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Abstract 
It is acknowledged today within the scientific community that two types of 
actions must be considered to limit global warming: mitigation actions by 
reducing GHG emissions, to contain the rate of global warming, and adapta-
tion actions to adapt societies to Climate Change, to limit losses and damages 
[1] [2]. As far as adaptation actions are concerned, numerical simulation, due 
to its results, its costs which require less investment than tests carried out on 
complex mechanical structures, and its implementation facilities, appears to 
be a major step in the design and prediction of complex mechanical systems. 
However, despite the quality of the results obtained, biases and inaccuracies 
related to the structure of the models do exist. Therefore, there is a need to 
validate the results of this SARIMA-LSTM-digital learning model adjusted by 
a matching approach, “calculating-test”, in order to assess the quality of the 
results and the performance of the model. The methodology consists of ex-
ploiting two climatic databases (temperature and precipitation), one of which 
is in-situ and the other spatial, all derived from grid points. Data from the dot 
grids are processed and stored in specific formats and, through machine 
learning approaches, complex mathematical equations are worked out and 
interconnections within the climate system established. Through this 
mathematical approach, it is possible to predict the future climate of the Su-
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dano-Sahelian zone of Cameroon and to propose adaptation strategies. 
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1. Introduction 

The diversity of data sources, the ability to parameterize physical processes, 
modern programming techniques and the use of supercomputers are all tools 
that enable the scientific community to better analyze complex physical phe-
nomena. Thanks to mathematical and computer models, it is now possible to 
predict the future climate of a region and to propose adaptation strategies. These 
climate predictions are the result of improved numerical methods, the ability of 
supercomputers to solve complex mathematical and physical equations in grids 
of completely different points. The dimensioning of these point grids by machine 
learning (ML) approaches has also facilitated the understanding of the complex 
interconnections within a single climate system. The present study is based on the 
use of the SARIMA-LSTM machine learning model to predict the future climate 
of the Sudano-Sahelian zone of Cameroon. Given the quality of the results ob-
tained, the adjusted SARIMA-LSTM digital learning model is the most appro-
priate model for the ecological reality of the Sudano-Sahelian zone of Cameroon.  

2. Materials and Methods 
2.1. Presentation of the Study Area 

With a surface area of about 100,353 km2, or 21% of the national territory, the 
Sudano-Sahelian zone of Cameroon covers the administrative regions of the 
North (66,090 km2, bordering the Adamawa plateau) and the Far North (34,263 
km2, located on the southern borders of Lake Chad). Rainfall conditions in this 
area are rapidly deteriorating, from 1200 mm of annual rainfall in the Benue ba-
sin to less than 500 mm on the borders of Lake Chad (see Figure 1).  

2.2. Climate Conditions in the Sudano-Sahelian Zone 

Generally speaking, Cameroon is under the influence of two main air masses 
coming from either side of the equator. One comes from the Azores High in the 
North Atlantic and the second from the St. Helena High in the South Atlantic. 
This second air mass brings fresh and humid air to the continent. These two air 
masses merge along a convergence zone, also known as the intertropical front 
(ITF), which changes latitude according to the season. 

Research results show that the ITF rotates during the year, thus contributing to 
its seasonality. Four positions of the ITF are commonly observed during the year [3]:  

1) between November and February, it lies south of the 4th parallel: in this po-
sition, the whole of North Cameroon is in the dry season,  
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Figure 1. Climate map of Cameroon with the distribution of its agro-ecological zones and presentation of the Sudano-Sahelian 
zone. 

 
2) between March and April, it rises above the 7th parallel: in this position, it is 

the extension of the dry season from the Far North to the southern part of Garoua,  
3) between May and October, it is above the 13th parallel: at this level, the en-

tire country is in the rainy season. 
According to Yann L’Hôte (1999), the entire Sudano-Sahelian zone of Cam-

eroon is subject to a tropical climate of the Sudano-Sahelian type, characterized 
by the following [4]: 

• A single rainy season centred on a maximum in August, with average annual 
totals varying from 400 mm in the far part to 1100 mm in the southern part; 
• A dry season which is rigorous and long (at least eight months) as we move 

northwards and away from the Mandara Mountains;  
• Solar radiation and temperatures, often very high as we move closer to the 

banks of Lake Chad (average annual temperatures around 31˚C, with significant 
average temperature differences between 8˚C and 20˚C); 
• Significant average temperature differences (between 8˚C and 20˚C). 
As part of this study, we are beginning a methodical and comprehensive 

process, starting with the rigorous collection of relevant data. Once this data is 
gathered, we put it through a series of in-depth analyses, including separating it 
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into training and testing sets to ensure the objectivity of our approach. Next, we 
proceed to develop predictive and analytical models, using methods and tech-
niques tailored to our specific research objective. Once the models are developed, 
we subject them to careful evaluation to determine their performance and accu-
racy [5]. This evaluation often involves comparative tests with real data and es-
tablished benchmarks, in order to validate the effectiveness of the proposed 
models. Finally, we carry out an in-depth interpretation of the results obtained, 
placing them in the context of our research problem and examining the practical 
implications of our findings (see Figure 2). 

 

 

Figure 2. Study framework, from data collection, data separation and model development to model as-
sessment and interpretation. 

2.3. Data Collection and Model Construction 

The data used are temperature and precipitation time series. The statistical 
characteristics of these series are shown in Table 1 and Table 2. They were pro-
vided by the National Meteorological Centre (NMC).  

2.4. LSTM (Long-Short Term Memory) Model 

LSTM is one of the Key Neural Network (KNN) architectures used in different 
domains for the processing of time series data. KNN is mainly used for tempo-
rally correlated data [6]. It considers the correlation between previous and cur-
rent data and predicts future data through past data while having a structure in 
which signals are cycled to predict future data. 

However, there is a problem that past data cannot be stored for a long time. 
LSTM is an architecture that emerged to overcome these problems. There is a 
total of six parameters, and through the four-gate structure, not only short-term 
memory but also long-term memory can be solved, and the structure of LSTM 
can be confirmed in (Figure 3). 
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Table 1. Climate variables and hazards identified by AEZ [7] [8]. 

Variables/climatic 
Hazard 

Soudano-Sahelian 
Guinea  

High Savana 
Highlands 

Bimodal  
rainfall 

Monomodal 
Rainfall 

Temperatures ↑ ↑ ↑ ↑ ↑ 

Heat waves +++++ ++ ++ +++ ++ 

Dust storms ++++ NC NC NC NC 

Precipitations ↓ ↓ ↓  ↑ 

Rainfall quantity + ++ ++ ++ ++++ 

Rainfall variability ++ ++ ++ ++ +++ 

Violent winds ++ ++ ++ + +++ 

Extreme Events ↑ ↑ ↑ ↑ ↑ 

Droughts ++++ ++ + + NC 

Floods +++ ++ ++ +++ +++ 

Landslides ++ +++ +++ ++ + 

Land and Coastal 
Erosion 

+++ ++ ++ ++ +++ 

Sea Level Rise NC NC NC NC ↑ 

Legend: ↑ increase; ↓ decrease; → stable; NC not concern. 
 

Table 2. Stations, coordinates and parameters of localities in the Sudano-Sahelian zone. 

Zones Station names 
Geographical information 

Data used Chronicles 
Longitudes Latitudes 

Sudano-Sahelian 

Maroua 14.32 10.59 
Temperature 1900-2021 

Precipitation 1953-2021 

Kaele 14.44 10.10 
Temperature 1900-2021 

Precipitation 1953-2021 

Guider 13.94 9.93 
Temperature 1900-2021 

Precipitation 1953-2021 

Kousseri 15.02 12.07 
Temperature 1900-2021 

Precipitation 1953-2021 

Garoua 9.3 13.39 
Temperature 1981-2022 

Precipitation 1981-2022 
 

The LSTM network has the same chain structure as the KNN, but the repeti-
tive modules of the KNN are structured to exchange information with each 
other through four layers, not just one layer tanh. The state in the LSTM cell is 
divided into two vectors, where ht means a short-term state and Ct means a 
long-term state. Data can be added to or removed from the cell state via sigmoid 
gates, each gate having an individual weight, similar to a layer or series of matrix 
operations. It is designed to solve the problem of long-term dependencies, as 
portals can also retain information from long-term historical data. 
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Figure 3. Structure of the Long Short-Term Memory (LSTM). 
 

The first step in an LSTM network is to identify and decide which unnecessary 
information to omit from the cell. The corresponding cell is called the omit gate, 
and the process determines the output of the last LSTM cell (ht−1) to t − 1 and 
the current input (xt) at the current time t by a sigmoid function. In this case, the 
value that comes out of the sigmoid function has a value between (0~1). The 
bigger the value, the more information about the previous state stored is intact. 
The smaller the value, the more information about the previous state is forgotten 
and the part to be omitted from the previous output is decided.  

After passing through the forgetting gate, it goes through the process of se-
lecting the information to be stored. Through the omit gate, the memory cell 
(ct−1) of the previous moment is forgotten, new information to be stored is added, 
and the value of each item is determined as newly added information. In this 
case, appropriate choices are made rather than unconditionally accepting new 
information. A gate that fulfils a corresponding role is called an entrance gate. 
Hence, the sigmoid function enters through the last LSTM cell (ht−1) and the 
current value (xt), and the function tanh, which is an activation function, is 
added. After passing through the sigmoid layer, the value is between (0 - 1) and 
represents the degree to which the new information is updated, and the value af-
ter going through the tanh has a value between (−1 - 1) and has a weight repre-
sentative of the importance given to it. Finally, the entrance gate performs the 
Hadamard product operation on both values, and the corresponding new mem-
ory is added to the previous cell state (Ct−1) to become Ct. 

After assessing the value of the new information via the entrance gate and se-
lecting the information to be stored, the next process is to select the exit infor-
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mation. The corresponding gate is called the exit gate, and a sigmoid function is 
obtained through the current time value (xt) and the value of the last LSTM cell 
(ht−1). The result value via the sigmoid function performs the operation of the 
current cell state (Ct) and the Hadamard product, and the filtering effect of the 
value occurs and it becomes a hidden state. 

 ( )1 ,t t f t f ff x W h W b−= + +σ    (1) 

 1tanh ,t t g t g gg x W h W b−= + +  (2) 

 ( )1 ,t t i t i ii x W h W b−= + +σ    (3) 

 1 ,t t t t tc f c g i−= +     (4) 

 ( )1 ,t t o t o oo x W h W b−= + +σ   (5) 

 ( )tanh ,t th o c= 
   (6) 

Here, σ denotes a sigmoid function, W denotes a weighting matrix and b de-
notes a bias. ct designates the current status of the cell, ct−1 refers to the state of 
the cell at the previous time and stands for the Hadamard product operation. 
Equation (1) refers to the process of passing through the forget gate, and in the 
process of passing through the input data, the cell state is updated via Equations 
(2) to (4). Then it passes through the exit gate indicated by Equation (5) and the 
LSTM operates in a structure in which the final state of the hidden layer is up-
dated via Equation (6) 

2.5. Non-Seasonal ARIMA 

Divide the term ARIMA into three terms, 
AR, I, MA:  
AR(p) represents the autoregressive model; the parameter p is an integral 

number that confirms the number of lagged series to be used to predict periods, 
e.g. yesterday’s average temperature correlates with today’s temperature [9], so 
use the parameter AR(1) to predict future temperatures.  

The model formula AR(p) is: 

 1 1
t

t p t py Y Y− −= µθ θ   (7) 

where µ is the constant term, p is the period to be used in the regression, and θ is 
the parameter adjusted to data. 

I(d) The differentiation part and the parameter d indicate the number of or-
ders of differentiation that will be used. It tries to make the series stationary, for 
example:  

If 1d = : –1t t ty Y Y= −  where ty  is the differentiated series, and 1t tY Y −−  is 
the original series 

If 2d = : ( ) ( )1 1 2 1 22t t t t t t t ty Y Y Y Y Y Y Y− − − − −= − − − = −  
Note that the second difference is a change in change, which measures local 

“acceleration” rather than trend. 
MA(q) Means moving average model, the q is the number of lagged forecast 
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error terms in the prediction equation, e.g. it is strange, but this term MA takes a 
percentage of the errors between the predicted value and the actual value [9] [10] 
[11]. It assumes that past errors will be similar in future events.  

The model’s formula MA(p) is: 

1 1 2 2t t t t q t qy µ ε θ ε θ ε θ ε− − −= + − − − −  

where µ is the constant term, q is the period to be used on the term e, and θ is 
the error-adjusted parameter 

 1 1 1t t
t t tET Y y e Y y− −= − − = − −   (8) 

2.6. Seasonal ARIMA 

The parameters , ,p d q  differ from non-seasonal parameters. SAR(P) Is the 
seasonal self-regression of the series?  

The model formula SAR(P) is 1
t

t sy Yµ θ −= +  where P is the number of 
auto-regression terms to be added, usually no more than one term, s is the 
number of periods to be used as a base, and θ is the parameter adjusted to data 
[12]. 

Usually, when the topic is weather forecasting, 12 months ago, you have some 
information to bring to the current period.  

The setting 1P =  (i.e., SAR(1)) add a multiple of t sY −  to the forecast for the 
moment Figure 4 represents the temperature variation in Maroua I(D) the sea-
sonal difference MUST be used when you have a stable model.  

 

 

Figure 4. Temperature variation in Maroua. 
 

If 0d =  and 1D = : t t t sy Y Y −= − , ty  is the differentiated series, and 

t t sY Y −−  is the original seasonal range.  
If 1d =  and 1D = : 

( ) ( )1 1 1 1t t t t s t s t t t s t sy Y Y Y Y Y Y Y Y− − − − − − − −= − − − = − − −  

2.7. Performance of Indicators 

We used three types of indicators to compare the performance of the water level 
prediction model MSE (average squared error), NSE (Nash-Sutcliffe efficiency 
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ratio) and MAE (average absolute error). MSE Is a widely used method for 
evaluating the performance of a regression model. It is the square of the differ-
ence between the actual observed value and the predicted value. The indicator is 
sensitive to outliers because the difference between the observed and predicted 
values is squared. In the case of the hydrological model, the MSE index was se-
lected because it can cause human casualties if an outlier occurs in the prediction 
[9] [10] [11]. In case of the NSE, it is a widely used indicator for assessing the 
performance of hydrological models. NSE Has a value of (−∞ - 1) as an index 
frequently used to assess the performance of hydrological models. A value closer 
to means better model performance. In the case of MAE, This means the average 
of all absolute errors of the observed and predicted values and has the advantage 
of intuitively checking the performance of the model. The equations for the per-
formance comparison metrics are given as follows: 

 ( )2
1

1
i

n
iiMSE OBS SIM

n =
= −∑   (9) 

 
( )
( )

2
1

2
1

1 1, 0 1, 0
N

N
i ii

ii

OBS SIM
NSE NSE NSE NSE

OBS OBS
=

=

−
= − = < < <

−
∑
∑

   (10) 

 1

1 , 0n
i iiMAE OBS SIM MAR

n =
= − >∑   (11) 

3. Results 

Annual Temperatures in Maroua; 
The highest temperatures occur in February and April, while the lowest tem-

peratures occur in July and December. Taking the monthly average levels of each 
of these lines and creating a single line, (Figure 4) represents the monthly varia-
tion in Maroua. 

Here are some statistics from this series to see a trend over the years. The av-
erage temperature increased by about 5.25% over more than a century, from 26.5 
to 28.5 degrees Fahrenheit. First, divide the data into training, validation and test 
sets to see how it all works together. (Figure 5) shows the annual change in Ma-
roua: a confirmation forward over 48 months, then extrapolate the future over 
another year to compare with the test set. 

The RMSE temperature of the baseline is 2.17˚C. An increasing trend is 
shown in the data, and seasonality is apparent, with higher temperatures at the 
beginning and end of each season and lower temperatures in the middle. To cre-
ate a time series forecast (constant mean, variance and autocorrelation). The 
function occupied can determine whether the series is static. We can safely build 
our model if the series has less than 5% of P value. 

(Figure 6) shows the autocorrelation, partial correlation and distributed 
graph. The partial autocorrelation function, or PACF, is used to describe this. 
Without considering the impact of past lags, it displays the correlation between 
the current temperature and the type covered. For example, in the case of tem-
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perature, it shows only the impact of lag three without considering the effect of 
lags 1 and 2. 

 

 

Figure 5. Annual variation of average temperature in Maroua, from 1900 to 2012. 
 

 

Figure 6. Autocorrelation, partial correlation and distributed graph. 
 

The next month will use the previous month’s forecast as a starting point. 
Negative autocorrelation starts at lag six and occurs once every 12 months. Dif-
ferent seasons have a role to play in this phenomenon. 

Therefore, a strong positive autocorrelation is evident, starting at lag 12 and 
continuing for another 12 lags. The late intervals show a negative PACF. Initially, 
the PACF shows a positive jump and then declines to a negative PACF. The ACF 
and PACF diagrams are identical in this situation. An AR(1) model and a first 
seasonal difference may depend on it (YtYt12). The parameters SAR(P) or SMA 
(Q) may be required, so plot the static function again with the first seasonal dif-
ference to confirm (see Figure 7). 

https://doi.org/10.4236/ojs.2024.143016


J. A. Amougou et al. 
 

 

DOI: 10.4236/ojs.2024.143016 404 Open Journal of Statistics 
 

 

Figure 7. Autocorrelation, Partial Correlation and Climate Change Distributed Graph. 
 

These are AR(3) models, defined as having three parameters. The figures 
above show that the first ACF lags gradually decrease. The PACF falls below the 
confidence interval after the third interval. (Figure 8) shows the actual, pre-
dicted and error values. Both ACF and PACF showed significant decreases at the 
12th interval. In other words, it is a SAR(1) with a first difference as the signa-
ture SMA includes a parameter of 1 interval. Order 3 and 0 in the model; order 0 
and 1 because the series has a clear increasing trend, and order 1 and 2 because 
the series has a clear decreasing trend. First, create a function that uses one-step 
predictions from the full validation set to determine how far it is. 

 

 

Figure 8. Predicted and actual error values. 
 

The graphs below show historical data as well as projections for the future. 
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The scattered graph shows the difference between expected and actual values. 
An autocorrelation plotted graph of the residuals can be used to determine 
whether there is an association or not. 

The errors increase from −1.5 to 1.5 as the temperature increases, as shown in 
(Figure 9), where the actual values are compared to the extrapolated ones. 
However, an autocorrelation plot shows a positive peak just above the 
2-confidence interval for some of the outliers shown in the QQ plot. To assess 
the predictive accuracy of the test set, we have to consider the 12-month inter-
vals. 

3.1. Interannual Evolution of Temperatures (Max, Min and Avg) in  
Maroua from 1990-2022 

Figure 10 shows the variability of maximum and minimum average tempera-
tures in Maroua from 1990 to 2022. 

 

 

Figure 9. Actual values compared to extrapolated values. 
 

 

Figure 10. The variability of maximum and minimum average temperatures in Maroua from 1990 to 2022. 

3.2. Interannual Rainfall Trends Maroua 1990-2022 

Figure 11 shows the variations in rainfall in Maroua from 1990 to 2022. A peak 
of 115.10 mm is observed on Friday 15 July 2022. 
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Figure 11. The variations in rainfall in Maroua from 1990 to 2022. 

3.3. Temperature Projection in Maroua (January-February- 
March-April 2023) 

The model’s simulation of projected temperatures for the periods January, Feb-
ruary, March and April 2023 shows a gradual increase in maximum (41.8˚C on 
30 April 2023), average (38.7˚C on 20 April 2023) and minimum (36.0˚C on 22 
April 2023) temperatures. (Figure 12) 

 

 

Figure 12. Temperature projection (max, avg and min) Maroua (January-February-March-April 2023). 

3.4. Rainfall Projection Maroua (January-February-March-April  
2023) 

The graph obtained for the rainfall projection in Maroua shows that the area will 
have no rainfall for the months of January, February, March and April 2023. 
(Figure 13) 

3.5. Interannual Evolution of Temperatures (Max, Min and Avg)  
in Garoua from 1990-2022 

(Figure 14) shows the variability of maximum and minimum average tempera-
tures in Garoua from 1990 to 2022. 

3.6. Interannual Rainfall Trends in Garoua from 1990-2022 

Figure 15 shows the rainfall variations in Garoua from 1990 to 2022. A peak of 
105.36 mm was observed on Saturday the 8th of September 2018. 
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Figure 13. Rainfall projection for Maroua (January-February-March-April 2023). 
 

 

Figure 14. Temperature situation of Garoua from 1990-2022. 
 

 

Figure 15. Rainfall situation in Garoua from 1990-2022. 

3.7. Temperature Projection (Max, Avg and Min) in Garoua  
(January-February-March-April 2023) 

The model’s simulation of projected temperatures for the periods of January, 
February, March and April 2023 shows a gradual increase in maximum (41.10˚C 
on 7 April 2023), average (36.20˚C on 7 April 2023) and minimum (29.70˚C on 
7 April 2023) temperatures. (Figure 16) 

3.8. Rainfall Projection Maroua (January-February-March-April  
2023) 

The graph shows an onset of rainfall in Garoua from 8 March 2023. The graph 
also shows a peak of rainfall of only 13.40 mm on Thursday 27 April 2023. 
(Figure 17) 
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Figure 16. Temperature projection (max, avg and min) in Garoua (January-February-March-April 2023). 
 

 

Figure 17. Rainfall projection for Maroua (January-February-March-April 2023). 

3.9. Training and Validation of the SARIMA-LSTM Model 

PARAMETERS 
SSZ 

Maroua Garoua 

STATISTICAL TESTS −3.9117 −3.153 

P-Value 0.0020 0.0018 

Delays used 23.0000 21.0000 

Number of observations used 1272.0000 1272.0000 

Critical value (1%) −3.4355 −3.2354 

Critical value (5%) −2.8638 −2.1235 

Critical value (10%) −2.5680 −2.6532 

SARIMA model MSE (3, 0, 0), (0, 1, 1, 12) 0.7674 0.6842 

Basic RMSE 1.94 1.96 

Baseline RMSE for extrapolation 0.97 0.92 

Scenarios Observations Training period 
Train MSE 

Temp (C)/Precip 
(mm) 

Validation MSE 
Temp (C)/Precip 

(mm) 

LSTM 1272 2510.91 s 0.22 0.31 

SARIMA-LSTM 1272 2493.50 s 0.15 0.19 
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4. Discussion 

Digital forecasts have experienced considerable technological development over 
the last 30 years, thanks to the use of satellite imagery, which in turn has seen a 
remarkable explosion in the number of observations and their coverage, but also 
thanks to the use of digital data assimilation techniques. This progress has been 
made possible due to the opportunity to place atmospheric observing systems on 
satellite platforms and the development of digital computers, capable of han-
dling complex non-linear equations. Fundamental knowledge of fluid dynamics 
and thermodynamics has also improved significantly during this century, put-
ting atmospheric studies on a firm footing as an applied physics problem [13]. 
These different scientific techniques and approaches have been demonstrated in 
disciplines such as hydrology, climatology, oceanography, space weather, glaci-
ology, atmospheric physics and chemistry, etc.  

The awareness that humans can significantly (if unintentionally) change the 
global climate is said to be behind the increasing amount of research into moni-
toring and modelling atmospheric phenomena. Therefore, due to the very large 
size of the data, the complex and array nature of the system to be simulated, 
three major forecast steps (observation, data assimilation, model integration) 
constitute real scientific, numerical and technical challenges. Numerical climate 
prediction methods have been developed by researchers such as [14] and [15], 
etc. These authors carried out the disaggregation of the climate scale from global 
to local. The disaggregation approaches developed on dynamic models have 
made it possible to pool a multitude of factors. For example, based on the rele-
vant variability regimes for characterizing the state of future climate, the analysis 
of identified factors, teleconnections and model outputs has enabled the descrip-
tion of future climate prospects.  

The SARIMA-LSTM machine learning model, which has some advantages 
and limitations, fits into the range of local climate sensitivity modelling tools de-
signed to predict the climate of Cameroon. In a context where the impacts of 
climate change and its effects vary considerably from one climatic zone to an-
other. These impacts would have serious consequences for health, livelihoods 
and material assets, especially for the urban poor, informal settlements and other 
vulnerable groups.  

The adjusted SARIMA-LSTM model uses disaggregation techniques in its 
principles, which allow the expression of model outputs at more precise scales. 
However, despite the quality and accuracy of the results, biases and inaccuracies 
related to the structure of the models remain, and could be improved by taking 
into account, practical applications of impact assessment models [13] for exam-
ple. A major step in this adjustment process will be to incorporate the anthro-
pogenic influences of climate change, in order to formulate strategies to mitigate 
the socio-economic impacts of changes on the local environment. The present 
work, which is an initial one to date, intends to extend its analysis methods to 
the five agro-ecological zones of Cameroon, in order to adjust the climate fore-
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casts to local specificities and specific sectors of activity, at different time scales.  
However, despite the quality of the results obtained, there are still biases and 

inaccuracies linked to the structure of the models. There is therefore a need to 
validate the results of the SARIMA-LSTM digital learning model by comparing 
the results of the “calculation-testing” approach. 

5. Conclusion 

A better understanding of complex physical phenomena is possible today thanks 
to high-performance computer tools, which can even compete with the range of 
tools of the experimental sciences. Mathematical and computer adjustments must 
contribute to the construction of efficient digital models, able to provide reliable 
predictions that accompany the development process. The SARIMA-LSTM digi-
tal model was used in this research with the major objective of examining the 
different factors that allow the development and improvement of a simple ma-
chine learning technique to determine the most reliable climate predictions pos-
sible. The SARIMA-LSTM digital model has the advantage of an easy formula-
tion and a proven performance, which is not the case for other learning methods. 
In order to validate the model fitting algorithms, the applications were carried 
out on the SARIMA-LSTM digital model. The results of the model for the Su-
dano-Sahelian zone, both for temperatures (maximum, minimum and average) 
and precipitation, show that the predictions are very satisfactory and allow the 
application of this digital model to more advanced learning models and to other 
agro-ecological zones of Cameroon. 
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