between two recordings. 

Then the bandwidth lbw  of link l is denoted as the minimum of the two 
ports connected, and the available bandwidth _free bw  is the difference be-
tween the link capacity lC  and the used bandwidth, and the minimum available 
bandwidth of all the links in the path is denoted as the available bandwidth of 
the path: 

( ), ,min ,l i j j ibw speed speed=                   (11) 

_ l l lfree bw C bw= −                       (12) 

( )1 2
min _ , _ , , _

nl l lA free bw free bw free bw=              (13) 

3.3.2. Link Load Balancing Degree 
A link is often part of multiple paths, so the available bandwidth of different 
links in a path varies. To avoid overloading certain links and improve transmis-
sion efficiency, the load balancing degree of a link is considered when selecting a 
forwarding path. In this paper, the bandwidth equalization degree of a path is 
expressed as the difference between the minimum and maximum values of the 
bandwidth between all nodes in the path: 

( )
( )

1 2

1 2

min _ , _ , , _

max _ , _ , , _
n

n

l l l

l l l

free bw free bw free bw
B

free bw free bw free bw
=





           (14) 

3.3.3. Link Forwarding Policy 
Combining the available bandwidth and bandwidth equalization of the above 
paths with the LSTM prediction of the available traffic and bandwidth equaliza-
tion, the transmission cost of the paths is used as a weight for path selection. In 
addition, in order to guarantee the transmission of the data flow, one path is se-
lected at a time and only one path is selected, and there are no loops in the se-
lected paths, so that the objective function definition is obtained: 

1

1min

1
s.t.

pre pre

n

r
r

A B A B

x

P p
=

+ + +

 ≤

 =

∑
                     (15) 
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In Equation (15), n is the number of all forwarding paths calculated from the 
source destination address. 

3.4. Design of LSTM-QALB Path Forwarding Algorithm 

The optimal path is solved by quantum annealing algorithm and the solution 
process is shown in Algorithm 1: 
 
Algorithm 1. Optimal path selection based on LSTM and QA. 

Input: topological directed graph G 
Output: optimal forwarding path 

1 Get the set of forwarding paths all_paths based on the source directory address. 

2 for path in all_paths do 

3 Calculate the available bandwidth for all links on the path, save to total_weights. 

4 
Predict the available bandwidth of all links on the path, saved to  
total_forecast_weights. 

5 for weights in total_weights do 

6 Calculate the available bandwidth of the path and save it to free_bws. 

7 Calculate load balancing of paths, save to balances. 

8 for forecast_weights in total_forecast_weights do 

9 Calculate available bandwidth for path prediction, save to forecast_free_weights. 

10 
Calculate the load balancing degree of the path prediction  
and save it to forecast_balances. 

11 Define the Hamiltonian quantity. 

12 Calculation of optimal forwarding paths based on quantum annealing algorithm. 

4. Experimental Analyses 

In this paper, we simulate the changes in the distribution of network traffic in 
the data center through python and choose a Fat-tree with k = 4 as the experi-
mental topology, as shown in Figure 4, which contains 4 core switches, 8 aggre-
gation switches, 8 edge switches and 16 servers. 
 

 
Figure 4. Fat-tree (k = 4) topology. 
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The link bandwidths are all set to 100 Mbps, the link delay is 1 ms, and the 
traffic data of 64 links are collected from the simulation environment. After a 
number of learning training, set the number of iterations to 250, using Adam’s 
algorithm, the learning rate is 0.001. Then the traffic is predicted, and four eval-
uation index values are obtained: MAE = 4.99, RMSE = 7.28, MAPE = 5.65%, 
SMAPE = 2.76%, the model prediction is more accurate. 

The Poisson model [13] is used, where the source and destination hosts are 
randomly selected each time, so that the number n of packets arriving in time 
sequence t satisfies the Poisson distribution with parameter tλ , i.e., ( )P n =  

( )e
!

nt t
n

λ λ−

, and its corresponding sequence of packet arrivals at the time interval  

T is exponentially distributed, i.e., ( ) 1 e tF T λ−= − . The parameters were ad-
justed from 0.1 to 0.9 to simulate different network loads, and each set of expe-
riments was repeated 10 times to improve the accuracy of experimental data. 

In this paper, the LSTM-QALB algorithm is compared with MTDLR and 
EERA algorithms for throughput and packet loss. The experimental results in 
Figure 5 and Figure 6 show that as the network load increases, the system 
throughput and packet loss rate both increase; when the parameter is greater 
than 0.5, namely, when the load is high, the system throughput increases slowly 
and the packet loss rate rises sharply. When the load is low, the performance of 
the three algorithms is similar, but when the load is high, the LSTM-QALB algo-
rithm outperforms the other two. 
 

 
Figure 5. Comparison of system throughput of different algorithms. 
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Figure 6. Comparison of average packet loss rate of different algorithms. 

5. Conclusion 

In this paper, we propose a load balancing algorithm LSTM-QALB based on 
LSTM dynamic traffic prediction and quantum annealing, which selects the op-
timal forwarding path by calculating the available bandwidth of the current and 
predicted paths with the link bandwidth equalization. Compared with MTDLR 
and EERA algorithms, LSTM-QALB has obvious advantages in terms of system 
throughput and average packet loss rate, which achieves the purpose of load ba-
lancing and improving the network quality of service. 
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