
Journal of Software Engineering and Applications, 2024, 17, 553-570
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.177032 Jul. 15, 2024 553 Journal of Software Engineering and Applications

HV Process Model of Software Development

Hemant Kumar , Vipin Saxena

Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Abstract

Software Development Life Cycle (SDLC) is one of the major ingredients for
the development of efficient software systems within a time frame and
low-cost involvement. From the literature, it is evident that there are various
kinds of process models that are used by the software industries for the de-
velopment of small, medium and long-term software projects, but many of
them do not cover risk management. It is quite obvious that the improper se-
lection of the software development process model leads to failure of the
software products as it is time bound activity. In the present work, a new
software development process model is proposed which covers the risks at
any stage of the development of the software product. The model is named a
Hemant-Vipin (HV) process model and may be helpful for the software in-
dustries for development of the efficient software products and timely deliv-
ery at the end of the client. The efficiency of the HV process model is ob-
served by considering various kinds of factors like requirement clarity, user
feedback, change agility, predictability, risk identification, practical implementa-
tion, customer satisfaction, incremental development, use of ready-made com-
ponents, quick design, resource organization and many more and found
through a case study that the presented approach covers many of parameters
in comparison of the existing process models.

Keywords

Software Process Model, Software Development, Software Engineering,
Software Risk Management and Software Quality

1. Background

Primary aim of developing a software process model is to carry out effectively
the different development stages of software engineering. There are steps in each
phase of software development with switching from one stage to another stage.

How to cite this paper: Kumar, H. and
Saxena, V. (2024) HV Process Model of
Software Development. Journal of Software
Engineering and Applications, 17, 553-570.
https://doi.org/10.4236/jsea.2024.177032

Received: April 19, 2024
Accepted: July 12, 2024
Published: July 15, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.177032
https://www.scirp.org/
https://orcid.org/0009-0005-4040-4071
https://orcid.org/0000-0003-1035-1704
https://doi.org/10.4236/jsea.2024.177032
http://creativecommons.org/licenses/by/4.0/

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 554 Journal of Software Engineering and Applications

Software industries have motive to develop efficient software products within
specified timeline of software development. Generally, timeline of development
of software product is setup by project leader as per need of client and by con-
ducting a formal meeting with client and manpower involved during develop-
ment of software product. The quality of software products is based upon the
selection of a process model based on the duration of a software project. In the
literature, there are numerous software development process models, like Wa-
terfall [1], Prototype [2], Iterative and Incremental [3], Rapid Application De-
velopment (RAD) [4], Agile Process Model [5], Spiral Model [6] and many more
which have several advantages and disadvantages but play vital roles during the
development of small, medium and long term software projects. Waterfall model
is the base of most of the software development process models. Some of the
software development process models cover risk management activity which is
an important activity during development and improper handling of such activ-
ity leads to failure of the development of software product. The Waterfall model
has the limitations that the freezing of requirements occur at the time of collec-
tion of the requirements from the client. Another limitation of the model is that
there is concept of baseline, once the team moves ahead into the next phase of
software development then cannot move into the previous phase. Iterative and
incremental model is suitable for the short term project especially related to the
update of software product in which the earlier phases of development are con-
sidered as the prototype. RAD model has fixed limitation of the total develop-
ment period which is divided into two equally parts but does not consider the
risks at any stage of development. It is generally uses to develop prototype soft-
ware. Agile process model is also uses for the iterative development of software
products and successive refinements produce high quality of software but does
not cover the risks at any stage of software development. Spiral model is suitable
for the large project as it covers the risk items during development of the soft-
ware products but does not cover the customer satisfaction; user feed-back is not
available, and many more concepts of software development are not covered in
this process model.

2. HV Process Model

To handle risk management activity at each level of development and other
concepts during software development, a new software process model is pro-
posed in the present work which is named as a HV software process develop-
ment model and is useful for the software industries as it covers risks involved
during development of software product at every stage of development. The
proposed HV process model is represented below in Figure 1.

The idea in this process model is based on the requirements that may be com-
pleted by the client during the development of software projects. The proposed
model is explained below in brief:

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 555 Journal of Software Engineering and Applications

Figure 1. HV software development process model.

1) Collection of Requirements
Before the development of the software product, the collection of require-

ments is a major activity based on the inputs given by the client. The develop-
ment of software products is assigned to a team consisting of project leader, sys-
tem analyst, system administrator, software designer, software programmers,
software testers, etc. The requirements given by the client are discussed through
a meeting among the team members and these are finalized by the committee
members including client. For the medium and long term software projects, the
requirements are written in the form of a document called as a Software Re-
quirement Specification (SRS) document. The proposed HV process model has
the flexibility to update/modify the requirements during the development of
software product as one can move backward for updating the requirements
added by the client at the later stage of software development. Another factor is
the costing related to added of the requirements at later stage, which may also be
added by the project leader to the overall cost of the project. The reason is to

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 556 Journal of Software Engineering and Applications

propose such activity that the software industries are functioning around 365 ×
24 × 7 hours and involved manpower is also allowed to work from home. Due to
this reason, there is possibility for timely delivery of the software product to the
client. This activity is performed by considering the risk items involved in the
requirements which are to be minimized by the project leader. The various kinds
of suggested risk items are explained later in the present work.

2) System Design
After preparing the requirement document i.e. SRS, a proper analysis of sup-

porting software and hardware is done which are required for the development
of software products and thereafter, a design based on the object-oriented or lat-
est software design technology is proposed in the form of a blueprint called
software design. This design has the flexibility to interact with the proposed
classes and objects encapsulated. In the HV Process model, when the require-
ments are modified by the client, then the system design has the flexibility to
update the proposed system design of the software product. These types of ac-
tivities are performed by the software designers and are approved by the project
leader. This phase also covers the risk items which may occur during the period
of system design which may be optimized through mathematical techniques by
the project leader. The various kinds of risk items involved during this phase are
described later.

3) Detailed Design
Further, the HV Process model consists of detailed designing of software

products which involves the activities of component-level designing in the form
of blueprint based on either object-oriented or the latest technology supported
by the programming languages. The procedure of each component involved in
the system design is to be written particularly nearer to programming language.
Further, the HV process model containing detailed design has the flexibility to
change as per the need of the client. The changes in the detailed designs shall be
approved by the project leader. The component design is updated in such a way
that the complexity shall not be increased and overall will not affect the com-
plexity of the system design. The various kinds of the risk items involved in the
detailed design shall be considered and optimized under the risk management
activity. The various kinds of risk items involved during this phase are described
later.

4) Coding
The software coding is an integral part of the development of software prod-

uct. In the HV process model, coding is proposed according to the blueprint de-
sign by the software designer and all rules and regulations in terms of minimiza-
tion of complexity of code are applicable. In the HV Process model, the code has
the flexibility to change/update when the requirements are changed/updated by
the client and accordingly, the cost of development may be modified by the pro-
ject leader. Further, the model consists of the various kinds of risk items in-
volved during the coding phase which may be minimized through managerial
activity performed by the project leader. The various kinds of risk items involved

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 557 Journal of Software Engineering and Applications

during this phase are described later.
5) Testing
Software testing is one of the major activities involved in the software devel-

opment. It involves a systematic and adaptive process for evaluating different
parts (modules or sub-modules) of a computer program to be written in the lat-
est programming language. The methodology aims to ensure thorough testing
coverage while accommodating the modular structure of software products. The
entry of test cases into the testing loop depends on the software modules. In the
HV Process model, testing strategies are based upon the selection of test cases
either from the requirements or from the software design i.e. covering black and
white box testing strategies. Further, testing has its own features which are not
available in the other software process models and the feature is that the client
may also provide the test cases which are used to check the quality and blueprint
of the software product. The test case proceeds to be executed, and the results
are stored. A passing test case contributes to the validation of the associated
module, while a failing test case triggers the generation of a detailed failure re-
port. The testing process iterates continuously until all test cases are executed,
ensuring a comprehensive evaluation of each module or sub-module. At the end
of the testing process, reports are generated, encompassing detailed reports for
failed test cases and a comprehensive report for untested modules or sub-modules.
This iterative and adaptable approach creates a resilient testing framework in the
HV process model that aligns seamlessly with the modular structure of the soft-
ware. Further various risk items are also considered in this phase which shall be
minimized by the project leader and the various kinds of risk items involved
during this phase are described later.

6) Software Installation and Maintenance
After careful execution of the stages mentioned above for the development of

the software product, the software installation and maintenance is not a devel-
opment activity while during these activities, the software product may be in-
stalled at the end of client or customers. As per the feedback of the client and
customer, the updated version of software product is to be designed or main-
tained under maintenance activity.

3. A Case Study

Let us consider a case study that works according to the HV process model. Cre-
ating a login page in software development requires careful planning to ensure
that it meets user needs and operates smoothly. In this case study, HV process
model is used as a framework that combines flexibility, responsiveness to user
feedback, and a systematic approach to software development. Unlike traditional
models, the HV process model allows for changes in user requirements while
staying within budget constraints, enabling the development team to work effi-
ciently.

Let’s dive into the details of each phase of the present case study, starting with
requirements collection. In this initial phase, the team members of the software

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 558 Journal of Software Engineering and Applications

project will interact with users, discuss the login page needs, and create a com-
prehensive requirements document. Join us on this exploration of the HV proc-
ess model and see how it supports a dynamic and efficient approach to creating a
login page.

3.1. Collection of Requirements

Before delving into the intricacies of software development, it’s crucial to estab-
lish a clear understanding of what the client envisions. The requirements collec-
tion phase lays the foundation by assembling the client’s needs, desires, and
specifications. Through collaborative discussions and meticulous documenta-
tion, a comprehensive requirements document emerges, guiding the subsequent
phases of the development journey as shown in the following Table 1.

Table 1. Collection of requirements for login page design.

Requirement ID Requirement Description

REQ-001 Capture user credentials: username and password

REQ-002 Implement a “Forgot Password” feature for account recovery

REQ-003 Enable users to register for new accounts

REQ-004 Ensure password security measures (e.g., encryption)

REQ-005 Support multi-factor authentication (if required)

REQ-006 Design a responsive layout for various devices and browsers

REQ-007 Customize the login page to align with the brand’s aesthetics

REQ-008 Provide error messages for incorrect login attempts

REQ-009 Include a “Remember Me” option for user convenience

REQ-010 Integrate with backend systems securely (using Python)

3.2. System Design

With a detailed understanding of the client’s requirements, the system design
phase steps into the limelight. This is where the architects of the software eco-
system design the high-level blueprint, mapping out the system’s structure and
interactions. The focus is on ensuring scalability, adaptability, and a solid foun-
dation for the forthcoming detailed design and coding phases. The following
Table 2 gives a representation of the high-level system design or blueprint for
the login page.

Table 2. System design for login page design.

Component Description

Frontend Implement the login page using HTML, CSS, and JS

Backend Develop the backend logic using Python

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 559 Journal of Software Engineering and Applications

Continued

Database Store user credentials securely

Security Implement encryption for password storage

User Interface Design a clean and intuitive user interface

Responsiveness Ensure the login page is responsive on all devices

Error Handling Set up error messages for various scenarios

New Registration Develop the registration feature for new accounts

Forgot Password Implement functionality for password recover

Remember Me Include an option for users to stay logged in

Multi-Factor Auth Integrate support for multi-factor authentication

Branding Customize the login page to match the brand’s style

Testing Plan and execute testing for both frontend and backend

Deployment Deploy the login page to a staging and production environment

Monitoring Implement monitoring for performance and security

Maintenance Outline procedures for ongoing maintenance and updates

The above table provides a structured overview of the essential design features

for the login page.

3.3. Detailed Design

As the system design sets the overarching framework, the detailed design phase
dives into the finer details. Here, components are meticulously crafted, each line
of code conceptualized, and every module’s intricacies are addressed. The objec-
tive is to translate the high-level blueprint into a comprehensive plan that de-
velopers can follow to breathe life into the software. The following Table 3
shows a representation of the detailed design for the login page.

Table 3. Detailed design for login page design.

Component Sub-Component Description

Frontend

HTML Structure Define the structure of the HTML elements for the login page

CSS Styling Specify the styling details, such as colors, fonts, and layout

JavaScript Functionality Implement client-side functionality for interactive features

Backend

Python Routing Establish routes for handling login, registration, and other actions

User Authentication Logic Develop logic to verify user credentials securely

Password Encryption Implement a secure method for encrypting and storing passwords

Database
User Table Schema Define the structure of the user table, including necessary fields

Data Storage Specify the database system and methods for data storage

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 560 Journal of Software Engineering and Applications

Continued

Security

HTTPS Implementation Ensure secure communication between the client and server

Cross-Site Scripting (XSS) Implement measures to prevent XSS attacks

Cross-Site Request Forgery (CSRF) Protect against CSRF attacks with token validation

User Interface
Login Form Design Design the visual layout and elements of the login form

Error Message Display Specify how error messages will be displayed for user feedback

Responsiveness Media Queries Implement responsive design using CSS media queries

Error Handling
Validation Checks Define client-side and server-side validation checks

Logging and Monitoring Implement logging for error tracking and monitoring

New Registration
Registration Form Design Design the visual layout and elements of the registration form

User Input Validation Ensure valid user input during the registration process

Forgot Password Password Reset Mechanism Design the process for users to reset their passwords

Remember Me Persistent Login Token Implement a secure mechanism for ‘Remember Me’ functionality

Multi-Factor
Authentication

Integration Integrate support for additional authentication factors

Branding
Branding Guidelines Follow branding guidelines for colors, logos, and overall theme

Customization Options Provide options for clients to customize the login page appearance

Testing
Test Cases

Develop test cases for unit testing, integration testing, and user
acceptance testing

Testing Environment Setup Set up testing environments for various testing phases

Deployment
Staging Deployment Process

Define the process for deploying the login page to a staging
environment

Production Deployment Process
Outline the steps for deploying the login page to the live production
environment

Monitoring
Performance Monitoring Set up tools and processes for monitoring page performance

Security Monitoring Implement mechanisms to monitor and respond to security events

Maintenance
Update Procedures

Define procedures for updating the login page with new features or
fixes

Support and Bug Fixing Establish a system for addressing user-reported issues and bugs

The above table provides a detailed breakdown of the components and

sub-components involved in the design of the login page, offering a comprehen-
sive guide for the implementation phase.

3.4. Coding

Armed with a detailed design, developers step onto the coding canvas to weave
intricate lines of logic. The coding phase is where algorithms are implemented,
functions come to life, and the software takes shape. It’s a journey from concep-
tualization to realization, where the artistic finesse of coding meets the precision
demanded by the design. The complete coding for login design phase is given
below:

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 561 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 562 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 563 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 564 Journal of Software Engineering and Applications

In the above coding, a snapshot of the output of the above code:

The following manual test cases are considered and represented below in the
following Table 4.

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 565 Journal of Software Engineering and Applications

Table 4. Test cases for login page design.

Test Case ID Description Test Steps Expected Result Pass/Fail

TC-01
Verify
Page

Elements

1) Open the login page.
2) Check for username, password, and login
button.
3) Verify the presence of labels for username
and password.

Page contains username field,
password field, and login button.
Labels for username and
password are present.

Pass

TC-02
Attempt

Login with
Valid Credentials

1) Enter valid username and password.
2) Click the login button.

Login is successful.
User is directed to the expected
page or receives a success
message.

Pass

TC-03
Attempt

Login with
Invalid Username

1) Enter an invalid username
2) Enter a valid password .
3) Click the login button.

Login fails. Appropriate error
message is displayed.

Pass

TC-04
Attempt

Login with
Invalid Password

1) Enter a valid username.
2) Enter an invalid password
3) Click the login button.

Login fails. Appropriate error
message is displayed.

Pass

TC-05
Attempt

Login with
Empty Fields

1) Leave both username and password fields
empty.
2) Click the login button.

Login fails.
Error messages prompt the user
to fill in both fields.

Pass

TC-06

Verify
Remember

Me
Functionality

1) Check the “Remember Me” option.
2) Enter valid credentials.
3) Click the login button.
4) Close and reopen the browser.
5) Revisit the login page.

Username is pre-filled when the
page is revisited after closing and
reopening the browser.

Pass

TC-07
Check
Page

Responsiveness

1) Open the login page on a desktop browser.
2) Resize the browser window to various
dimensions.

Page layout adjusts appropriately
to different screen sizes.

Pass

TC-08

Verify
Styling

and
Branding

1) Ensure login page adheres to specified
styling rules.
2) Verify branding guidelines for colors,
logos, and overall theme.

Login page adheres to specified
styling rules and branding
guidelines.

Pass

TC-09
Test New

Registration
Link

1) Check for the presence of a registration link.
2) Click on the registration link.

Navigates to the registration
page or a related section.

Pass

TC-10
Test Forgot
Password

Link

1) Check for the presence of a “Forgot
Password” link.
2) Click on the “Forgot Password” link.

Navigate to the password
recovery page or a related
section.

Pass

4. Risk Management in HV Process Model

During the development of the software project, various kinds of risks occurs
known as risk items which may hamper the scheduled delivery of the software
product to the client. The following prominent risk items are listed below which
are resolved based on priority so that the development process should not be
hampered.

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 566 Journal of Software Engineering and Applications

In the below Table 5, five phases of software development are considered and
various types of risk items and corresponding losses are mapped as F: R → L
which is considered as a learning function in which loss L depends on the risk
item R. Hence set of R is taken as R1 ∪ R2 ∪ R3 ∪ R4 ∪ R5 in which R1 → {R11,
R12, …, R1I}, R2 → {R21, R22, …, R2J}, R3 → {R31, R32, …, R3K}, R4 → {R41, R42, …, R4L}
and R5 → {R51, R52, …, R5M} and similar interpretation is given to the set of L as
L1∪L2∪L3∪L4∪L5 in which L1 → {L11, L12, …, L1I}, L2 → {L21, L22, …, L2J}, L3 → {L31,
L32, …, L3K}, L4 → {L41, L42, …, L4L} and L5 → {L51, L52, …, L5M}. The training set is
defined as (R1, L1), (R2, L2), (R3, L3), (R4, L4) and (R5, L5). The mapping of risk
item to corresponding loss is considered as one-to-one mapping controlled by
the mapping function.

Table 5. Risk items during the development of login page design.

Name of Phase
Risk Item
Number

Name of Risk Item Explanation
Loss due to
Risk Item

Collection of
Requirements

R11 Unclear User Expectations
Ambiguities in understanding user
expectations may lead to requirements
misunderstandings.

L11

R12
Inadequate Stakeholder

Communication

Lack of effective communication with
stakeholders may result in missing
important requirements.

L12

… … … …

R1I Evolving User Needs
Changing user needs during the
requirement collection phase can introduce
scope creep and challenges.

L1I

System Design

R21 Insufficient Architecture Planning
Poor planning of the system architecture
may result in scalability and performance
issues.

L21

R22 Technology Integration Risks
Challenges associated with integrating
different technologies may lead to
implementation difficulties.

L22

… … … …

R2J
Late Identification of Design

Constraints

Identifying design constraints late in the
system design phase may require rework
and adjustments.

L2J

Detailed Design

R31 Lack of Modularity
A design lacking modularity may lead to
code maintenance challenges and reduced
flexibility.

L31

R32 Coding Standards Not Followed
Non-compliance with coding standards
may impact the maintainability of the
software.

L32

… … … …

R3K Insufficient Documentation
Inadequate documentation may hinder the
understanding of the detailed design by the
development team.

L3K

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 567 Journal of Software Engineering and Applications

Continued

Coding

R41 Coding Errors
Introduction of errors during the coding
phase may result in functional or security
issues.

L41

R42 Code Duplication
Repetitive code segments may increase the
likelihood of introducing bugs and
maintenance challenges.

L42

… … … …

R4L
Non-Adherence to Coding

Standards

Deviating from coding standards may lead
to inconsistencies and decreased code
quality.

L4L

Testing

R51 Incomplete Test Coverage
Lack of coverage for all aspects of the
software may result in undiscovered
defects.

L51

R52 Test Data Issues
Issues with test data may lead to
incomplete testing and inaccurate
assessment of system behavior.

L52

… … … …

R5M Regression Test Challenges
Managing and executing regression tests
efficiently is crucial for ensuring system
stability.

L5M

Let us compute the expected loss due to risk items in the present case study.

There are five stages of the software development in the first stage, R1I ∈ R is the
input and L1I ∈ L is the output and it can be evaluated from F1(R1L). the prob-
ability distribution P(R1I, L1I) over R1I and L1I is defined by over the training set
(R11, L11), (R12, L12), …, (R1I, L1I), which are discrete random variables. The risk
associated with F1(R1I) is given by

 1 1 11 I II
NR R L
=

= ∗∑ (1)

Similarly, the other stages, it is given by,

 2 2 21 J JJ
NR R L
=

= ∗∑ (2)

 3 3 31 K KK
NR R L
=

= ∗∑ (3)

 4 4 41 L LL
NR R L
=

= ∗∑ (4)

 5 5 51 M MM
NR R L
=

= ∗∑ (5)

The total risk involved during the development of software is given by

 1
5

IIR R
=

= ∑ (6)

Average risk

 1
51

5A IIR R
=

= ∑ (7)

Let’s illustrate the risk calculation for the different phases of proposed case
study. The computations are listed below in the following Table 6.

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 568 Journal of Software Engineering and Applications

Table 6. Computation of total risks during development of login page design.

Name of Phase
Risk
Item

Probability with
Associated Risk (R)

Loss
(L)

Risk Value
(R × L)

Overall
Risk

Collection of
Requirements

R11 0.2 0.1 0.02

0.08 R12 0.15 0.2 0.03

R13 0.1 0.3 0.03

System Design

R21 0.25 0.15 0.0375

0.1075 R22 0.2 0.25 0.05

R23 0.1 0.2 0.02

Detailed Design

R31 0.18 0.12 0.0216

0.0666 R32 0.15 0.18 0.027

R33 0.12 0.15 0.018

Coding

R41 0.22 0.2 0.044

0.1106 R42 0.18 0.22 0.0396

R43 0.15 0.18 0.027

Testing

R51 0.2 0.15 0.03

0.093 R52 0.18 0.2 0.036

R53 0.15 0.18 0.027

From the above table, it is observed that there are more chances of risk in the

coding phase while less chances in the phase of detailed design. It may vary from
one phase to another phase. The total risk in all phases is R = R1 + R2 + R3 + R4 +
R5 = 0.4567. The proposed model is compared with the software development
process models available in the literature and compiled below in Table 7.

Table 7. Existing software development process models Versus HV process model.

Technical Aspect
Water-fall

Model
[1]

Prototype
Model

[2]

Incremental
Model

[3]

RAD
Model

[4]

Agile
Model

[5]

Spiral
Model

[6]

HV
Process
Model

Requirement Clarity Yes Medium Yes Yes
Incremental

Change
Yes Yes

User Feedback No Yes No No No No Yes

Change Agility Low Medium High No High High High

Predictability Low High Low Low High Medium High

Risk Identification No No No Yes Yes Yes Yes

Practical Implementation No Medium Low No High Medium High

Customer Satisfaction and
Incremental Development

No No No No

Incremental
Customer

Satisfaction and
Development

No Yes

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 569 Journal of Software Engineering and Applications

Continued

Use of Ready-made
Components

No No No No No No Yes

Risk Identification
at Each Stage

No No No Yes Yes Yes Yes

Systematic Sequence Yes No No No No No Yes

Iterative Sequence No No Yes No No No Yes

Iterative Risk Management No No No No No Yes Yes

Understandability Simple Intermediate Intermediate Intermediate Much Complex Hard Intermediate

Requirement Definition Yes No No No No No Yes

Quick Design Clarity No No No No No No Yes

Resource Organization Yes Yes Yes Yes No No Yes

5. Strengths and Limitations of HV Process Model

From Table 7, it is predicted that every software development process model has
some strengths and limitations; therefore, the following are the strengths of the
HV process model:
 Applicable for medium and long term software project size;
 Suitable for software projects of duration for more than one year;
 Covers maximum of risk items and management during development of

software projects;
 Provides excellent customer satisfaction;
 Resources are well organized as it is applicable for software projects having

more than one year duration;
 Iterative risk items identification and management;
 Requirements are not frozen during any phase of software engineering;
 Flexibility of updating the requirements, design and accordingly coding of

software project as per the client’s need.
The followings are the limitations of the HV process model:

 Not suitable for the software project for less than one year duration;
 Heavy resources are required for development of software products;
 Software products are developed in a series of increments of the client’s need;
 Requires hand-on experience for development of long term software projects;
 Requires high experience of software programmers.

6. Concluding Remarks

The presented work is unique process model which may be used by the software
industries for minimization of the risk factors involved during the development
of the software. From the comparisons with the existing software development
process models, it is found that this will produce high-quality software products.
The risk factors may vary from small to large software products while the pre-

https://doi.org/10.4236/jsea.2024.177032

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.177032 570 Journal of Software Engineering and Applications

sented approach will take care of all kinds of software products. In the future,
the HV process model may be implemented by researchers over the various
kinds of software products to be developed by the software industries.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Royce, W.W. (1970) Managing the Development of Large Software Systems. Pro-

ceedings of IEEE WESCON, 26, 328-388.

[2] Grimm, T. (1998) The Human Condition: A Justification for Rapid Prototyping.
Time Compression Technologies, 3.

[3] Larman, C. and Basili, V.R. (2003) Iterative and Incremental Developments. A Brief
History. Computer, 36, 47-56. https://doi.org/10.1109/MC.2003.1204375

[4] James, M. (1991) Rapid Application Development. Macmillan.

[5] Aoyama, M. (1997) Agile Software Process Model. Proceedings Twenty-First Annual
International Computer Software and Applications Conference (COMPSAC’97),
Washington, 13-15 August 1997, 454-459.
https://doi.org/10.1109/CMPSAC.1997.625042

[6] Boehm, B. (1986) A Spiral Model of Software Development and Enhancement.
ACM SIGSOFT Software Engineering Notes, 11, 14-24.
https://doi.org/10.1145/12944.12948

https://doi.org/10.4236/jsea.2024.177032
https://doi.org/10.1109/MC.2003.1204375
https://doi.org/10.1109/CMPSAC.1997.625042
https://doi.org/10.1145/12944.12948

	HV Process Model of Software Development
	Abstract
	Keywords
	1. Background
	2. HV Process Model
	3. A Case Study
	3.1. Collection of Requirements
	3.2. System Design
	3.3. Detailed Design
	3.4. Coding

	4. Risk Management in HV Process Model
	5. Strengths and Limitations of HV Process Model
	6. Concluding Remarks
	Conflicts of Interest
	References

