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Abstract 
We develop a theory of cosmology, which is not based on the cosmological 
principle. We achieve this without violating the Copernican principle. It is 
well known that the gravitational redshift associated with the Schwarzschild 
solution applied to the distant supernova does not lead to the observed red-
sift-distance relationship. We show, however, that generalizations of the 
Schwarzschild metric, the Taub-NUT metrics, do indeed lead to the observed 
redshift-distance relationship and to the observed time dilation. These un-
iverses are not expanding rather the observed cosmological redshift is due to 
the gravitational redshift associated with these solutions. Time dilation in 
these stationary universes has the same dependency on redshift that generally 
has been seen as proof that space is expanding. Our theory resolves the Hub-
ble tension. 
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1. Introduction 

The standard theory of cosmology is based on both the cosmological principle, 
which maintains that the universe is homogeneous and isotropic and the Coper-
nican principle, which maintains that the earth relative to cosmological observa-
tions is not in anyway in a special location in the universe. However, resent work 
indicates that the cosmological principle may not be valid. Thus, we may require 
a theory of cosmology, which is not based on the cosmological principle. Below 
we develop such a theory, whereby our theory does not violate the Copernican 
principle. We follow Einstein’s approach in his formulation of special relativity 
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[1]. He based special relativity on two experimental facts—the principle of rela-
tive motion and the constancy of the speed of light. Similarly, we base our theory 
on two observational cosmological facts: the redshift-distance relationship and 
time dilation. We assume the applicability of general relativity and therefore 
demand that a cosmological fundamental tensor must be a solution to Einstein’s 
field equations. 

The idea of developing cosmological theory based on observations without 
extraneous assumptions is not original. This approach has been explored by: 
[2]-[5]. Our approach and our results differ completely from these efforts. 

First, we discuss a number of reasons which motivate the formulation of a 
theory of cosmology without the cosmological principle. 

1.1. Occam’s Razor 

“The more assumptions you have to make, the more unlikely an explanation” 
(Wikipedia). The cosmological principle is an assumption and we show that it is 
not required to formulate a theory of cosmology. Specifically, we achieve agree-
ment between theory (General Relativity) and observations (redshift-distance 
and time dilation) without the cosmological principle and without violating the 
Copernican principle. 

1.2. Impossibility of Validating the Cosmological Principle 

The cosmological principle states that the universe is both homogeneous and 
isotropic. Isotropy can be confirmed through observations. However, homo-
geneity cannot be directly observed [6]-[9] because we observe on the past 
lightcone and not on spatial surfaces. Consequently, it is not possible to confirm 
the validity of the cosmological principle through astronomical observations. 

The impossibility of validating the cosmological principle means that the 
standard theory of cosmology is based on an assumption, which may or may not 
be valid. This circumstance behooves us to develop a theory of cosmology, which 
is not based on the cosmological principle. 

1.3. Observations 

Even though homogeneity can not be validated through observations, it is possi-
ble via astronomical observations to falsify homogeneity [7]. In fact, discoveries 
of large scale structures seem to question the validity of the cosmological prin-
ciple [10]-[19]. 

In addition, there are reports that isotrophy may not be valid [17] [20] [21]. 

1.4. Fundamental Problems with the Standard Theory of  
Cosmology 

1.4.1. Dark Energy 
In the standard theory of cosmology the cosmological redshifts are due to the 
expansion of space, then the observed redshift-distance relation for Type Ia Su-
pernova leads to the conclusion that the expansion rate of the universe is in-
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creasing rather than decreasing as attractive gravity demands [22] [23]. This 
means there must be something else in the universe (an unknown form of ener-
gy), which is overwhelming attractive gravity. We call this unknown energy dark 
energy, which corresponds in Big Bang cosmology to negative pressure. Dark 
energy can be explained by a non-zero cosmological constant. The cosmological 
constant, however, corresponds to the energy of the vacuum. But theoretical cal-
culations of the vacuum energy density according to quantum field theory differ 
from the astronomically measured value by up to about 123 orders of magnitude 
[24]. To say the least this vacuum catastrophe is an incredibly embarrassing cir-
cumstance. 

It is understood that the introduction of dark energy into the standard theory 
of cosmology is necessary because it is based on the cosmological principle [7]. 
Thus, if we negate this principle and assume we reside in a part of the universe, 
which is in a large void, then dark energy is not required to achieve agreement 
between theory and observations. Instead agreement is obtained by nonlinear 
inhomogeneity and curvature [6] [25]-[59]. 

A major drawback of the above publications is that they violate the Coperni-
can principle, which states that we are not in an exceptional location in the un-
iverse. In contrast to the above mentioned authors we do not assume that we are 
in a local void or for that matter in any other inhomogeneity meaning that our 
theory does not violate the Copernican principle. 

1.4.2. Hubble Tension 
For almost a century since its first measurement by Hubble in 1929 the value of 
the Hubble constant, H, has been the subject of intense debate. In the last few 
years a new dimension has been added to this debate because there appears to be 
a significant discrepancy between the values of H derived from present-day un-
iverse (cepheids, supernova, lensed quasars, tip of the red giant branch), which 
are minimally dependent on cosmological theory and those derived from early 
universe observations (cosmic microwave background and baryon acoustic os-
cillations), which are based on the standard cosmological theory, ΛCDM, whe-
reby ΛCDM in turn is based on the assumption that the universe is expanding. 
This discrepancy is known as Hubble tension. 

Specifically, there appears to be a significant discrepancy, ≥5σ [60] [61] be-
tween the value of the Hubble constant as determined by early universe mea-
surements [62]-[64] and late universe measurements [65]-[83]. For reviews see 
[84]-[88] and [89] for a non-technical comprehensive review. There have been 
many attempts to explain this discrepancy by modifying ΛCDM such as [90]-[98], 
just to mention a few. 

There is no consensus on how to modify ΛCDM. We suggest that the solution 
to the Hubble tension lies completely outside ΛCDM. 

In 1922 the concept of expansion of space was first introduced by Friedmann 
[99]. Independently in 1927 Lemaitre [100] discovered the same concept, but he 
also went on to derive Hubble’s law, a value for Hubble’s constant, and to intro-
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duce the concept of a “primordial atom”, which today we call the Big Bang. Big 
Bang cosmology rests on the assumption that cosmological redshifts are caused 
by the expansion of space. 

The most fundamental observational relationship in cosmology is the red-
shift-distance relationship, which Hubble [101] is often given credit, although 
historically inaccurate [102]-[106]. At the end of his publication Hubble specifi-
cally mentioned that the observed redshifts of extragalactic nebula could be 
caused by gravitational redshift, which following [107] he called “an apparent 
slowing down of atomic vibrations”. De Sitter’s work differs from our results 
because he did not employ the metrics below, which had not yet been discov-
ered. 

Hubble also mentioned that they could be caused by scattering on intervening 
material particles. In his publication Hubble however did not investigate these 
later possibilities instead he simply assumed that cosmological redshifts are Dopp-
ler shifts caused by radial velocity. Before Hubble this assumption was also made 
by Wirtz [108]. 

Humason [109], who worked with Hubble, made it clear that it was in no way 
certain that cosmological redshifts correspond to velocities. Consequently, he 
referred to them as “apparent velocities”. Later Hubble and Tolman [110] expli-
citly stated that the cosmological redshift-recessional velocity relationship is an 
“assumption”. Hubble eventually turned away from the expanding universe in-
terpretation and embraced the infinite static universe [111] [112]. Critical dis-
cussions of this assumption can be found in [113]-[116]. We suggest that the 
most fundamental question of cosmology is: Are the observed cosmological 
redshifts due to the expansion of space? 

1.4.3. Horizon, Magnetic Monopole, Flatness, Lithium, Antimatter 
The Big Bang theory, however, still possesses other fundamental problems. 
There are the horizon, magnetic monopole and flatness problems. Some scien-
tists feel the theory of inflation resolves these issues [117]-[119], but others are 
of a different opinion [120] [121], while still others suggest that a varying speed 
of light (VSL) is a viable alternative to cosmic inflation [122]-[127]. There is also 
the lithium problem [128] whereby 3 times as much lithium is produced during 
Big Bang nucleosynthesis as is observed. Finally, but certainly not least, the stan-
dard theory of cosmology predicts that the universe should contain equal amounts 
of matter and anti-matter, which we do not observe. 

1.4.4. The Young Universe 
According to the standard theory of cosmology our universe came into existence 
13.78 billion years ago with none of the structures we see in the universe today 
that is galaxies, etc. Simulations of the formation of galaxies lead to the expecta-
tion that fully developed galaxies should not exist before about 1 billion years af-
ter the Big Bang. However observations from both the Hubble and the James 
Webb Space Telescopes show that many such galaxies do exist [129]-[135]. How-
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ever the work of [136]-[141] appears to ameliorate this circumstance. 
The Taub-NUT universes do not possess this discrepancy between theory (si-

mulations) and observations because they have no age limitations. There is an 
indication that the oldest stars could be older than the 13.78 Gyr predicted by 
the standard theory. For instance HD140283, the Methuselah star, has an age of 
14.46 Gyr [142], although the estimated error of ±0.8 Gyr means it possibly 
could be younger than the age of the universe. In addition more refined models 
of stellar evolution lead to the conclusion that the age of Methuselah star may be 
13.7 [143] or even 12 Gyr [144]. 

1.4.5. Synopsis 
The Big Bang theory, which following Lemaitre assumes that the observed cos-
mological redshifts are due to the expansion of space, has been extremely suc-
cessful. It predicts the redshift-distance relationship, the existence of the Cosmic 
Microwave Background (CMB) and its properties, primordial nucleosynthesis, 
and supports observational evidence that the universe is evolving. 

Despite the fundamental difficulties of the standard theory of cosmology out-
lined above, the achievements of the standard theory are so impressive that the 
overwhelming majority of theoretical work in cosmology today involves just ex-
tensions and refinements of this theory. In contrast we develop below a theory of 
cosmology, which is not based on the assumption that cosmological redshifts are 
due to the expansion of space instead our theory maintains they are caused by 
the gravitational redshift. 

2. The Gravitational Field Equations 

After Einstein [145] developed a framework for the theory of general relativity, 
Einstein sought field equations, which would correspond to the field version of 
Newton’s universal law of gravitation. Einstein [146] and independently Hilbert 
[147] achieved this in November 1915 [148]. However, when Einstein [149] tried 
to apply his theory of gravitation to the universe as a whole (cosmology), he 
found that his equations from 1915 appeared to be incompatible with a static 
mass distribution of constant density. He discovered that a consistent model of 
the universe could be developed, if he added an additional term to his field equa-
tions that contained a constant, λ. 

Einstein’s and Hilbert’s field equations from 1915 are: 

 1 8
2

R g R GTµν µν µνπ− = −  (1) 

and Einstein’s field equations from 1917 are: 

 1 8
2

R g R g GTµν µν µν µνλ π− + = −  (2) 

Rµν  is the Ricci tensor, gµν  the fundamental tensor, R the curvature scalar, 
Tµν  the energy-momentum tensor, G the gravitational constant, the speed of 
light is 1 and λ is a number, which is called the cosmological constant1. In order 
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to differentiate between the two sets of equations we call Equation (1) the Eins-
tein-Hilbert field equations and Equation (2) the Einstein field equations. The 
spherically symmetric solution of the Einstein-Hilbert field equations for the 
empty space surrounding a non-rotating point mass is called the Schwarzschild 
solution [150]. The corresponding solution of Einstein’s field equations is called 
the Kottler solution [151]. If 0λ > , the Kottler metric is also known as the 
Schwarzschild-de Sitter metric and if 0λ < , as the Schwarzschild-anti-de Sitter 
metric. 

3. Theory 

The solutions to the field equations are expressed in terms of the equation: 

 2d d ds g x xµ ν
µν=  (3) 

ds  is the line element, gµν  is the metric tensor or fundamental tensor and 
both dxµ  and dxν  are coordinates. The metric tensor contains constants, whose 
values are obtained from observations. In the specific case of cosmology the basic 
observational relationships are the redshift-distance diagram and time dilation, 
which we will employ to derive the constants contained in the metric tensor. 

A valid cosmological metric tensor must satisfy three conditions. It must be a 
solution to the field equations of general relativity, it must lead to the observed 
redshift-distance relationship and to the observed time dilation. Below we show 
that among the well known solutions to the field equations of general relativity 
there are at least four, which lead to the observed redshift distance relationship 
and to the observed time dilation. 

3.1. Gravitational Redshift 

It has long been believed that the gravitational redshift can not explain the ob-
served cosmological redshift. This is true for the Schwarzschild metric [150], 
which is widely employed to study the general relativistic phenomenon asso-
ciated with most stars and planets specifically the earth and sun. If, however, the 
Schwarzschild metric is applied to type Ia Supernova it does not yield the ob-
served redshift-distance relationship fosterning the belief that the gravitaional 
redshift can not explain the observed cosmological redshift. 

To the contrary we will show that generalizations of the Schwarzschild solu-
tion—the Taub-NUT solutions do however lead to the observed redshift-distance 
relationship and to the observed time dilation. In the following we develop a 
theory of cosmology based on the gravitational redshift associated with the 
Taub-NUT solutions to the Einstein field equations of general relativity. 

In standard relativistic cosmology there are three distinct possible causes of 
redshift: Doppler, gravitational and cosmological [24]. We will show that the 
observed cosmological redshift, z, is due to the gravitational redshift. Conse-

 

 

1We do not employ the usual symbol, Λ, for the cosmological constant. Instead we use Einstein1917 
Einstein’s original symbol, λ. Our theory differs from ΛCDM. Consequently, there is no reason to 
assume that λ = Λ . 
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quently, we will conclude there are only two causes of redshift in relativistic 
cosmology: Doppler and gravitational. 

In general the gravitational spectral shift between any two points A and B in 
space is given by [24] [152]-[154]: 

 
( )
( )

00

00

1B

A

g r
z

g r
= −  (4) 

We assume that Ar  in the above equation is a constant meaning that we can 
let ( )00 Ag rγ = . Consequently, we can drop the subscripts to obtain: 

 ( ) ( )2 001
g r

z
γ

+ =  (5) 

This equation tells us that the gravitational redshift depends on the ( )00 Ag r . 
We will explicitely show that the Schwarzschild ( )00 Ag r  does not lead to the 
redshift-distance relationship. However, we will also show that the ( )00 Ag r  of 
specific generalizations of the Schwarzschild solution, Taub-NUT solutions, do 
lead to the observed redshift-distance relationship and to the observed time dila-
tion. 

In order to emphasize and make clear that we are referring to the gravitational 
redshift associated with cosmological solutions to the Einstein field equations 
and not to the well known gravitational redshift associated with the Schwaz-
schild solution, in this work we refer to the left side of the above equation as the 
cosmological gravitational redshift. 

3.2. Time Dilation 

Time dilation in relativity is defined via the proper time, 2d dsτ = . In our 
cosmological theory the proper time is: 

 00d dg tτ =  (6) 

We employ Equation (5) to obtain the relationship between time dilation and 
redshift in our theory of cosmology. We find: 

 ( )d 1 dz tτ γ= +  (7) 

Suggestions by Wilson [155] and Rust [156] that light curve broadening should 
occur in Type Ia Supernova, if the universe is actually expanding, have been ob-
servationally confirmed by [104] [157]-[159]. These authors found a time dila-
tion or slowing down of the supernova by the factor of ( )1z + . They interpreted 
this result as evidence that cosmological redshifts are caused by an expanding 
universe. 

The above equation for time dilation in the stationary universe has the same 
( )1z +  dependency, but it is not associated with cosmic expansion rather it is 
due to the gravitational redshift. We conclude: the observed light curve broa-
dening can not be used to prove that the universe is expanding. Segal, Andrews 
and Holushko [160]-[162] came to the same conclusion although their theoreti-
cal standpoints are completely different than ours. 
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Comparing the above equation with observations of time dilation we con-
clude: 1γ =  and Equation (5) reduces to: 

 ( ) ( )2
001z g r+ =  (8) 

We remind the reader that we call the left side of Equation (8) the cosmologi-
cal gravitational redshift. 

3.3. Cosmological Solutions to the Field Equations 

In our work cosmological solutions to the field equations of general relativity 
refer to those that lead to the observed redshift-distance relationship and to the 
observed time dilation. 

The solutions to the field equations contain constants. Our objective in this 
work is to demonstrate that the cosmological gravitational redshift explains the 
observed redshift-distance relationship and the observed time dilation. So we are 
not concerned with the physical meaning of the constants. Rather we merely ask: 
What numerical values must the constants assume so that they lead to the ob-
served redshift-distance relationship and to the observed time dilation. Conse-
quently, this initial formulation of our theory is purely parametric. 

To obtain the numerical values of the constants in ( )00g r  we will employ 
Equation (8). The left side of this equation is known from observations, whereas 
the right side is theoretical and comes from the solutions to the field equations 
of general relativity. The numerical values of the constants in ( )00g r  are ob-
tained by curve fitting the ( )00g r  to the observations. 

The first two solutions of the field equations that we consider are the most 
well known and also the simplest, the Schwarzshild and Kottler metrics. For the 
Kottler metric we have: 

 2
00 1

3
g r

r
α λ

= − −  (9) 

Inserting this into Equation (8) yields: 

 ( )2 21 1
3

z r
r
α λ

+ = − −  (10) 

The above equation is valid for the Schwarzschild metric too if we let 0λ = . 
The zero point of the redshift-distance relationship is: 0z =  at 0r = , whe-

reby Equation (8) becomes: ( )00 0 1g = . But, this point does not exist according 

Equation (10) because 
r
α
→∞ , as 0r → . Thus, neither the Kottler nor the  

Schwarzschild metric leads to the observed redshift-distance relationship and 
they are therefore not cosmological solutions meaning that the gravitational 
redshifts associated with them are not cosmological. In addition two more well 
known solutions that are not cosmological are the Kerr solution, which corres-
ponds to a rotating massive body and the Kerr solution with the cosmological 
constant. 

The Schwarzschild metric is not a cosmological solution, however, generali-
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zations to the Schwarzschild metric are cosmological solutions. Taub [163] dis-
covered a solution to the Einstein field equations, which Newman, Unti and 
Tamburino [164] extended to a larger manifold, whose initials form the “NUT” 
of “Taub-NUT”. They also proved that the Taub-NUT solutions are a generali-
zation of the Schwarzschild solution. We found four solutions of the Taub-NUT 
family that are cosmological. Specifically, we applied these Taub-NUT metrics 
to the supernova from which the cosmological redsifts are derived. Below we 
give the ( )00g r  components of the fundamental tensor for each of the four 
solutions and by comparing these theoretical ( )00g r  with observations of 
redshift-distance we derive the numerical values of the constants they contain. 

3.4. Comparison of Theory with Observations of  
Type Ia Supernova 

In this section we compare the theoretical cosmological gravitational redshift on 
the right side of Equation (8), with the observed redshift-distance diagram from 
Vincenzi et al. [165], which consists of 1829 Type Ia supernova. The data con-
tains the observed relationship between spectral shift, z, and distance modulus, 
μ. We employ: 

 
1 9

510r
µ + − 

 =  (11) 

to convert μ to r, the distance of a supernova in Gpc. 
The Vincenzi et al. data [165] contains the errors in the redshift, z, but in our 

analysis we employ ( )21z + , which is the cosmological gravitational redshift, so 
we need to compute the error in this quantity. Expansion of ( )21z +  is: 

 ( )2 21 2 1z z z+ = + +  (12) 

If the uncertainity in z is zδ , then the uncertainity in 2z  is 2 zδ  and the 
uncertainity in 2z is also 2 zδ  [166]. Thus the uncertainity in ( )21z +  is  
2 2 zδ , which is significantly larger than zδ . 

3.4.1. Taub-NUT 
The part of the Taub-NUT solution that interests us is: [167] 

 ( )
2 2

00 2 2

2r r ng r
r n
α− −

= −
+

 (13) 

n is called the NUT parameter. As mentioned above we do not attempt to give 
α and n in our cosmological theory a physical meaning. In this work we are 
concerned only with their numerical values. Assuming the validity of the Big 
Bang theory [163] Taub applied his metric to cosmology. In contrast we employ 
this metric to compute the cosmological gravitational redshift and show that it 
leads to the observed redshift-distance relationship. 

Curve fitting the above equation to the left side of Equation (8) leads to nu-
merical values of the constants: 219.822α =  and 31.204n = . Figure 1 shows 
that Equation (8) along with the above equation leads to the observed redshift- 
distance relationship. 
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Figure 1. Cosmological gravitational redshift, (z + 1)2 vs. distance. 

3.4.2. Lorentzian Taub-NUT 
This metric is actually referred to as the Charged Lorentzian Taub-NUT me-
tric. As mentioned above we do not attempt to give the constants in the above 
equation a physical meaning in our cosmological theory. In this work we are 
concerned only with their numerical values of the constants. So the word 
“charged” in the name of the metric certainly in no way implies that the un-
iverse is charged. So in order to avoid confusion in this work we drop the word 
“charged”. 

Following Abbasvandi [168]: 

 ( ) ( )
2 2 2 2 2 4 2 2 4

00 2 2 2 2 2

2 4 3 6r r n n g e n n r rg r
r n l r n

α − − + + − − = − −
 + + 

 (14) 

Curve fitting the above equation with Equation (8) leads to agreement be-
tween theory and observation except for a small constant difference at 0.5r <  
Gpc. However, if we demand ( )00 0 1g =  as mentioned above, we obtain the 
constraint: 

 
4 2 2 23 4n n g l

e
l

−
=  (15) 

Curve fitting these last two equations to the left side of Equation (8) leads to 
the numerical values: 219.822α = , 31.204n = − , 82.56554 10l = ×  and 1g = . 
Figure 1 shows the agreement between theory and observation. This agreement 
also holds for 0.5r <  Gpc. 
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3.4.3. Taub-Nut AdS 
Following Mann [169]: 

 ( )
( ) ( )( )22 2 2 2 2 2 2

00 2 2

4 2l r s l s r s r
g r

r s

κ α− −+ + + − −
=

+
 (16) 

s is the NUT charge and the cosmological constant is: 2

3
l

λ = − . We were not 

able to curve fit this equation due to lack of convergence. However, when we 
added the condition: ( )00 0 1g = , which led to the equation: 

 
2 2

2

3l s
l

κ −
=  (17) 

We were able to obtain a fit with the constants: 219.822α = , 31.204s =  
and 77.251 10l = × . The values of l  lead to: 165.706 10λ −×−= . Figure 1 de-
picts this fit. 

3.4.4. Kerr-Taub-NUT 
The Kerr-Taub-NUT metric is a solution to the vacuum Einstein-Maxwell equa-
tions, which is locally analytic. We obtain the 00g  from Miller [170] 

 ( ) ( )
( )

( )
( )

2
2

00

sin r
g r a

r r
θ ∆

= −
Σ Σ

 (18) 

with: 

 ( ) ( )( )22 cosr r l a θΣ = + +  (19) 

and 

 ( ) 2 2 2 22r r r l a eα∆ = − − + +  (20) 

Curve fitting leads to an agreement between theory and observation for 
0.2r >  Gpc. At radial distances less than this value, a small constant deviation 

occurs. So we demand that the condition ( )00 0 1g =  be fulfilled. This leads to 
the equation: 

 
( )( ) ( )2 2 2 cos 2 sec

2

a e a
l

a

θ θ− − −
=  (21) 

Curve fitting now leads to complete agreement between theory and observation 
over the entire range of the observational data with the constants: 171.068a = ,  

412.148θ = − , 219.822α =  and 93.8984e = . Figure 1 shows this agreement. 

4. Comparison with Other Cosmological Theories 
4.1. Big Bang Theory 

Physical theories are based on assumptions. Different theories are based on dif-
ferent assumptions. Big Bang Theory is based on the Cosmological Principle, 
that is on the assumptions of homogeneity and isotropy. They lead to the Fried-
man-Lemaitre-Robertson-Walker (FLRW) metric. 

Our theory is not based on the cosmological principle rather is based on the 
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Taub-Nut solutions to the field equations of general relativity. They are spatially 
homogeneous. The fundamental tensors employed in our cosmological theory 
are not the metric of our entire universe for all spacetime, in the sense that the 
FLRW metric claims to be, rather they are the metrics associated with the celes-
tial sources from which we obtain the observed redshift-distance relationship. 
These metrics are a generalization of the Schwarzchild metric [164]. 

In our theory non-relativistic matter and the CMB are not included (more on 
this circumstance below). This differs from Big Bang cosmology, where the de-
celeration parameter and consequently the redshift-distance relationship which 
depends upon it, is determined by the average density of matter and energy in 
the universe. In our cosmology to the contrary the redshift-distance relationship 
is determined by well known solutions to the field equations of general relativity, 
whereby the average density of matter and energy in our universe play absolutely 
no role. 

In Big Bang cosmology dark energy is an unknown form of energy required to 
explain the acceleration of the expansion of space. In our theory of cosmology 
there is no expansion and therefore no accelerated expansion and therefore no 
need to introduce the concept of dark energy as it is understood in ΛCDM cos-
mology. Consequently, the vacuum catastrophe mentioned in the introduction 
does not exist in our theory. This circumstance is to be expected because [171] 
noted that the proposed existence of dark energy comes about because of the 
assumption of the homogeneity of the distribution of matter in space, which is 
not an assumption of our cosmological theory. 

In addition the other fundamental problems of the Big Bang theory: horizon, 
magnetic monopole, flatness and the prediction that the universe should contain 
equal amounts of matter and anti-matter also do not exist in our theory. 

In the Big Bang theory to a good approximation the redshift is [24]: 

 ( )
2

20 0
0

1 1
2

H H
z r q r

c c
 = + + 
 

 (22) 

where H0 is Hubble’s constant and q0 is the deceleration parameter. It follows 
that the gravitational redshift would be: 

 ( ) ( )
22

2 20 0
0

11 1 1
2

H H
z r q r

c c

  + = + + +     
 (23) 

The values obtained by curve fitting this equation with Equation (8) do not 
lead to agreement between observation and theory. We conclude: the Big Bang 
theory and our theory are incompatible with each other. 

We believe this conclusion is important and we strengthen it with the follow-
ing: Using the Taub-NUT solution specifically Equation (8) and Equation (13) 
along with the above equation we are led to the equation: 

 ( )
222 2

20 0
02 2

2 1 1 1
2

H Hr r n r q r
c cr n

α  − −  − = + + +   +   
 (24) 
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Solving the above equation for α we obtain: 

( ) ( ) ( )
22 2

2 2 20
0 02 2 2 2 2

1 11 1
2 2

Hn rr n r r H q r
r cn r n r c

α
  = + − + + + + +   + +   

 (25) 

But the Taub-NUT solution tells us that α is a constant and is not a function 
of r. Again we conclude: the Big Bang theory and our theory are incompatible 
with each other. We suspect this incompatibility means that both theories can 
not be correct, that is at least one of the two theories is false. Finally, we note if 
we assume 0 0q =  in the above equations, we obtain the same results and come 
to the same conclusions. 

We note that it has been questioned whether the standard theory of cosmolo-
gy actually incorporates the cosmological principle “faithfully” [172]. In addition 
we also note that there are models of cosmology, which are related to the cos-
mological principle or the Copernican principle [173]-[176]. 

4.2. Cosmic Microwave Background 

In the theory of the expanding universe, the CMB is the radiation left over from 
the Big Bang. Clearly, our theory of cosmology demands that the CMB must 
have a different origin. This task however has already been accomplished by the 
many scientists, who have discussed its origin without Big Bang cosmology. First 
Guillaume [177] [178] calculated that the temperature of interstellar space from 
the presence of starlight to be 5.6 ˚K and Eddington [179] 3.1 ˚K while Regener 
[180] using the energy density of cosmic rays found it to be: 2.8 ˚K, which is very 
close to the measured value of: 2.72548 ˚K [181]. Nernst [182] calculated the 
temperature of intergalactic space to be: 0.75 ˚K and Finlay-Freundlich [183] 
[184] calculated 1.9 K 6.0 KT≤ ≤  for its temperature. 

All of the above calculations were made without employing the notion of a Big 
Bang. Born [185] was the first to realize that these temperatures mean that the 
electromagnetic waves emitted would fall in the radio region. No one looked for 
these electromagnetic waves and they (the CMB) were serendipitously discov-
ered by Penzias and Wilson [186]. Following Kellermann’s [187] suggestion one 
can spreculate how the history of cosmology might have been very different, if 
radio astronomers had looked for and found the CMB based on the above calcu-
lations and Born’s insight. In fact, because these values were more accurate than 
those initially predicted by proponents of the Big Bang (Alpher, Herman and 
Gamow [188]-[191]), Assis and Neves [112] concluded that the CMB provides 
evidence for a non-expanding universe rather than for an expanding one. Other 
non-Big Bang explanations for the origin of the CMB are: [128] [192]-[196]. 

4.3. Stationary Universes 

The concept of a non-expanding universe is not at all new. In fact, historically, it 
was the first theory of physical cosmology. Starting with Olbers [197] and con-
tinuing with Einstein, DeSitter, Lense, Lanczos and Nernst [149] [198]-[201] it 
dominated up until the 1920’s. The discovery of cosmological redshifts by Sliph-
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er 1915 eventually caused a change of thought. 
The cosmological redshift-recessional velocity relationship being an assump-

tion has opened the door to a variety of possible explanations for the origin of 
cosmological redshifts (see [202] for a review). One of these explanations was 
that the observed cosmological redshift is due to the gravitational redshift [203]. 

Many of these explanations come under the broad term tired-light hypothesis. 
Starting with Zwicky [204] [205] and continuing with Hubble and Tolman [110] 
[206]. A non-expanding universe explanation for the cosmological redshift is also 
found in many other publications: [115] [162] [183]-[185] [196] [207]-[221]. 

Our approach is not related to any of these other explanations. It differs from 
them in that in our theory of cosmology the origin of the observed cosmological 
redshift is the gravitational redshift. This interpretation of redshift agrees with 
the work of [222]-[225] although his approach to cosmology is completely dif-
ferent than ours. 

5. Conclusion 

The standard theory of cosmology is based on both the cosmological and Co-
pernican principles. In contrast we have developed a theory of cosmology, which 
is not based on the cosmological principle but maintains the validy of the Co-
pernican principle. The goodness of the fit in Figure 1 makes clear that a statio-
nary (non-expanding) universe explains the observed redshift-distance relation-
ship. It also explains the observed time dilation, which has generally been seen as 
proof that space is expanding. Thus, the cosmological principle and the concept 
of the expansion of space are not needed to explain these fundamental observa-
tional relationships in cosmology. 

In our theory of cosmology there is no Big Bang and therefore no early un-
iverse as it is understood in ΛCDM cosmology. Consequently, there is no 
Hubble tension and no need for the concept of dark energy in our theory of 
cosmology. 

Both ΛCDM and our cosmology are based on the field equations of general 
relativity. However, Big Bang cosmology assumes that cosmological redshifts are 
caused by the expansion of space, whereas our theory suggests that they are a 
manifestation of the gravitational redshift associated with the Taub-NUT solu-
tions to Einstein’s field equations, whereby these solutions are generalizations of 
the Schwarzschild solution. 

From the standpoint of our cosmology, the concepts of the cosmological prin-
ciple and more generally the concepts of Big Bang cosmology are superfluous. 
Because of the myriad of problems associated with the modern theory of cos-
mology—Occam’s razor, the impossibility of validating the cosmological prin-
ciple and astronomical observations that appear to violate it, as well as dark ener-
gy, the Hubble tension and others we conclude that we may live in a Taub-NUT 
universe and not in the Friedman-Lemaitre-Robertson-Walker universe of the 
standard theory of cosmology. 
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