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Abstract 
Digital image forgery (DIF) is a prevalent issue in the modern age, where ma-
licious actors manipulate images for various purposes, including deception 
and misinformation. Detecting such forgeries is a critical task for maintaining 
the integrity of digital content. This thesis explores the use of Modified Error 
Level Analysis (ELA) in combination with a Convolutional Neural Network 
(CNN), as well as, Feedforward Neural Network (FNN) model to detect digi-
tal image forgeries. Additionally, incorporation of Explainable Artificial Intel-
ligence (XAI) to this research provided insights into the process of decision- 
making by the models. The study trains and tests the models on the CASIA2 
dataset, emphasizing both authentic and forged images. The CNN model is 
trained and evaluated, and Explainable AI (SHapley Additive exPlanation— 
SHAP) is incorporated to explain the model’s predictions. Similarly, the FNN 
model is trained and evaluated, and XAI (SHAP) is incorporated to explain 
the model’s predictions. The results obtained from the analysis reveals that 
the proposed approach using CNN model is most effective in detecting image 
forgeries and provides valuable explanations for decision interpretability. 
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1. Introduction 

Digital image forgery, also known as image tampering, involves manipulating a 
digital image to deceive the viewer into believing that the image is authentic. The 
rapid advancement of digital imaging technologies in recent years has made it 
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easier than ever to manipulate and alter digital images. The prevalence of image 
editing software and the effortless dissemination of digital content have ampli-
fied the challenge of digital image manipulation in the current digital era [1]. 

1.1. Overview of the Research 

This research proposes a noble approach to digital image forensics, combining 
traditional ELA techniques with advanced deep learning models like CNNs or 
FNNs [2] [3]. This combination is further enhanced by XAI to ensure transpa-
rency and trust in the detection process [3]. By addressing the need for robust 
IFD methods, this research holds the potential to safeguard against the harmful 
consequences of image forgery across various domains [4] like journalism, law 
enforcement, content verification, and digital forensics by ensuring the authen-
ticity of images and supporting investigations with reliable evidence. 

1.2. Literature Review 

Detecting digital image forgeries is vital in image forensics, achieved through a 
blend of ELA and advanced Deep Learning models such as CNNs or traditional 
neural networks like FNNs, supplemented by Explainable Artificial Intelligence 
(XAI) techniques. ELA scrutinizes error levels to unveil tampering, while CNNs 
offer superior capabilities in detecting various forms of image manipulation 
compared to traditional methods. The integration of ELA with CNNs or FNNs 
has led to robust and efficient forgery detection systems. Additionally, XAI tech-
niques enhance interpretability, facilitating a deeper understanding of the detec-
tion process. 

Huang et al. [5] pioneered an innovative IFD approach that combines convo-
lutional long short-term memory (ConvLSTM) and CNNs, which demonstrated 
exceptional effectiveness, reaching a 99.2% accuracy rate on the CASIA image 
forgery dataset. 

Pan et al. [6] propose a powerful forgery detection method, combining ELA to 
pinpoint manipulated image regions and metadata analysis to uncover inconsis-
tencies, effectively detecting diverse forgery techniques like copy-move, splicing, 
and inpainting. 

Chen et al. [7] evaluated the ELA-CNN model for image forgery detection, 
demonstrating its superiority to other advanced methods on a public dataset. 
This suggests ELA-CNN’s effectiveness and potential for accurate forgery detec-
tion. 

Li et al. [8] extensively investigated image forgery methods employing various 
deep learning architectures to assess their efficacy in identifying forged images. 

XAI techniques enhance the transparency and trustworthiness of deep learn-
ing models in image forensics by improving their understandability and inter-
pretability [4] [9]. 

Huang et al. [5] introduced a novel approach to detect image forgery through 
a hybrid model, merging ConvLSTM and CNN. The ConvLSTM captures tem-
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poral features from image sequences, while the CNN extracts spatial features 
from image frames. Their model surpasses existing methods on a public dataset 
of forged images. 

He et al. [2] and Huang et al. [10] conducted comprehensive surveys on image 
forgery detection methods utilizing deep learning. Their studies offer insights 
into the strengths and limitations of different CNN and FNN architectures for 
detecting image forgery. 

Various CNN and FNN architectures, including ResNet, VGGNet, DenseNet, 
AlexNet, and LeNet-5, have been explored for image classification tasks. CNNs 
like ResNet, VGGNet, and DenseNet have gained popularity for their effective-
ness in capturing spatial features from images, while FNN architectures like 
AlexNet and LeNet-5 offer versatility across diverse tasks by adjusting parame-
ters. Despite CNNs generally outperforming FNNs in image classification due to 
their spatial feature extraction capabilities, FNNs remain versatile across differ-
ent tasks compared to CNNs, which are specifically crafted for image-related 
tasks. 

1.3. Objectives 

Despite progress in image forgery detection, there are significant gaps in inte-
grating Error Level Analysis (ELA) with deep learning models like CNNs and 
FNNs, and in employing Explainable Artificial Intelligence (XAI) in image fo-
rensics. This study introduces a noble framework that combines ELA and deep 
learning models to enhance transparency and interpretability in detecting image 
forgeries. 

The primary objective of this thesis is to develop an image forgery detection 
framework that combines modified ELA, CNN, FNN, and Explainable AI (SHAP). 
Specifically, the objectives include: 
• To implement modified ELA for image forgery detection. 
• To design, train, and validate CNN model and FNN model for image classi-

fication. 
• To integrate XAI using SHAP to interpret the decisions of the models. 
• To evaluate and compare the performance of modified ELA, CNN and FNN 

along with SHAP in image forgery detection. 

2. Model Design and Implementation 

Deep convolutional neural network (CNN) models have excelled in image classi-
fication tasks, notably surpassing other methods in challenges like the ImageNet 
challenge [11] [12] [13]. This success stems from training these networks on ex-
tensive datasets containing millions of images. Notably, pre-trained weights of 
various models are accessible through platforms like Keras, serving as an open 
resource for researchers. This availability facilitates transfer learning, enabling 
the application of knowledge gained from solving one problem to similar tasks, 
thereby enhancing the efficiency of subsequent endeavors. The following diagram  
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Figure 1. Proposed framework. 
 

(Figure 1) illustrated the proposed framework of this research. 
The proposed model acquire data from a dataset which contains both authen-

tic and forged images. Subsequently these data are preprocessed with modified 
ELA algorithm. Preprocessing contains image classification, segmentation and 
denoising. Through preprocessing, two subsets named as training subset and va-
lidation subset are generated. These data are transferred to the models (CNN 
model and FNN model) for training, validation and evaluation. The results ob-
tained through evaluation; the results are transferred to SHAP explainer. Finally, 
the results generated from SHAP explainer are compared to decide the best 
model for detecting image forgeries. The process and relevant topics are de-
scribed in the subsequent phases of this paper. 

2.1. Data Acquisition 

The process of collecting and preparing data for analysis is referred as Data ac-
quisition [14] [15]. It involves identifying the sources of the data, collecting the 
data, cleaning and preprocessing the data, and storing the data in a format that is 
accessible and usable for analysis [16]. To collect data for this research, the 
CASIA 2.0 Image Tampering Detection Dataset was used [13]. 

The methodology entails fine-tuning the model by training the entire network 
with pre-processed images from the CASIA2.0 dataset [13], which contains both 
original and tampered images. Standardization involves resizing all images to 
224 × 224 pixels and dividing the dataset into training and test subsets. These 
subsets categorize images as authentic or forged. Preprocessing includes norma-
lization and evaluating compression-induced errors. CNN architecture, aided by 
ELA [17], discerns authentic from forged images, with XAI using SHapley Addi-
tive exPlanations (SHAP) [3] [9] [18] to elucidate predictions. The outcomes of 
training, testing, and prediction processes determine the superior architecture 
for image forgery detection. 

2.2. Preprocessing with Error Level Analysis (ELA) 

Preprocessing, a crucial step in image processing and computer vision applica-

https://doi.org/10.4236/jcc.2024.126009


Md. M. Hasan et al. 
 

 

DOI: 10.4236/jcc.2024.126009 139 Journal of Computer and Communications 
 

tions like forgery detection, recognition, and classification, involves preparing 
image data for subsequent processing stages such as feature extraction and anal-
ysis, aiming to enhance image quality and extract relevant information. Error 
Level Analysis (ELA), developed by Neal Krawetz [17], detects image forgery by 
analyzing errors introduced during image compression, highlighting regions 
where manipulation likely occurred. Adjustments made during code implemen-
tation of the basic algorithm significantly improved forgery detection. The mod-
ified algorithm is as follows Table 1: 
 
Table 1. Modified Error level analysis. 

1 Open the original image. 

2 
Try to save the original image with the specified quality. If the save is unsuccess-

ful, convert the image to RGB and try to save it again. 

3 Open the temporary image. 

4 
Calculate the absolute difference between corresponding pixels in the original 

and temporary images. 

5 Apply a scaling factor to the absolute difference image. 

6 Close the temporary image. 

7 Return the scaled absolute difference image. 

 
The flow diagram of the modified algorithm is as follows (Figure 2): 
 

 

Figure 2. Flow diagram of modified ELA algorithm. 
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The modified algorithm enhances efficiency and robustness by addressing 
memory leaks through proper closure of temporary images and eliminating un-
necessary loops. Pre-processing with modified Error Level Analysis (ELA) pre-
pares images by emphasizing regions with differing compression levels [19], aid-
ing in the extraction of various image characteristics like texture, edges, and 
corners. This method enhances the efficiency of tasks such as image classifica-
tion, segmentation, and denoising. 

The major differences between the original algorithm and the modified algo-
rithm are the modified one prevents memory leaks by closing the temporary 
image and also avoids unnecessary loops. Moreover, the modified ELA algo-
rithm provides more consistency than the traditional one during image han-
dling, which helps maintain a more accurate reference for comparison. Tradi-
tional ELA algorithm performs redundant image conversion, which adds more 
computation time than that of modified ELA algorithm. Thus, the modified im-
plementation becomes more efficient and robust. 

2.3. Convolutional Neural Network (CNN) 

CNNs, tailored for image and video analysis, mimic human visual processing 
and excel at identifying complex patterns [12] [20]. They typically consist of 
convolutional layers for feature extraction, pooling layers for spatial resolution 
reduction while retaining vital information, and fully connected layers for merging 
extracted features to produce final outputs like classification labels or segmenta-
tion masks [21] [22] [23] [24] [25] (illustrated in Figure 3). Convolutional layers 
slide small filters over input images to extract features, generating feature maps 
[21]. Pooling layers reduce computational load and prevent overfitting by de-
creasing feature map resolution [21]. Fully connected layers integrate extracted 
features to generate final outputs [21]. 

 

 

Figure 3. Generic representation of CNN architecture. 
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The training process of a CNN is governed by several crucial hyperparame-
ters. These include: 
• Learning Rate: The learning rate dictates the magnitude of adjustments made 

to the CNN’s weights during the optimization process. A higher learning rate 
accelerates the CNN’s learning process but also increases the risk of overfit-
ting the training data. 

• Batch Size: The batch size is the number of training examples that the CNN 
updates its parameters on at each step of training. A larger batch size may 
enhance training efficiency, it can also increase the probability of overfitting 
the training data. 

• Number of Epochs: The number of epochs determines how many times the 
CNN model processes the training data throughout the training phase. More 
epochs can lead to better performance, but they also take longer to train. 

• Optimizer: The optimizer is a method that changes the CNN’s parameters 
during training. Adam and SGD are two popular optimizers. 

• Loss Function: The loss function calculates the error between the predicted 
output of the CNN and the true output. Two most common loss functions 
are: Cross-Entropy Loss and Mean-Squared Error. 

• Batch Normalization: Batch normalization is utilized to stabilize and acce-
lerate the training of the CNN model. It standardizes the inputs of each layer, 
leading to faster convergence and improved generalization. 

2.4. Feedforward Neural Network (FNN) 

FNN, an artificial intelligence model composed of interconnected neurons, con-
sists of input, hidden, and output layers [26] [27] [28]. Neurons within an FNN 
compute weighted sums of inputs and apply activation functions like sigmoid or 
ReLU to generate outputs. During training, FNN weights are optimized to mi-
nimize the loss function, evaluating prediction performance [26]. The FNN 
model comprises of the Input Layer receives data, while the Hidden Layers 
process and learn complex relationships, and the Output Layer produces final 
network output, varying in neuron count based on problem type [29]. A simple 
FNN model architecture is as follows (Figure 4): 

 

 

Figure 4. Generic representation of CNN architecture. 
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FNN hyperparameters regulate the training process, crucial for model per-
formance. Key parameters include: 
• Learning Rate: The learning rate is a crucial tuning parameter that governs 

the magnitude of adjustments applied to the model’s weights during the train-
ing process. A higher learning rate expedites the model’s learning but also 
increases the risk of overfitting the training data. 

• Optimizer: The optimizer is a method that changes the model’s parameters 
during training, such as its weights and biases. Adam and SGD are two pop-
ular optimizers. 

• Number of Epochs: The epochs represent the frequency with which the 
model processes the training data throughout the training phase. 

• Number of Layers: The complexity of the model is determined by the num-
ber of layers in an FNN. More complex models can learn more complex rela-
tionships in the data, but they are also more likely to overfit. 

• Number of Neurons per Layer: The capacity of an FNN, or how much 
complexity it can learn, is determined by the number of neurons in each layer. 
More neurons mean a greater capacity to learn, but also a greater risk of 
overfitting. 

• Batch Normalization: The technique of batch normalization is applied to 
stabilize and expedite the training process of an FNN model. It works by 
normalizing the inputs to each layer, which helps the model to converge fast-
er and generalize better. 

2.5. Training, Validation, and Evaluation 

Training, validation, and evaluation are crucial stages in CNN or FNN model 
development. Training optimizes model parameters to minimize loss on training 
data, while validation assesses performance on a held-out dataset to prevent 
overfitting. Evaluation gauges model performance on a separate dataset for an 
unbiased estimate of generalization. 

To train and evaluate the CNN and FNN model, the CASIA 2.0 dataset is par-
titioned into two subsets: a training set and a validation set. This division guar-
antees that the model undergoes training on a specific portion of the data and is 
then assessed on a separate, unseen portion. The conventional ratio for this par-
tition is frequently established at 80% for training and 20% for validation, en-
suring an evaluation of the model’s ability to generalize. 

The CNN and FNN models’ training, validation, and evaluation in this study 
involve several steps. These include Model Definition (outlining the model 
structure), Model Compilation (configuring training specifics like loss function 
and optimizer), Model Training (which trains the model on designated data), 
and Model Evaluation (assessing its performance on validation data). Callbacks 
used to enhance training include EarlyStopping (monitoring validation accuracy 
and halting if stagnant), ReduceLROnPlateau (adjusting learning rate with no 
validation improvement), and LearningRateScheduler (customizing learning rate 
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schedule during training). 

2.6. Explainable Artificial Intelligence (XAI) 

As AI permeates various facets of life, understanding its decision-making pro- 
cesses becomes crucial amid increasing complexity. Explainable AI (XAI), also 
known as Explainable Machine Learning (XML), addresses this need by making 
AI models more transparent and comprehensible. XAI offers methods to eluci-
date how AI models reach decisions, allowing humans to interpret their reason-
ing. Techniques like Feature Importance, Partial Dependence Plots, Local Inter-
pretable Model-Agnostic Explanations (LIME), and SHapley Additive explana-
tions (SHAP) tailor explanations to different AI models and applications, with 
SHAP calculating feature impact on predictions, aiding in identifying influential 
features in the model’s predictions. 

3. Result and Discussion 

The model in this study was implemented using Python 3.12.0 and TensorFlow 
2.12.0. Training was conducted on Kaggle Notebook, a cloud-based Jupyter 
Notebooks environment offered by Kaggle [30], popular among data scientists 
and machine learning practitioners for its convenience and ease of use. The re-
search evaluated CNN and FNN models, alongside XAI techniques, for digital 
image forgery detection, showing the proposed model’s effectiveness in distin-
guishing between authentic and forged images. 

The proposed CNN and FNN models were evaluated using the CASIA 2.0 
Image Tempering Detection Dataset, comprising various forged images sub-
jected to diverse transformations. The dataset was split with 80% for training 
and 20% for validation and testing. Preprocessing involved modified ELA to 
emphasize forged regions. The CNN model took about 35 seconds per epoch for 
training, whereas the FNN model completed each epoch in roughly 4 seconds, 
demonstrating the suitability of Kaggle notebooks for this research. 

The CNN and FNN models, coupled with Explainable AI (XAI) techniques, 
are evaluated for image forgery detection primarily using accuracy, a fundamen-
tal metric reflecting the models’ ability to classify images as authentic or tam-
pered accurately. High accuracy signifies effective discrimination between the 
two categories. Alongside accuracy, other performance metrics such as Precision 
(indicates low false positive rates), Recall (assesses true positive predictions), 
F1-Score (measures overall model performance), and Confusion Matrix (visua-
lizes classification accuracy).  

3.1. Analysis of Accuracy with Modified ELA Algorithm 

Figure 5 and Figure 6 illustrates the graphs of accuracy (training and valida-
tion), as well as the loss (training and validation), for the CNN and FNN models 
respectively. The CNN model, when combined with modified ELA algorithm, 
attains a training accuracy of 99.96% and a validation accuracy of 94.21%. On  
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Figure 5. Training and validation accuracy with Modified ELA Algorithm, as well as training and valida-
tion loss, of the CNN model (Batch Size: 64 and Number of Epochs: 30). 

 

 
Figure 6. Training and validation accuracy with Modified ELA Algorithm, as well as training and valida-
tion loss, of the FNN model (Batch Size: 64 and Number of Epochs: 30). 

 
Table 2. Comparison between CNN and FNN Model with Modified ELA algorithm in terms of accuracy 
and computational time. 

Feature CNN Model FNN Model 

Training Accuracy 99.96% 99.06% 

Validation Accuracy 94.21% 90.65% 

Computational Time (Average) 35 seconds 04 seconds 
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the other hand, the FNN model achieves a training accuracy of 99.06% and a va-
lidation accuracy of 90.65%. The CNN model with ELA also achieves a valida-
tion loss of 1.5101, while the FNN model achieves a lower validation loss of 
1.0654. On contrary, FNN model is computationally faster than CNN model. 
The summary of the findings in Figure 5 and Figure 6 are presented in Table 2 
for better assimilation of the findings. 

3.2. Analysis of Accuracy with Traditional ELA Algorithm 

Figure 7 and Figure 8 display training and validation accuracy, along with train-
ing and validation loss graphs for the CNN and FNN models, respectively. The  

 

 
Figure 7. Training and validation accuracy with Traditional ELA Algorithm, as well as training and va-
lidation loss, of the CNN model (Batch Size: 64 and Number of Epochs: 30). 

 

 
Figure 8. Training and validation accuracy with Traditional ELA Algorithm, as well as training and va-
lidation loss, of the FNN model (Batch Size: 64 and Number of Epochs: 30). 
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Table 3. Comparison between CNN and FNN Model with Traditional ELA Algorithm in 
terms of accuracy and computational time. 

Feature CNN Model FNN Model 

Training Accuracy 99.62% 98.50% 

Validation Accuracy 93.30% 89.14% 

Computational Time (Average) 55 seconds 09 seconds 

 
summary of the findings in Figure 7 and Figure 8 are presented in Table 3 for 
better assimilation of the findings. 

With the traditional ELA algorithm, the CNN model achieves a training ac-
curacy of 99.62% and a validation accuracy of 93.30%, with a validation loss of 
0.9231. Conversely, the FNN model achieves a training accuracy of 98.50% and a 
validation accuracy of 89.14%, with a lower validation loss of 0.4411. Despite 
this, the FNN model exhibits faster computational performance compared to the 
CNN model. 

3.3. Analysis of Additional Performance Metrics 

Deep learning models for image forgery detection are evaluated by analyzing 
performance metrics like precision, recall, and F1-score, illustrated in Figure 9. 
 

 

Figure 9. Metrics definition. 
 

Table 4 presents additional performance metrics for both models utilizing the 
modified ELA algorithm and the traditional ELA algorithm. 
 
Table 4. Analysis of additional performance metrics with modified ELA algorithm and 
traditional ELA algorithm. 

Model Precision Recall F1-Score 

CNN (with Modified ELA Algorithm) 0.94 0.92 0.93 

FNN (with Modified ELA Algorithm) 0.91 0.89 0.90 

CNN (with Traditional ELA Algorithm) 0.93 0.92 0.92 

FNN (with Traditional ELA Algorithm) 0.90 0.88 0.89 

3.4. Confusion Matrix 

The confusion matrix, a 2 × 2 table, features diagonal elements denoting true 
positives (TP) and true negatives (TN) for accurate predictions by the classifi-
er, while off-diagonal elements represent prediction errors like false positives 
(FP) and false negatives (FN). Figure 10 and Figure 11 depict the confusion 
matrices for the CNN and FNN models with the modified ELA algorithm, re-
spectively. 
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Figure 10. Illustration of the performance of the CNN model 
with modified ELA algorithm using confusion matrix. 

 

 

Figure 11. Illustration of the performance of the FNN model 
with modified ELA algorithm using confusion matrix. 

 

Figure 12 and Figure 13 display the confusion matrices for the CNN and 
FNN models with traditional ELA algorithm, respectively. 
 

 

Figure 12. Illustration of the performance of the CNN model 
with traditional ELA algorithm using confusion matrix. 
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Figure 13. Illustration of the performance of the FNN model 
with traditional ELA algorithm using confusion matrix. 

3.5. Mitigation of the Limitations of Relevant Researches 

The model introduced in this study effectively addressed and surpassed the li-
mitations identified in the previously conducted researches addressed in this 
paper. The proposed model with modified ELA algorithm and CNN model out-
performed other models (FNN model with modified ELA algorithm, CNN mod-
el with traditional ELA algorithm, and FNN model with traditional ELA algo-
rithm) across all metrics, including training accuracy, validation accuracy, preci-
sion, recall, and F1 score. This suggests its superiority in identifying forged im-
ages and minimizing false positives and false negatives. 

The proposed model could detect all forms of image forgeries with enhanced 
accuracy. More so, this model could efficiently incorporated SHAP explainer 
with CNN model and modified ELA algorithm, which could interpret the pre-
dictions more precisely. Computational expenses also mitigated by using GPU- 
based Kaggle kernel. 

4. Conclusions 

This study utilized deep learning techniques and Explainable AI (XAI) to tackle 
the challenge of differentiating between genuine and forged images, commonly 
involving individuals. Image forgery involves malicious alterations to images, of-
ten turning authentic images from public platforms into entirely different ones, 
potentially with inappropriate content aimed at spreading negative publicity. 
The ELA algorithm plays a crucial role in detecting such manipulation, particu-
larly when input image quality aligns with the algorithm’s parameters. The re-
search delved into the efficacy of this combined approach in discerning between 
authentic and tampered images, yielding several significant findings. 
• The CNN model outperformed the FNN model with a test accuracy of 94.21% 

compared to the FNN model’s 90.65%, likely due to CNN’s capability in 

https://doi.org/10.4236/jcc.2024.126009


Md. M. Hasan et al. 
 

 

DOI: 10.4236/jcc.2024.126009 149 Journal of Computer and Communications 
 

learning vital spatial features for forgery detection. Integration of XAI further 
enhances the model’s interpretability and transparency in predictions. 

• The CNN model outperformed the FNN model across various metrics, in-
cluding training and test/validation accuracy, precision, recall, and F1-score, 
indicating its capability in minimizing false positives, detecting forged im-
ages, and reducing false negatives. 

Overall, the CNN model achieved a test accuracy of 94.21%, which can be 
comparable to the state-of-the-art methods. 

The proposed image forgery detection approach achieved notable success, yet 
there remains room for improvement. Future endeavors could focus on explor-
ing avenues such as: 
• Training and evaluating CNN and FNN models are performed with CASIA 

2.0 dataset, as it is widely used and accepted dataset. Future research works 
may constitute to train and evaluate CNN and FNN models on larger and 
more diverse balanced datasets of forged and authentic images. 

• Developing CNN models that can distinctly detect specific types of image 
forgeries, such as copy-move forgeries, splicing forgeries, and inpainting for-
geries. 

• Developing CNN models that can be used to detect forgeries in videos, along 
with other multimedia content. 
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