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Abstract 
Background: Celastrol is an active ingredient extracted from Traditional 
Chinese Medicine (TCM), which can restrain the progression of lung cancer, 
whereas its underlying mechanism is unclear. In our study, the underlying 
mechanism of celastrol in the treatment of lung adenocarcinoma (LUAD) 
with metastasis was investigated by network pharmacology and molecular 
docking. Method: Potential targets of celastrol were collected from TCMSP, 
Batman-TCM and GeneCard database, and its potential targets were pre-
dicted using the STP platform and the TargetNet server. Metastasis marker 
genes (MGs) were obtained from the HCMDB. The genes correlated with 
LUAD were gathered from the GeneCard and OMIM database. And the 
common targets among celastrol potential targets, MGs and LUAD were 
analyzed. The protein-protein interaction (PPI) networks were obtained from 
the STRING database. SangerBox and the Xiantao bioinformatics tool were 
applied to visualize GO and KEGG analysis. Molecular docking tested the 
binding affinity between celastrol and core genes. Result: A total of 107 tar-
gets of celastrol against metastasis LUAD were obtained. The core targets 
were obtained from the PPI network, namely AKT1, JUN, MYC, STAT3, IL6, 
TNF, NFKB1, BCL2, IL1B, and HIF1A. GO and KEGG enrichment analysis 
indicated celastrol for the treatment of metastasis LUAD most refers to cellu-
lar response to chemical stress, DNA-binding transcription factor binding, 
transcription regulator complex and pathways in cancer. And some of these 
targets are associated with differential expressions and survival rates in 
LUAD. Moreover, Molecular docking shows celastrol can bind with BCL2 
well by hydrogen bond and hydrophobic interaction. Conclusion: This find-
ing roundly expounded the core genes and potential mechanisms of celastrol 
for the treatment of metastasis LUAD, offering the theoretical basis and anti-
tumor mechanism of TCM in the treatment of lung cancer. 
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1. Introduction 

Lung cancer is one of the most highly common cancers and its mortality is the 
dominating position in the world [1]. It is primarily classified into two types, in-
cluding small-cell lung cancer (approximately accounts for 15%) and non-small 
cell lung cancer (NSCLC, approximately accounts for 85%) [2]. NSCLC is to be 
divided into three classes: large cell carcinoma, squamous cell carcinoma and 
adenocarcinoma (AD) [3]. AD constitutes about 40% of all lung cancer patients, 
and is the most frequently histologic type in both smokers and nonsmokers [4]. 
For the past few years, a mass of new therapeutic methods for AD patients have 
emerged, including immunotherapy and targeted therapies as monotherapy or 
in combination with chemotherapy [5]. In spite of the progress of therapy me-
thods, lung carcinoma is still the top cause of cancer-related deaths around the 
world, representing approximately 10% of all cancer-related deaths [6]. More 
than 50% NSCLC patients are diagnosed with metastasis, which is the main rea-
son for the high mortality rate [7]. Accordingly, it is urgent to explore the mole-
cular markers to identify metastatic lung cancer early and seek efficient thera-
peutics to prolong the survival duration. In future cancer treatment, applying 
new approaches and utilizing the superiority of phytochemicals may be effective 
in the treatment of lung cancer patients [8]. 

Celastrol is a pentacyclic triterpenoid compound derived from a classical clin-
ical used Traditional Chinese Medicine (TCM) named Tripterygium wilfordii 
Hook F [9]. Celastrol has various pharmacological effects and exerts therapeutic 
properties against many diseases, including obesity, systemic lupus erythematosus, 
infection, and hepatic fibrosis [10] [11] [12] [13]. Furthermore, numerous studies 
have revealed that celastrol exerts an anti-tumor effect on many cancers by its 
pro-apoptotic, anti-angiogenic, anti-metastatic, and anti-inflammatory activities 
[14]. Celastrol has shown enormous therapeutic potential in colorectal cancer, 
leukemia, and gastric cancer [15] [16] [17]. Celastrol could suppress the prolife-
ration of LUAD cells by regulating non-coding RNAs and cell death pathways 
[18] [19] [20]. Equally, celastrol increases the targeted drug susceptibility and 
radiation sensitivity in LUAD [21] [22]. However, researchers have not provided 
the specific mechanisms of the effect of celastrol on advanced LUAD. 

In this study, the correlations among celastrol potential targets, metastasis 
marker genes (MGs) and LUAD were conducted by network pharmacology. 
Furthermore, molecular docking technology was used to explore the binding 
mode and affinity between celastrol and core action targets to get a clearer me-
chanism. Ultimately, our study can provide potential proof for the clinical use of 
celastrol in the treatment of metastasis LUAD. 
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2. Materials and Methods 
2.1. Screening and Target Prediction of Celastrol 

To clarify the effective targets of celastrol, we gathered all targets of celastrol 
from the following five databases: including TCMSP [23], BATMAN-TCM [24], 
GeneCards database [25], the STP database [26], and TargetNet web server [27]. 
Then removing the duplicated genes, intersecting genes were obtained. 

2.2. Determination of Metastasis Marker Genes (MGs) and  
LUAD Related Targets 

MGs were obtained from the Human Cancer Metastasis Database (HCMDB) 
[28], which contains 1938 genes obtained by collecting metastasis-related ex-
pression profiles and analyzing them. The keyword “lung adenocarcinoma” was 
used to get the LUAD related target in GeneCards [29] and OMIM [30] data-
bases. Finally, cross-targets of celastrol, LUAD and MGs were deemed as phar-
macological targets. 

2.3. Construction of Protein-Protein Interaction (PPI) Networks 

The intersection targets were imported into the STRING database to build PPI 
network [31]. And using Cytoscape 3.9.0 software to process the PPI network to 
visualize and screen the core targets [32]. 

2.4. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and  
Genomes (KEGG) Enrichment Analysis 

GO functional annotations were employed to analyze the top 30 targets ranked 
by degree value, including the biological processes (BP), cellular component 
(CC) and molecular function (MF) [33]. KEGG and SangerBox platform was 
used to gather the target-related pathways [34]. The threshold of significance 
was set to p < 0.05 and FDR < 0.1. 

2.5. Core Targets Expressions in LUAD 

Xiantao bioinformatics tool (https://www.xiantao.love/products) is an online 
bioinformatics analysis tool that can analyze RNA expression differences be-
tween tumor and normal samples obtained from TCGA database. We performed 
an unpaired analysis of core targets mRNA expressions in LUAD. 

2.6. Survival Analysis 

Overall survival was analyzed in the GEPIA database [35]. The samples were di-
vided into high and low expression groups by minimum p-value. Ultimately, 
survival plots of the core targets in LUAD were obtained. 

2.7. Docking of Celastrol with Target Molecules 

The 2D structure of celastrol was downloaded from the Pubchem database, and 
Chem3D software was used to transform it into 3D structure. The 3D structure 

https://doi.org/10.4236/jbm.2024.126023
https://www.xiantao.love/products


C. H. Zhang, W. Du 
 

 

DOI: 10.4236/jbm.2024.126023 278 Journal of Biosciences and Medicines 
 

of the docking genes was obtained from the PDB database [36]. Then, import the 
structures of receptor and ligand to AutoDockTools [37] to add hydrogen and 
other pretreatments. And docking of the celastrol and core genes was conducted 
to investigate its binding action. PyMol software was used to visualize the dock-
ing results [38]. 

3. Results 
3.1. Determination Targets of Celastrol Against Metastasis LUAD 

Searching from the following databases: TCMSP, BATMAN-TCM, GeneCards, 
STP and TargetNet web server, with duplicate targets among databases removed, 
227 genes related with celastrol were obtained. 10732 genes of LUAD were ob-
tained from the GeneCards and OMIM databases. 1938 MGs were obtained 
from the HCMDB. 107 intersection genes were regarded as potential targets and 
conducted further study (Figure 1). 
 

 
Figure 1. The venn diagram of celastrol MGs and LUAD. 

3.2. Screening Core Gene and Analyzing Topological Network 

The PPI network of 107 genes was obtained from the STRING platform. Then 
107 nodes and 4534 edges were acquired. 10 nodes and 45 edges were obtained 
under the qualification of degree > 154, namely AKT1, JUN, MYC, STAT3, IL6, 
TNF, NFKB1, BCL2, IL1B, HIF1A. Further, the PPI network information was 
imputed into Cytoscape software for visualization, the darker color of the targets 
meant more significance in the regulatory network (Figure 2). 

3.3. GO and KEGG Enrichment Analysis 

To further investigate the molecular mechanisms of celastrol for the therapy of 
metastasis LUAD, GO and KEGG enrichment analysis of the top 30 genes ranked 
by betweenness value were performed. A total of 2432 GO items were obtained, 
including 2281 BP, 51 CC, and 100 MF. Based on the count, results indicated that 
celastrol in the treatment of metastasis LUAD mostly involves BP such as gland 
development, cellular response to chemical stress, response to oxidative stress, ep-
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ithelial cell proliferation, response to lipopolysaccharide, cellular response to oxid-
ative stress, response to peptide, response to metal ion, peptidyl-serine modifica-
tion. These targets pass through DNA-binding transcription factor binding, 
DNA-binding transcription activator activity, RNA polymerase II-specific 
DNA-binding transcription factor binding, protein serine/threonine/tyrosine ki-
nase activity, ubiquitin-like protein ligase binding, protein serine kinase activity, 
protein serine/threonine kinase activity, ubiquitin protein ligase binding, histone 
deacetylase binding. And they play a role in the transcription regulator complex, 
membrane raft, membrane microdomain, RNA polymerase II transcription regu-
lator complex, secretory granule lumen, vesicle lumen, cytoplasmic vesicle lumen, 
nuclear envelope, caveola, plasma membrane raft (Figure 3). 
 

 
Figure 2. The PPI network of core targets. The darker color of the targets meant more 
significance. 
 

 
(A) 
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(B) 

Figure 3. GO functional enrichment and KEGG pathway enrichment analysis of core 
genes of celastrol against metastasis LUAD. (A) GO functional enrichment analysis, (B) 
KEGG pathway enrichment analysis. 
 

In addition, the KEGG enrichment analysis for the targets in response to cela-
strol in the treatment of metastasis LUAD was involved in below pathways, in-
cluding pathways in cancer, Th17 cell differentiation, hepatitis B, Kaposi sarco-
ma-associated herpesvirus infection, IL-17 signaling pathway, prostate cancer, 
AGE-RAGE signaling pathway in diabetic complications, Chagas disease, yersi-
nia infection, measles (Figure 3). 

3.4. Core Targets Expressions and Survival Analysis in LUAD  

Core target expressions and survival analysis of the 8 targets in LUAD were ac-
quired. The gene differential expression p values of seven targets were less than 
0.05, namely AKT1, JUN, STAT3, IL6, TNF, NFKB1, BCL2, IL1B, HIF1A. And 
the survival analysis p values of three targets were less than 0.05, namely MYC, 
BCL2, and HIF1A. Therefore, these targets may play a critical role in celastrol 
reaction on metastasis LUAD and can prolong the overall survival of LUAD pa-
tients. Above all, BCL2 and HIF1A may be the promising targets of celastrol 
reaction on metastasis LUAD.  

3.5. Molecular Docking Results and Analysis  

Molecular docking proceeded between celastrol and the two targets (BCL2 and 
HIF1A). The binding energies of BCL2 and HIF1A were both less than 
-7kcal·mol-1. It is shown that celastrol may influence the function of core targets 
by restraining the binding activity and play a vital role in the treatment of me-
tastasis LUAD. As shown, celastrol was docked in the binding pocket of BCL2 
through one hydrogen bond with ARG-146, but had no hydrogen bond in the 
binding pocket of HIF1A (Figure 4). The docking results revealed that celastrol 
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could bind into the docking pocket well between BCL2, suggesting BCL2 plays a 
significant role in the response to celastrol in metastasis LUAD. 
 

 
Figure 4. Molecular docking of celastrol and the two targets. Proteins (A) BCL2, (B) 
HIF1A are shown interacting with celastrol molecule. 

4. Discussion 

Lung cancer is one of the malignant carcinomas with a rapid increase in mor-
bidity and the leading cause of worldwide cancer deaths, which is the most se-
rious problem to human health. The etiology of lung cancer is still not com-
pletely clear. TCM has been widely used for treating lung cancer and has shown 
significant advantages in prolonging survival time and improving living quality 
in the last several years [39] [40]. TCM has the characteristics of multiple com-
pounds, targets, pathways, and BPs. So far, there are few researches on the the-
rapeutic action of celastrol on metastasis LUAD. Therefore, effective methods 
are needed to explore its targets and its antitumor mechanism in advanced lung 
cancer. 

In the present study, we got the gene targets from public databases of celastrol 
in the treatment of metastatic LUAD and used network pharmacology to un-
cover the network characteristics of celastrol and explore the drug targets. 
Through our research, 107 genes were deemed as potential targets for celastrol 
in the treatment of metastatic LUAD. Next, 30 genes were used to conduct GO 
and KEGG pathways enrichment analysis to explain the underlying mechanism 
of celastrol reaction on metastatic LUAD. Further expression difference and sur-
vival analysis screened BCL2 and HIF1A may be promising targets. And mole-
cular docking results showed BCL2 plays an important role in the reaction of 
celastrol in metastasis LUAD. 

5. Conclusion 

The present research studies the underlying mechanisms of celastrol in the 
treatment of metastatic LUAD using network pharmacology. This work showed 
that celastrol exerts pharmacological effects in metastatic LUAD in a multitarget 
and multi-pathway manner, mainly including pathways in cancer, response to 
oxidative stress, IL-17 signaling pathway and so on. Our research provides a 
possibility for further investigation of the underlying mechanism of the thera-
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peutic action of celastrol in metastatic LUAD. 
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