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Abstract 
We investigate a neutral pion electromagnetic form factor in momentum 
space and obtain Gaussian-like function for it. The characteristic form of our 
neutral pion electromagnetic form factor is consistent with the results pub-
lished by Jefferson Lab Hall A Collaboration.  
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1. Introduction 

After M. Dlamini et al. (Jefferson Lab Hall A Collaboration) have published new 
results of neutral pion electromagnetic form factor [1], J. Arrington et al. (num-
ber of co-authors is 31) have been starting to consider that the lightest pseu-
do-scalar mesons appear to be the key to the further understanding of the emer-
gent mass and structure mechanisms [2]. In ref. [1], M. Dlamini et al. insist that 
the t-dependence of the cross section, usually parametrized by Regge-like profile 
function, is no longer valid at typical values of 2– 1GeVt >  and also they use a  

functional form of ( ) ( )2 exp
A

C Q Bt′−  to fit their data where 2Q  is proton 

momenta and ( )( )2
mint t t t q q′ ′= − = − . Here q is virtual photon momentum  

and q' is 0π  momentum. This means that neutral pion electromagnetic form 
factor is not Regge-like but Gaussian-like. M. Diehl and P. Kroll has shown this 
in the GPD (generalized parton distributions) analysis of nucleon form factors 
[3]. E. Arriola et al. have shown the behavior of 0π  wave function in configu-
ration space in Figure 2 which looks like Gaussian-like by using the quenched 
Lattice QCD calculation [4]. We also obtained a 0π  wave function as a bound 
system of 3 + 1 dimensional QCD with massive quarks in configuration space of 
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which characteristic form is Gaussian-like [5]. Therefore, we have to investigate 
an 0π  electromagnetic form factor in momentum space from our 0π  wave 
function. 

2. Formulation 

We briefly describe our formalism and the equation of motion we obtained pre-
viously [5]. Suura [6] [7] defined the Bethe-Salpeter-like amplitude as  

 ( ) ( )1,2 0 1,2q Pξη ξηχ =  (1) 

where 0  and P  denote the vacuum and physical states, respectively, and 
the gauge invariant bi-local operator ( )1,2q  is defined in the non-Abelian 
gauge field as 

 ( ) ( ) ( ) ( )2†
1

1,2 2 exp d 1
2

c a a
rq T q P ig x A x qξη η ξ

λ  ≡   
  

∫


   (2) 

Here ξ  and η  denote the Dirac indices, P denotes the path ordering, and 

the 
2
aλ  components are generators of the adjoint representation of SU(N) color  

gauge group. The Trace is calculated for color spin a. For massive quarks and 
anti-quarks case, Dirac equation is expressed as  

 k
Ak

qi i D q mq
t

α β∂
= − −

∂
 (3) 

The Dirac equation of the complex conjugate †q  becomes as the following. 

 
†

† †k
Ak

qi i D q mq
t

α β∂
= − +

∂
 (4) 

where 
2

a a
Ak k kD igA λ ≡ ∂ +  

 
. 

Note that we choose the plus sign for covariant derivative following Erratum 
[8]. 

We employ the metric system and γ  matrices as follows, according to 
Weinberg [9]. 

00 11 22 331, 1η η η η= − = = =  

( ) ( )00

0

0 0
,

0 0
kk

k

i i
σ σ

γ γ
σ σ
   

= − = −   −   
 

where 0σ  is a unit matrix of a 2 × 2 matrix and kσ  is the 2 × 2 Pauli-matrix 
specified by k = 1, 2, 3. 

0k kα γ γ=  and 0iβ γ=  

Then for the non-chiral limit case, Equation (3) and Equation (4) lead to the 
starting equation of motion as follows. 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 1

2 2

1 1

1,2 2 1,2 1,2 1 1,2 1,2

d 1,2; d 1,2;E B

i q i q q i m q q m
t

g xq x g x q x

α α β β

α

∂
= − ⋅∇ − ⋅∇ + −

∂

+ + ⋅ ×∫ ∫

 

 

 

 (5) 
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where ( ) ( ) ( ) ( ) ( )†1,2; 2 1, ,2 1a
Oq x q U x O U x q≡ . 

O is any operator and  

( ) ( )2

1
1,2 exp d

2
a aU P ig x A x λ  ≡   

  
∫



   

Equation (5) except mass terms is derived in [10], although the derivation way 
is slightly revised by using the consideration of Erratum [8]. Then, we obtained 
the following equations as shown in [5].  

 ( ) ( ) ( ) ( ) ( )
2 2

1 1
0 0 1 1 0

0

02
2 2

g L g L
P r r r r r

r P
δ

χ χ χ χ= − + +  (6) 

 ( ) ( ) ( ) ( ) ( ) ( )
2 2

1 1
0 1 0 1 1 2 3

0

0
2 2

g L g L
P r r r r m m r

P
δ

χ χ χ χ= + − +  (7) 

 ( ) ( ) ( ) ( ) ( )
2

1
0 2 3 3 2

022
2

g L
P r r r r r

r r
δ

χ χ χ χ∂
= − − −

∂
 (8) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
22

11
0 3 2 2 3 1 2 1

0

0
2

2 2
g Lg LP r r r r r rm m

r P
δ

χ χ χ χ χ∂
= − + − +

∂
 (9) 

Because we use the consideration of Erratum [8], 1L  is replaced by 1L  in 
Equation (6)-(9). 

We are interested in pion cases. It is obvious that the following pion wave 

function with an eigenvalue of 
( )2

12 2
0

0
2

g L
P mπ

δ
= =  exactly satisfy Equations 

(6)-(9). 

 ( ) ( ) 2
11 2 2

0 2 2
1

2 1 exp
8

g Lm m
const r

g L r
πχ

 +
= −  

 
 (10) 

 ( )
1 0πχ =  (11) 

 ( )
2 0πχ =  (12) 

 ( )
2

1 2
3

1 exp
8

g L
const r

r
πχ

 
= −  

 
 (13) 

Therefore, we obtain ( ) ( ) ( ) 2
11 2 2

0 2 2
1

2 1 exp
8

g Lm m
r const r

g L r
πχ

 
  

−



+
=  as a 

neutral pion wave function. 

3. Derivation 

In Section 2, we show the following form as a neutral pion wave function in con-
figuration space as 

( ) ( ) ( ) 2
11 2 2

0 2 2
1

2 1 exp
8

g Lm m
r const r

g L r
πχ

 
  

−



+
=  

An electromagnetic form factor is defined in momentum space so that we can 
use three dimensional Fourier transform as follows. 
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( ) ( ) ( ) ( )

23
0

2
12 cos 2 2

40 0

d exp

12 d sin d e exp
4

iqr

F q r iq r r

g L
r r A r

r

π
π

π θ

χ

π θ θ
∞

= ⋅

 
= −  

 

∫∫∫

∫ ∫

  

 (14) 

where ( )1 2
2

1

2 m m
A const

g L
+

= . 

From now on we denote 22 Aπ  and 
2

1

4
g L

 as 1A  and β , respectively. 

First, we take θ  integration, then Equation (14) becomes as 

 ( )
( )2

1 30

e e e1 d
r iqr iqr

F q A r
iq r

β

π

− −
∞ −

= ∫  (15) 

Because an integral for r becomes infinite at r = 0, we have to use regulariza-
tion at origin. 

This means that we set 0r  instead of 0 and after evaluation we take 0r  going 
to 0.  

 

( ) ( )2 2

0

2 22 2

0

1 3

2 4 2 4
1 3

1 1d e e

1 1d e e

r iqr r iqr
r

iq q iq qr r

r

F q A r
iq r

A r
iq r

β β
π

β β
β β β β

− + − −

   
− − − − + −   

 ∞  

∞
= −

 
 = −
 
 

∫

∫
 (16) 

Here, changing variable 12
iqr r
β

− =  for the first term and changing variable 

22
iqr r
β

+ =  for the second term and omitting 1
1A
iq

 term, Equation (16) be-

comes  

 Equation (16)
2 2

1

0

2

0

2

4
1 23 3

2 2
1 2

e ee d d

2 2

q r r

iq iqr r
r r

iq iqr r

β β
β

β β

β β

−−

+

∞ ∞
−

−

 
 
 = −     + −        

∫ ∫  (17) 

First term of Equation (17) 

 ( )
2 2 2

01 4 2
3 30 0

e ee d d

2 2

q r riqr
I r r

iq iqr r

β β
β β

β β

− −
−∞−

 
 
 = = −     + +        

∫ ∫  (18) 

Second term of Equation (17) 

 ( )
2 2 2

02 4 2
3 30 0

e ee d d

2 2

q r riqr
I r r

iq iqr r

β β
β β

β β

− −
+∞−

 
 
 = = −     − −        

∫ ∫  (19) 

Thus, denoting the first terms of Equation (18) and Equation (19) as ( )1
1I  and 

( )2
1I , respectively, we can combine these two terms as 
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 ( ) ( )
2

3
2

1 2 4
1 1 30 2

2

6
2 2

e d

2

q
iq qr i

I I r
qr

β β β

β

− ∞

 
− +  

 − =
   +     

∫  (20) 

To deal with the second terms of Equation (18) and Equation (19), we use the 
method of change of variables again. We denote the second term of Equation (18)  

as ( )1
2I  and the second term of Equation (19) as ( )2

2I . For ( )1
2I , changing varia-

ble as 
2

r riq
β

+ = , ( )1
2I  becomes 

 ( )

2
2 2

0 0
2

1 4
2 3 3

2 2

e ee d d

iq
q iqr r

iq

r
r r

iqI r r
r r

β
β β

β

β β

 
− − 

− + −
= − = −∫ ∫  (21) 

Similarly, for ( )2
2I , changing variable as 

2
r riq

β
− = , ( )2

2I  becomes 

 ( )

2
2 2

0 0
2

2 4
2 3 3

2 2

e ee d d

iqrq r iqrr r
iq iqI r r

r r

β
β β

β

β β

 
− + 

− − −

− −
= − = −∫ ∫  (22) 

For the last integral of Equation (22), changing variable as r r− = , ( )2
2I  be-

comes 

 ( ) ( )
( )

2
0

0

2 2
2 3 3

2

e ed d
iqr r iqriqr

iq r
I r r

rr

β β
β

β

− + − +
−

−
= − − =

−
∫ ∫  (23) 

Because minus sign in the integrand is cancelled out, we can obtain the form 
of the last term. Then denoting r  in Equation (21) as r, ( ) ( )1 2

2 2I I−  becomes 

 

( ) ( )
2 2

0

0

2
0

0

2 2
0

0

1 2 2
2 2 3 3

2

3

0

3 30

e ed d

ed

e ed d

r iqr r iqriqr
iq r

r iqrr

r

r iqr r iqrr

r

I I r r
r r

r
r

r r
r r

β β
β

β

β

β β

− + − +

−

− +

−

− + − +

−

− = − −

= −

= − −

∫ ∫

∫

∫ ∫

 (24) 

Because of the fact that 0
2 2
iq iq
β β
= + , that is, real part of 

2
iq
β

 is 0, we can  

obtain the form of the last term of Equation (24) within the framework of com-
plex analysis. Especially, we refer to the integration contour in Ref. [11].  

Again recalling the change of variable as r r′= −  for the second term of the 
last form of Equation (24), this term becomes 

 ( )
( )

2 2
0

0

0

3 30

e ed d
r iqr r iqrr

r
r r

rr

β β′ ′ ′ ′− − − −

′ ′− =
′′−

∫ ∫  (25) 

Denoting r' as r in Equation (25), we can combine this term and the first term 
of Equation (24). 
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Then, recalling the omitting terms of 1
1A
iq

, we obtain the following form for 

( ) ( )1 2
2 2I I−  as 

 ( ) ( ) ( )
2

01 2 1
2 2 30

2 ed sin
rrAI I r qr

q r

β−

− = − ∫  (26) 

Thus, our neutral pion electromagnetic form factor is described as 

 ( ) ( ) ( )
2 2

2 0

2
2

3
4 1

1 3 30 02
2

13
2 2 ee d e d sin

2

q rrr

qr
AF q A r r qr
q rqr

β
ββ

π

β β

β

∞
−−

−

− +

= −
   +     

∫ ∫  (27) 

We obtain the form of Equation (27) as a neutral pion electromagnetic form 
factor, however, we have to check the behavior of this form when q approaches 
zero because the first term of Equation (27) looks negative at 0q →  when 0r  
goes to 0. 

To check this, taking 1q ε=   and changing variable as tan
2

r ε θ
β

= , the 

first term of Equation (27) becomes  

 ( ) ( ) ( )
1

3
21 12

0

2lim d 3 sin cosAF q
π

π θε

βε θ θ θ
β ε→

  = = −  
  

∫  (28) 

where 1θ  is a function of ε  and it becomes zero when ε  approaches zero. 
Actual form of 1θ  is determined later. 

 

( )

1

2
3 3

1 31 1
1

3 3
31 1

1

sin 4
3 32 2 24

8 16 3

3 22 2
16

A AF

A A

π

π

θ

θθβ β π θ
β ε β ε

β π β θ
β ε β ε

 
−         − = − −         

         
  

   = − +   
  

→



 (29) 

To obtain the last term, we use the fact that 1 1θ   and use Taylor expansion 
of sin function. 

From Equation (29) we notice that 1θ  should be a linear function of ε  be-
cause the second term of Equation (29) should be independent of ε . If the first 
term of Equation (29) is cancelled out by the second term of Equation (27), 

( )F qπ  would be positive at all ranges of 2q . 
For the second term of Equation (27), namely ( )2Fπ , we evaluate this term 

when q approaches 0 as follows. To do this, it is sufficient to consider only case 
of r be near 0 (q also near 0). 

 ( ) 0
3

2
1 12 300

0

1 1 1lim 2 d 2
r

i
F A r A

rr iπ εε ε+→

  → − = −     
∫  (30) 

Thus, in order to cancel out the term of 
3

13 2
16

A β π
β ε

 −  
 

, it is sufficient to set 
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this result equal to 
3

13 2
16

A β π
β ε

 
 
 

. Then, we obtain 0r  as 

 

2
3

0 22

2

1
2

i
r

πβε

πβ

 
+ 

 =
 

+ 
 

 (31) 

Note that real part of 0r  is positive and that 0r  goes to 0 at 0ε → . 
Thus our form factor described as Equation (27) actually can be considered as 

a neutral pion electromagnetic form factor. 

4. Conclusions 

In Section 3, we obtain a neutral pion electromagnetic form factor ( )F qπ  as 
follows. 

( ) ( ) ( )
2 2

2 0

2
2

3
4 1

1 3 30 02
2

13
2 2 ee d e d sin

2

q rrr

qr
AF q A r r qr
q rqr

β
ββ

π

β β

β

∞
−−

−

− +

= −
  
 +     

∫ ∫  

Because the second term of ( )F qπ  becomes zero when we take 0r  to 0 as 
definition of regularization, its behavior at large 2q  is  

 ( )

2

4

4
e

q

F q
q

β

π

−

→  (32) 

We can use this argument if the integrand of ( )2Fπ  is regular. To examine this, 
we use Tayler expansion of Gaussian and sin functions of the integrand of ( )2Fπ  
as follows. 

 

( ) ( )

( ) ( )

22
3

2 2
2

1 1In tegrand of e sin

1

rF qr
q r

q O r
r

β
π

β

− =   

= − + + +

 (33) 

Choosing 0r  as 

2
3

22

2

1
2

iπβε

πβ

 
+ 

 
 

+ 
 

 shown in Equation (31), first term is cancelled  

out by first term of ( )1Fπ  because singularity occurs at 0r = , we can use the 
same argument around from Equation (28) to Equation (31). Then, the remaining  

terms of integrand of ( )2Fπ  are regular. In addition, ( )1 sin qr
q

 approaches 0  

when q is large, then we can use the above argument.  
According to Ref. [1], the fitting function of neutral pion momentum to the 

differential cross section is a simple Gaussian. Comparing our result to their re-
sults, our form factor has an extra power function of 2q q= . 
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5. Discussion 

We obtain characteristically Gaussian-like form factor in momentum space and 
this is comparable to Jefferson Lab. results [1]. However, this is different from 
Brodsky’s results [12] and normal Lattice QCD results, namely these are 
Regge-like behavior. We do not know precise reason but we could point out that 
Holographic treatment and normal Lattice QCD reflect non-perturbative calcu-
lation of Feynman Diagram. Our path order calculation and Arriora’s linked 
quench Lattice QCD [4] do not refer Feynman Diagram. In addition, Kroll’s 
method [3], namely changing kinematics, is also different from Feynman Dia-
gram calculation. This suggests that QCD for strong interaction may not be just 
matrices extension version of QED but we need some more else.  

We would like to point out another thing that the results of Jefferson Lab [1] 
suggest. There has been no normal Lattice QCD calculation for the neutral pion 
form factor of which characteristic form is Gaussian (at least to my knowledge). 
Because the quenched Lattice QCD [4] is a linked Lattice calculation, it is differ-
ent from normal Lattice QCD calculation. In addition, in the GPD analysis, there 
have been no papers using Dyson-Schwinger equation that shows Gaussian-like 
form factor for a neutral pion (at least to my knowledge). By using kinematic  

approximation, such as 
2

B

B

x
x

ξ ≈
−

, Kroll et al. [3] succeed to realize that the  

t-dependence of cross section, usually parametrized by Regge-like profile func-
tions, is no longer valid. All these four cases are formulated in a covariant way. 
Also, Suura’s hadronic operator (our case) is not manifestly formulated in a co-
variant way, however, our results are comparable to that of Arriola’s quenched 
Lattice QCD calculation (see Figure 2 in Ref. [4]). This suggests that covariant 
way, namely, relative motion between quark and anti-quark is relativistic, is not 
the principal requirement to obtain a valid t-dependence. An important point is 
that we must figure out what is the actual physics requirement to obtain a valid 
t-dependence. 
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