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Abstract 
With the advancement of technology and the continuous innovation of ap-
plications, low-latency applications such as drones, online games and virtual 
reality are gradually becoming popular demands in modern society. However, 
these applications pose a great challenge to the traditional centralized mobile 
cloud computing paradigm, and it is obvious that the traditional cloud com-
puting model is already struggling to meet such demands. To address the 
shortcomings of cloud computing, mobile edge computing has emerged. Mo-
bile edge computing provides users with computing and storage resources by 
offloading computing tasks to servers at the edge of the network. However, 
most existing work only considers single-objective performance optimization 
in terms of latency or energy consumption, but not balanced optimization in 
terms of latency and energy consumption. To reduce task latency and device 
energy consumption, the problem of joint optimization of computation of-
floading and resource allocation in multi-cell, multi-user, multi-server MEC 
environments is investigated. In this paper, a dynamic computation of-
floading algorithm based on Multi-Agent Deep Deterministic Policy Gradient 
(MADDPG) is proposed to obtain the optimal policy. The experimental re-
sults show that the algorithm proposed in this paper reduces the delay by 5 
ms compared to PPO, 1.5 ms compared to DDPG and 10.7 ms compared to 
DQN, and reduces the energy consumption by 300 compared to PPO, 760 
compared to DDPG and 380 compared to DQN. This fully proves that the 
algorithm proposed in this paper has excellent performance. 
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1. Introduction 

Over the past two decades, the widespread popularity of mobile devices such as 
smartphones and tablets has greatly contributed to the rapid development of 
mobile applications. With the growing usage of these devices, mobile data traffic 
has shown explosive and exponential growth, which has created unprecedented 
and significant challenges to the carrying capacity and stability of global mobile 
networks. In addition, the rise of emerging technologies such as virtual reality 
(VR) and augmented reality (AR) has placed an unprecedented demand on com-
puting resources and network bandwidth. These technologies provide users with 
immersive experiences, but also necessitate high-performance hardware support 
and extensive data transmission. 

To solve these problems, Cloud Computing (CC) has emerged as an innova-
tive computing paradigm [1]. Cloud computing allows users to access a variety 
of configurable system resources such as computing resources, storage space, 
and applications over a shared network. The advantage of this model is the abil-
ity to rapidly reconfigure and deploy resources with minimal cost and service 
provider involvement. 

In order to overcome these challenges, the industry is exploring new technol-
ogical solutions such as edge computing, distributed computing and mobile cloud 
computing. These technologies aim to bring computing and storage resources 
closer to the user in order to reduce latency, increase bandwidth utilization and 
reduce energy consumption, thus providing a better user experience. 

In recent years, research on MEC has been relatively active. MEC decomposes 
and sinks a single cloud function into multiple edge servers [2], and exploits the 
change of physical location to reduce the latency of task execution processing [3]. 
Some studies simplify MEC as deploying a portion of additional resources on a 
small base station [4] [5], but do not consider the immovability of the base sta-
tion location, which makes the deployment of edge servers very restrictive. Most 
of the existing MECs are cloud-edge collaborative architectures [6], which have 
the advantages of high-speed processing on the cloud side as well as low-latency 
on the edge side [7]. For the problem of task offloading in MEC, see [8]. [8] con-
siders edge servers with unified computational capabilities and proposes a pseu-
do-online task scheduling algorithm. Zhu et al. [9] consider a joint computation 
and caching framework that aims to reduce user latency and energy consump-
tion. The authors propose a reinforcement learning algorithm based on deep 
deterministic policy gradients to implement computational offloading and task 
caching decisions for users. 

In a recent study, Bowen Yu et al. [10] proposed a mobile edge computing 
framework for ultra-dense networks. The authors developed an optimization 
model to minimize the overall energy consumption of the device and the base 
station, while satisfying the constraints of the server quality requirements of the 
application. Liu et al. [11] proposed a computational offloading model based on 
the frog-jumping algorithm. The authors considered a multi-edge multi-device 
environment and optimized the offloading decision by using the weighted sum 
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of delay and energy consumption as the optimization objective. Chen Zhao et al. 
[12] considered a UAV-assisted MEC network environment. The authors used 
multi-intelligent deep reinforcement learning to optimize the trajectory of the 
UAV and allocate resources. A parallel deep neural network solution was also 
used to optimize the energy consumption and delay of the network. The results 
demonstrate that the algorithm enables the UAV to track user movements, the-
reby significantly reducing the latency and energy consumption of the system. 

Sun et al. [13] employed Lyapunov optimization to decompose the task of-
floading and resource allocation problem into multiple sub-problems. The au-
thors proposed an online energy-efficient task allocation and computational of-
floading strategy that considers dynamic wireless conditions and delay con-
straints. Zhou et al. [14] proposed a multi-population collaborative elite algo-
rithm based on a genetic algorithm. The authors constructed a directed acyclic 
graph model of the end-user’s application to facilitate task offload scheduling, 
with the objective of minimizing the delay and energy consumption of the pro-
gram. Chen et al. [15] proposed a deep reinforcement learning algorithm based 
on DDPG. The authors pruned, compressed and retrained a deep neural net-
work using filter pruning and tensor decomposition, and subsequently applied 
the trained neural network model to the DDPG algorithm with the objective of 
minimizing user energy consumption and total delay. 

Zhao et al. [16] have investigated a task offloading strategy for UAV-assisted 
edge computing environments. The authors minimize the sum of execution de-
lay and energy consumption as an optimization objective. They then design 
UAV trajectory, task assignment and communication resource management to 
solve the task offloading problem. Finally, they propose a twin-delay depth de-
terministic policy gradient algorithm based on twin-delay depth to obtain the 
global optimal policy. Tong et al. [17] propose a potential game and Lagrange 
multiplier hair-based scheme for offloading end-user tasks and allocating com-
putational resources to MEC servers deployed on near-orbital Earth satellites in 
a star-Earth network environment. 

Yeganeh et al. [18] proposed a Q-Learning scheduling strategy for task of-
floading. The authors implemented offloading and resource scheduling for MEC 
with minimizing execution time and energy consumption as optimization objec-
tives. Zaman et al. [19] proposed a lightweight mobility prediction and offload-
ing framework to overcome the user’s mobility problem during task delivery. 
The authors proposed a server selection algorithm based on a multi-objective 
genetic algorithm to jointly optimize the latency and energy consumption and 
resource utilization efficiency of MEC servers. Wu et al. [20] proposed a deep 
reinforcement learning-based online task scheduling algorithm for online task 
offloading. The authors considered setting the edge nodes as public and private 
nodes. 

2. System Modelling and Problem Description 

This paper first introduces the system architecture from the perspective of 
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communication, computation and energy consumption, including communica-
tion model, computation model and energy model, and then gives the problem 
description. 

2.1. System Modelling 

Figure 1 illustrates the multi-cell, multi-user, multi-server MEC system envi-
ronment constructed in this study. The system consists of FNV controllers, end 
users, base stations and MEC servers deployed at the base stations. Each 
end-user in this MEC system periodically generates tasks. The FNV controller is 
the control centre of the cell MEC system and can monitor the resources of the 
MEC in that cell. MECs have more computing power than end users. The MEC 
server of a cell can make further requests to the FNV servers of other cells to be 
executed by the MEC servers of other cells and cannot be offloaded to the MEC. 
 

 
Figure 1. MEC system model with multi-cell, multi-user and multi-MEC servers. 

 
1) Communication models 
In the system model constructed in this research, the decision cycle is divided 

into a number of time slots t, where t T∈ , [ ]1,2, , maxT T= � . All MEC servers 
in a cell can provide services to the users in the cell, but each end-user can only 
send tasks to one MEC server per time slot. The coordinates of the end users are 
defined as ( )

, , ,
,

i j i j i ju u uL t x y =    and the coordinates of the MEC servers are de-
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fined as 
, , ,

,
i k i k i kMEC MEC MECL x y =   . The system has s cells with b end users and m 

MEC servers in each cell. In this paper it is assumed that the location of the end 
users within the cell is random, but the MEC servers in the cell are fixed. 

This study considers the use of Orthogonal Frequency Division Multiple 
Access (OFDMA) to implement the communication between users and MEC 
servers, and the MEC server links between different cells are connected by opti-
cal fibres. Next, assume that the kth MEC server is selected for the task. Accord-
ing to Shannon's formula, terminal ,i ju  transmits the task at a rate of 

( ) , ,
, 2

2
,

,

,
1,

log 1
u
i j i j

i j b
u
i

i j

c i c
c c j

p h
Rate t W

p h σ
= ≠

 
 
 = +
 + 
 

∑
             (1) 

where W is the bandwidth of the subchannel, ,
u
i jp  and ,

z
i jh  are the received 

power and channel gain of the device in the channel, respectively. σ  is Gaus-
sian noise. 

The communication link in the system is assumed to be a line-of-sight link 
channel control, the channel gain can be expressed as: 

( )
, ,

,
,

i k i j

up
z

M
i

uEC

i j
j

P

L L
h

t
=

−
                        (2) 

1) Computational modelling 
A partial offloading model is considered in this study. The user offloads part 

of the computational tasks to the MEC server and further to other cells accord-
ing to the offloading policy. Meanwhile, due to the use of optical fibre transmis-
sion between MEC servers, which has a high transmission rate that can reach 
201.6 Gbps [15]. The system model in this study ignores the task backhaul delay 
and the inter-cell data transmission delay. It is assumed that the task selects the 
kth MEC server for offloading. The key components of the system experiment 
during offloading can be calculated as follows: 

1) The time taken by the end user to transmit the task to the MEC server; 
2) The time delay for the end user to process the task; 
3) The time delay for the MEC in that cell to process the task; 
4) The time delay for MECs in other cells to process the task. 
The time at which the end user transmits the task to the MEC server can be 

expressed as 

( )
( )( ) ( )

( )
,

,

,
,

1 rm
i j i jt a

j
i

r
i

j

R t c t

Rate
T t

t

−
=                       (3) 

where ( ),i jc t  denotes the size of the task generated by the end user. ( ),
rm
i jR t  

denotes the end-user offload rate. 
The end user processing delay is can be denoted as: 

( )
( )( ) ( ),

,
,

1 rm i jL
i j L

i j

R t c t z
T t

f
−

=                      (4) 
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where z is the required calculation frequency per task unit. ,
L

i jf  is the computa-
tion frequency of the user. 

The delay of this cell MEC processing task can be expressed as 

( )
( )( ) ( ) ( )

( )
, , ,

, ,
, ,

1 rs rm
i j i j i j

i j v
i j i k

R t R t t
T t

t

c z

fθ
=

−
                 (5) 

where ( ),i j tθ  denotes the proportion of computational resources of the MEC 
server to which the user is assigned, and ,i kf  the computational frequency of 
the MEC to which it is assigned. ( ),

rs
i jR t  denotes the proportion of tasks trans-

mitted to other cells. 
The delay of the MEC server in the other cell to process the task can be ex-

pressed as: 

( ) ( ) ( ) ( )
( )

,
, ,

, ,

rs rm i j
i j ov

i l i k

t tR R c t
T t

t fθ ′
=                      (6) 

where ( ),i l tθ ′  denotes the proportion of computing resources allocated to the 
task by MECs in other cells. 

In this paper, it is assumed that the MEC server can only execute the task after 
the transmission is completed. At the same time, the transmission task starts 
when the end device starts executing the local task. At this time, the delay of 
each task is the maximum of the end-user computational delay, the computa-
tional delay of the MEC server and the transmission delay, which can be ex-
pressed as: 

( ) ( ) ( ) ( ) ( )( ), , , , , , ,max , ,L tra
i j i j i j i j v i j ovT T T Tt t t t T t= +              (7) 

2) Power model 
The battery capacity of the MEC Server is indicated as ,

battery
i kE . The MEC 

server consumes energy when serving end users and can be recharged with a 
charging efficiency of ,

charge
i kE . Suppose the task selects the kth MEC server for 

offloading. The main components of the power consumption are as follows 
1) Energy consumed by the end user 
2) Energy consumed by the MEC server in the cell 
3) Power consumed by other MECs in the cell 
4) Power consumed by task transfer to the MEC server 
5) Energy consumed when the MEC receives the task. 
The energy consumption of the end user can be expressed as 

( ) ( ), , ,
L L

i j i j i
L

jP tTE t =                              (8) 

where ,
L

i jP  denotes the power of the end user. 
The energy consumption of the MEC server in this cell can be expressed as: 

( ) ( ), , , , , ,i j v i k v i j vt P T tE =                           (9) 

where , ,i k vP  denotes the power of the selected MEC. 
The energy consumption of the task transfer to the MEC server can be ex-

pressed as: 
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( ) ( ),
, , ,
tra up tra
i j i j

up
i jE t P T t=                           (10) 

where ,
p

i j
uP  denotes the transmission power of the end user. 

The energy consumption at the time of MEC receiving task can be expressed 
as: 

( ) ( ),
, , ,
tra down tra
i j i k i

own
j

dE t P T t=                          (11) 

In terms of the MEC charging model, the residual of MEC at moment t can be 
expressed as: 

( )
( ) ( )

( )
, , ,

,
, , ,

,

,

v v battery
i j i j i kr

i k battery battery v
i k i k i j

E t E t E
E t

E E E t

      ≤= 
     >

                     (12) 

Among others, 

( ) ( ) ( ) ( ),
, , , , , ,1 1v r tra down charge

i j i k i j i j v i kE t E t E t E Et− − += − −            (13) 

In summary, the total energy consumption of this system can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( ), ,
, , , , , , ,

1 1

s b
tra down tra up
i j i j i j ov i j v i j

L

i j
E t E t E t E t E t E t

= =

+ + + += ∑∑       (14) 

3) MEC storage model 
In this paper, we consider a type of MEC server with limited memory re-

sources. However, the offload rate of tasks transmitted from other users to other 
cells is 0. Therefore, the residual power of the MEC at time slot t can be ex-
pressed as follows: 

( )
( ) ( )

,
,

, , ,

,

,

memory
i kr

i k r r memory
i k i k i k

M

M M t M
M t

t

= 
    ≤

               (15) 

Among others, 

( ) ( ) ( )( ) ( ) ( ), , , , , , ,
1

1 1
b

r r rs rm
i k i k i j i j i j i j i k

j
M t M t R t t tR f stc θ

=

= − +− − ∑       (16) 

2.2. Problem Description 

In this paper, we study the optimisation objective of minimising the weighted 
sum of the system energy consumption and the average delay of the users. The 
joint optimisation problem can be expressed as: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

, , , , , ,
1

, , ,,
2

, ,
min

m rs ism iss
i j i j i j i j i j i jR Rt t R t t t t t TR

E t T t
θ θ

ρ ρ
′  ∈

+∑            (17) 

[ ] ( )
, , ,s.t. ,

i ju max x max yL LL t   0, ≤0 ≤                   (18) 

( ), ,0 r battery
i k i kE t E≤≤                        (19)

 
( ) ( ) ( )1 , , 0 1ism ism rmt m R t RRR t≤ ≤   ∈     ≤ ≤                (20)

 
( ) ( ) ( )1 , , 0 1iss iss rst tR ts R R R≤ ≤   ∈     ≤ ≤                (21) 

( ), ,0 r memory
i k i kt MM ≤≤                      (22) 
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( ) ( ), ,
1

0 1, 1i j i

b

j
jt tθ θ

=

≤ ≤ ≤∑                    (23) 

( ) ( )
1

, ,0 1, 1j i j

b

j
i t tθ θ

=

′≤′≤ ≤∑                    (24) 

( ) ( ), , ,i j i j maxt T tT ≤                        (25) 

where Equation (18) indicates that the location of the user in the cell cannot ex-
ceed the range of that cell, and Equation (19) indicates the energy limit of the 
MEC. Equation (20) indicates that the offloading rate is between 0 and 1 and the 
number of offloaded MECs cannot exceed the number of MEC servers in the cell. 
Equation (21) indicates that the offload rate is between 0 and 1 and the number 
of offloaded cells cannot exceed the total number of cells. Equation (22) indi-
cates a range of memory resources for the MEC server. Equation (23) denotes a 
range in which the sum of the allocation ratios of the arithmetic resources and 
the ratios cannot exceed 1. Equation (24) represents a range where the sum of 
the allocation ratios of the arithmetic resources to the tasks passed from other 
cells cannot exceed 1 as well as the ratio. Equation (25) indicates that the delay of 
the task cannot exceed the maximum delay that the user can receive. After many 
experiments, 1 0.53ρ = , 2 0.007ρ =  can better guide the model to find the op-
timal policy. 

3. MADDPG-Based Dynamic Computational Offloading  
Algorithm 

This study proposes a dynamic computational offloading algorithm based on 
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to obtain the op-
timal policy. The algorithm will be described in detail in the following section. 

3.1. Markov Decision-Making Process 

The process of determining the optimal offloading strategy is modelled as an 
MDP problem in this study. The DRL algorithm is then employed to identify the 
optimal optimization strategy. The state space, action space and reward of the 
Markov decision process are presented in the subsequent section. 

State space: the amount of tasks ( )c t  and the location ( )uL t  of the user for 
each cell user in the cell, the remaining power ( )rE t  and the storage resource 

( )rM t  of the MEC as the current state. Thus the state space can be represented 
as Equation (26): 

( ) ( ) ( ) ( ) ( ) ( ){ },, , , ,r
iu

r
ks t c t L t E t M Mt t=               (26) 

Action space: this study considers offloading to a specific MEC server ( ),
ism
i jR t , 

offloading rate ( ),
rm
i jR t , whether to further offload to MEC servers ( ),

ism
i jR t  and 

offloading rate ( ),
rm
i jR t  in other cells as the actions of the intelligences. There-

fore the action space can be expressed as Equation (27): 

( ) ( ) ( ) ( ) ( ){ }, , , , ,, , ,ism rm iss rs
i j i j i j i j i jta R R Rt t Rt t=               (27) 
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Reward: The optimization objective of this study is to minimize the weighted 
sum of the total delay ( )T t  and the total energy consumption ( )E t . The re-
ward can be expressed as follows. Therefore the reward can be expressed as fol-
lows Equation (28). 

( ) ( ) ( )( )1 2r Et t T tρ ρ+= −                        (28) 

where, 1ρ  and 2ρ  denote the weights of energy consumption and delay re-
spectively. 

3.2. Resource Distribution 

In this study, MEC server resources will be allocated after computational of-
floading. Effective allocation of resources can optimize the performance of the 
MEC system. This study considers the allocation of arithmetic resources. 

The allocation of arithmetic resources refers to the allocation of arithmetic 
resources uploaded to the MEC server under the management of the NFV con-
troller, with the main purpose of more fully meeting the needs of end users. The 
main purpose of the allocation of arithmetic resources is to reduce the processing 
delay of the user, and this study assumes that a user will only use one channel 
within a timestamp. Derivation of ,i jθ  in , ,i j vT  shows that: 

( )( ) ( ) ( ), , ,, ,

, , ,

1 rs rm
i j i j i ji j v

i j i j i k

t t cR RT t

fθ θ

−
−

∂
=

∂
                     (29) 

It can be seen in the derivation of the above equation: 

( )( ) ( ) ( )2
, , ,, ,

2
, , ,

3

1
2 0

rs rm
i j i j i ji j v

i j i j i k

tR R t

f

cT t

θ θ

−
=

∂

∂
≥                   (30) 

Since ( ),
rs
i jR t , ( ),

rm
i jR t , ,i kf  and ,i jθ  are all greater than 0, it follows that 

the user can only pair the resources of one channel in a given timestamp. Con-
sequently, the Hesse matrix of channel resources at that moment is positive de-
finite. The optimal arithmetic resource allocation can be solved by Lagrange 
Multiplier Method as follows. 

( )( ) ( ) ( )

( )( ) ( ) ( )

, , ,*
,

, ,
1

,

1

1

rs rm
i j i j i j

i j
rs rm
i j

m

i
i j i j ov

R Rt t c t

tR R st c t
θ

=

−
=

− +∑
               (31) 

The optimal arithmetic allocation for tasks transmitted from other cells is thus 
determined: 

( )( ) ( ) ( )
*

, , ,
1

1

ov

rs rm
i j i j i j ov

ov m

i
t t c t

s

R R s
θ

=

=
− +∑

               (32) 

In this context, the symbol ovs  represents the size of the task assigned to the 
kth MEC from other cells. 

3.3. MADDPG-Based Dynamic Computational Offload Algorithm 

One of the main reasons why traditional reinforcement learning methods are 
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difficult to apply to multi-intelligent body environments is that the strategy of 
each intelligent body is constantly changing during the training process, leading 
to an unstable environment for each individual intelligent body. MADDPG [21] 
is a reinforcement learning algorithm designed for multi-intelligent body sys-
tems. It extends DDPG for environments where multiple intelligences are present 
simultaneously. The learners of each intelligence share the experience playback 
buffer and use the strategies of other intelligences to assist in decision making, 
resulting in an overall collaborative behaviour. MADDPG uses a strategy of cen-
tralised training and decentralised execution in the training process. 

In MADDPG, the actions of the intelligences affect the state transfer of the 
environment so that the state transfer function can be described as 

( )1 1 2, , , ,t Nts a af s a+ = �                        (33) 

The reward function of MADDPG can be formulated as follows: 

( )1 2, , ,,i
t i t Nr R a a as= �                        (34) 

where A denotes the reward given to, the ith intelligent in the tth timestamp, 
and B denotes the reward function of the intelligent. 

The value function of MADDPG can be expressed as: 

( )1 2, , , ,i t NQ s a a a�                            (35) 

3.4. MADDPG-Based Dynamic Computational Offloading  
Algorithm 

Algorithm 1 is a dynamic computational offloading algorithm based on MADDPG. 
 

Algorithm 1. MADDPG-based dynamic computational offloading algorithm. 

MADDPG-based joint offloading algorithm (MADDPGDCO algorithm) 

1: Input: initial position of MEC 
,i kMECL ,initial power ( ),

v
i jE t ,initial amount of data for 

computational task ( ),i jc t  

2: Initialisation: actor network parameters target
πθ  and critical network parameters Qθ  

for all intelligences 
3: Initialisation: target network parameters target

πθ  and Q
targetθ  

4: Set learning rate πα  and Qα  
5: Set experience playback buffer D 
6: Set batch size batch_size 
7: Set γ  as discount factor 
8: Set the exploration noise parameter 
9: For each episode: 
10: For each time step t: 
11: For each intelligence i: 
12: Use actor network to select action ( ) ( ) ( ) ( ) ( ){ }, , , , ,, , ,ism rm iss rs

i j i j i j i j i ja t R t R t R t R t=  based on 

current observation ( ) ( ) ( ) ( ) ( ) ( ){ },, , , ,r
iu

r
ks t c t L t E t M Mt t= , according to policy θπ  

13: If ( ), 0ism
i jR t ==  then 
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Continued 

14: Calculate the delay of the task according to Eq. ( )
( )( ) ( ),

,
,

1 rm i jL
i j L

i j

t t z
T t

f
R c−

=  and 

( ) ( ), , ,
L L

i j i j i
L

jP tTE t =  and the offloading rate A is 0. Calculate the reward value according to 

Equation (28). 
15: else if ( ), ! 0ism

i jR t =  

16: if ( ), 0iss
i jR t ==  then 

17: Calculate the delay and energy consumption of the task according to 

( ) ( ) ( ) ( ) ( )( ), , , , , , ,max , ,L tra
i j i j i j i j v i j ovT t T t T t T t T t+=  and 

( ) ( ) ( ) ( ),
, , , , , ,1 1v r tra down charge

i j i k i j i j v i kE t E t E E t Et − − += − − . 

18: else 
19: Assign to run in the corresponding MEC server and calculate the energy consumption 
and delay of the task according to equation 

( ) ( ) ( ) ( ) ( ) ( ), ,
, , , , , , ,

1 1

s b
tra down tra up
i j i j i j ov i j v i j

L

i j
E t E t E t E t E t E t

= =

+ + + += ∑∑  and equation  

( ) ( ),
1 1

i j

s b

i j
T t T t

= =

= ∑∑ . 

20: Send the action to the environment, obtain the reward ,i jr  by equation (3) and find 

the next state ( )1s t +  

21: Store the observation, action, reward, and next state of each intelligence in the expe-
rience replay buffer D 
22: If the size of the experience playback buffer D is larger than the batch size batch_size: 
23: For each intelligence i: 
24 Draw a random batch sample ( ) ( ) ( ) ( ){ }, ,, , , 1i j i js t a t r t s t +  from D 

25: Calculate the target value 
26: Update the critical network parameters Qθ  to minimize the loss  

( ) ( )( )( ),

2

,, ,i j i j
QL y sQ t a t θ−=  

27: Update actor network parameters using gradient descent algorithm πθ  
28: Update target network parameters: 
29: ( )1target target

π π πθ τθ τ θ= + −  

30: ( )1Q Q
target target

πθ τθ τ θ= + −  

31: Output: optimal policy 

 
In this algorithm, the environment first interacts with each intelligence, and 

then the environment allocates tasks based on the actions returned by the intel-
ligences. After all the intelligences have generated actions, the computational 
resources for different tasks are allocated based on the size of the tasks that are 
offloaded to the MEC server. Finally, the reward for each task is obtained. 

4. Simulation Results and Analyses 

This paper presents a series of simulation results that validate the advantages of 
the MADDPGDCO algorithm proposed in this study in comparison to the base-
line algorithm used for simulation. The algorithm and simulations proposed in 
this study are written and implemented in the Python language. The environ-
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ment used for simulation is PyCharm Professional 2022.3.3. In the paper, simu-
lation experiments are carried out using the Python language through the Ana-
conda platform. Three square edge computing service networks with a length 
and width of 500 are simulated. The parameters required for the experimental 
simulation environment are shown in Table 1, while the parameters in the net-
work are set out in Table 2. 

4.1. Simulation Settings 

In this study, the following schemes will be used as baseline algorithms for com-
parison tests: 

1) Proximal Policy Optimization (PPO) algorithm 
2) Deep deterministic policy gradient algorithm 
3) Deep Q-network 
 

Table 1. Major environmental parameters. 

Parameter name Parameter setting 

Number of cells s 3 

Number of users per cell 20 

Maximum bandwidth for a single channel 20 MHz 

Maximum power of the MEC server 1000 Wh 

Total amount of memory of the edge computing server 8 GB 

Upload power of end users 16 W 

Maximum amount of data generated by users for a single task 2 GB 

Noise index 9 dB 

Computing frequency of end users 2 GHz 

Computing frequency of edge computing server 4 GHz 

End-user processing power 20 W 

Edge computing server processing power 40 W 

Edge computing server receive power 10 W 

 
Table 2. MADDPGDOC network training parameters. 

Parameter name Parameter setting 

Experience pool size 1e6 

Batch size v 256 

Activation function Tanh 

Optimizer Adam 

Actor network learning rate 1e−4 

Critic network learning rate 1e−4 

Discount factor 0.99 

Update step size 10 

Hidden layer size z 256 

Number of training rounds e 500 
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The parameters required for the experimental simulation environment are 
shown in Table 1 and the parameters in the network are set in Table 2. 

4.2. Simulation Results 

This paper presents a series of simulation results to demonstrate the advantag-
es of the MADDPGDCO algorithm proposed in the study. Firstly, the study 
explores the proportion of task offloading allocated to other cell MECs in the 
optimization strategy of the algorithm. Secondly, the simulation compares the 
MADDPGDCO algorithm proposed in this paper with the baseline algorithm 
used in the simulation in terms of delay, energy consumption and reward. 

Firstly, the simulation studies the ratio of different task-based cell offloading 
and different cell offloading under this algorithm. As shown in Figure 1, the al-
gorithm proposed in this paper fully achieves the joint offloading of MEC serv-
ers in different cells. From Figure 2, it can be seen that the MADDPGDCO al-
gorithm proposed in this paper can effectively enable the MECs in different cells 
to process the tasks. 

 

 

Figure 2. Proportion of tasks synergistically offloaded. 
 

Secondly, the simulation examines the performance of delay, energy consump-
tion and reward under different schemes. Figure 3 illustrates the delay of different 
schemes after convergence. It can be observed that the average delay is approx-
imately 9.5 ms for MADDPGDCO, 14.5 ms for PPO, 11 ms for MADDPGDCO 
and 20.2 ms for DQN. 

Figure 4 illustrates the energy consumption of different schemes following 
convergence. It can be observed that the average energy consumption of 
MADDPGDCO is approximately 600 units, PPO is approximately 900 units, 
DDPG is approximately 760 units and DQN is approximately 980 units. 

Figure 5 illustrates the comparative reward outcomes between MADDPGDCO 
and the baseline algorithm. The reward plots for training with different scena-
rios demonstrate that MADDPGDCO outperforms the baseline algorithm. 
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Figure 3. Comparison of latency of MADDPGDCO with baseline 
algorithm. 

 

 

Figure 4. Comparison of energy consumption between MADDPGDCO 
and baseline algorithm. 

 

 

Figure 5. Comparison of MADDPGDCO and baseline algorithm 
rewards. 
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5. Conclusions 

In this paper, we address the problem of joint optimization of task offloading 
and resource allocation for multi-cell, multi-user and multi-server. First, this 
paper provides a detailed analysis of channel resource allocation and determines 
the optimal channel allocation scheme. In terms of computational offloading, 
this paper works on minimizing the weighted sum of energy consumption and 
delay as the optimization objective. To achieve this objective, the following pa-
rameters are co-optimized: the specific MEC servers to offload to, whether to of-
fload further to MEC servers in other cells, the offload rate, and the ratio of 
arithmetic resource allocation. The co-optimization of these parameters aims to 
develop an efficient offloading strategy. In order to evaluate the performance of 
the proposed algorithm, the method in this paper is compared with other delay 
calculation methods. The experimental results show that the algorithm proposed 
in this paper reduces the delay by 5 ms compared to PPO, 1.5 ms compared to 
DDPG and 10.7 ms compared to DQN, and reduces the energy consumption by 
300 compared to PPO, 760 compared to DDPG and 380 compared to DQN, 
which fully proves that the algorithm proposed in this paper has excellent per-
formance. 

Although the algorithm proposed in this paper has a great advantage over the 
baseline algorithm, the algorithm proposed in this paper cannot adapt to the 
situation where the number of end users changes or the end users moves to oth-
er cells while uploading the task, and there are some limitations. 
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