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Abstract 
Objective: The mortality and morbidity rates associated with pancreatic can-
cer (PaCa) are extremely high. Various studies have demonstrated that pan-
creatic cancer will be the fourth cancer-related death by 2030, raising more 
concern for scholars to find effective methods to prevent and treat in order to 
improve the pancreatic cancer outcome. Using bioinformatic analysis, this 
study aims to pinpoint key genes that could impact PaCa patients’ prognosis 
and could be used as therapeutic targets. Methods: The TCGA and GEO da-
tasets were integratively analyzed to identify prognosis-related differentially 
expressed genes. Next, the STRING database was used to develop PPI net-
works, and the MCODE and CytoNCA Cytoscape in Cytoscape were used to 
screen for critical genes. Through CytoNCA, three kinds of topology analysis 
were considered (degree, betweenness, and eigenvector). Essential genes were 
confirmed as potential target treatment through Go function and pathways 
enrichment analysis, a developed predictive risk model based on multivariate 
analysis, and the establishment of nomograms using the clinical information. 
Results: Overall, the GSE183795 and TCGA datasets associated 1311 and 
2244 genes with pancreatic cancer prognosis, respectively. We identified 132 
genes that were present in both datasets. The PPI network analysis using, the 
centrality analysis approach with the CytoNCA plug-in, showed that CDK2, 
PLK1, CCNB1, and TOP2A ranked in the top 5% across all three metrics. The 
independent analysis of a risk model revealed that the four key genes had a 
Hazard Ratio (HR) > 1. The monogram showed the predictive risk model and 
individual patient survival predictions were accurate. The results indicate that 
the effect of the selected vital genes was significant and that they could be 
used as biomarkers to predict a patient’s outcome and as possible target 
therapy in patients with pancreatic cancer. GO function and pathway analysis 
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demonstrated that crucial genes might affect the P53 signaling pathway and 
FoxO signaling pathway, through which Meiotic nuclear division and cell 
cycle may have a significant function in essential genes affecting the outcome 
of patients who have pancreatic cancer. Conclusions: This study suggests 
that CDK2, CCNB1, PLK1 and TOP2A are four key genes that have a signifi-
cant influence on PaCa migration and proliferation. CDK2, CCNB1, PLK1, 
and TOP2A can be used as potential PaCa prognostic biomarkers and thera-
peutic targets. However, experimental validation is necessary to confirm these 
predictions. Our study comes into contributions to the development of per-
sonalized target therapy for pancreatic cancer patients. 
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1. Introduction 

Pancreatic cancer (PaCa) ranks seventh in terms of cancer prevalence globally 
and the fourth most prominent cause of mortality due to cancer, with more than 
30,000 deaths annually [1]. Globally, over 400,000 new cases of pancreatic cancer 
are diagnosed annually, and the number of pancreatic cancer is still predicted to 
increase exponentially. High recurrence rates and metastasis following surgery 
are the most prominent causes of poor outcomes in pancreatic cancer patients 
[2]. Many factors contribute to the minimal survival proportion of Pancreatic 
cancer patients, such as those diagnosed at a late stage due to lack of a systemic 
screening.  

Previous studies have identified responsive and efficient molecular markers 
that can significantly influence pancreatic cancer’s biological initiation and pro-
gression. For instance, the tumour suppressor gene (TSG) KRAS has been shown 
in studies to be mutated in more than 90% of pancreatic cancer cases [3]. Given 
the vital role of TSG KRAS in pancreatic cancer, it’s now considered a potential 
therapeutic target of choice. Besides KRAS, TSGs such as TP53 have also been 
demonstrated by studies that it’s a prognostic indicator that significantly influ-
ences the outcome of patients with pancreatic cancer [4]. These findings further 
research on molecular pathology and gene mutation-initiating pancreatic cancer 
development. Studies on pancreatic cancer biomarkers usually focused on sin-
gle-gene patterns, whereas cancer typically involves several genes and biological 
processes. How to scientifically improve the prognosis of pancreatic cancer pa-
tients has been the focus for more and more scholars trying to understand and 
elucidate the molecular mechanisms behind pancreatic cancer initiation and 
progression to identify significant biomarkers and signaling networks.  

Bioinformatics has revolutionized biological data analysis and management, 
enabling research on large amounts of data in a short period. Bioinformatics is 
widely used to screen essential specific genes for specific cancer patients. These 
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give the possibilities of personalized treatment plans for a cancer patient with spe-
cific drugs targeting a particular biomarker [5] [6]. Large-scale cancer genomics 
projects like TCGA and GEO have advanced our understanding of cancer genetics, 
revealing a comprehensive view of pancreatic cancer-related genomic alterations 
and facilitating further research [7]. Using bioinformatics tools and techniques, 
common significant prognosis-related differentially expressed genes (progno-
sis-related DEG) of pancreatic cancer were identified between the GEO and TCGA 
databases. In addition, based on module and centrality analysis, we formed a pro-
tein-protein network to screen out essential genes in PR-DEGs, developed a pre-
dictive risk model, and verified and validated favourable vital genes.  

The present study establishes a solid platform for investigating the biological 
processes at the molecular level underlying pancreatic cancer development and 
identifying biomarker targets for clinical management.  

2. Materials and Methods  
2.1. Data Collection  

The gene expression profiles of PaCa patients were acquired from a GEO dataset 
(GSE183795). The sample size was 244 PaCa patients. Moreover, the expression 
profiles and clinical details of 182 cases of PaCa were also retrieved from the 
TCGA database. All original data were corrected, and only patients with all in-
formation were included in this study.  

2.2. Identification of Prognostic Related Differentials Gene  
Expression  

The pancreatic cancer expression profile was collected from the (GEO = 189) 
and (TCGA = 178) databases. Subsequently, the data underwent analysis using R 
software. The gene expression normalization of the pancreatic dataset in this 
study was generated through the Limma package, and the missing value was 
handled through the input package. Using K-M analysis, we categorized the gene 
expression profile as high-expression and low-expression categories according to 
each gene’s median value (MV) within the gene profile. Afterward, the survival 
disparity among all the categories was assessed and validated. With a p-value (p 
< 0.05) set as the criteria, the Multivariate method and survival analysis using 
the proportional hazards model were conducted to analyze, confirm, screen, and 
identify genes that exhibited significant connection with the prognosis of pan-
creatic cancer patients. Finally, the GEO and TCGA datasets were used to verify 
these survival analysis-filtered genes independently. We used the term progno-
sis-related-DEGs to stand for the commonly significant prognosis-related diffe-
rentially expressed genes.  

2.3. PPI Network Analysis and Module-Centrality Analysis  

Protein-protein interaction prediction was made with the help of the online tool 
STRING, which allows the analysis of genetic interactions, both structural and 
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functional. This network’s connections had to have a confidence score of at 
least > 0.15, and the disconnected nodes were left out of this study. The network 
was used to create a PPI network of prognostic DEGs. Cytoscape was used to map 
out the prognosis-related DEGs’ PPI connections. The MCODE plug-in was used 
to determine and quantify the PPI network’s functional modules and gene associ-
ations. If a module had a maximum score, its protein correlation was more sub-
stantial, and the top score module was taken as the findings of the MCODE as-
sessment. Three topologies, degree, betweenness and eigenvector from the Cy-
toNCA were used to conduct a centrality analysis. The degree of a node is a 
measure of its importance in a network since it indicates the number of edges that 
lead to that node. Finding the betweenness of two nodes is the fastest way to ana-
lyze them. However, the eigenvector considers both the node’s and its neigh-
bours’ significance. The significance of CytoNCA’s analysis is inferred from the 
genes represented by the top 5% of nodes in the three topology configuration. By 
integrating the MCODE and CytoNCA extension results, the crucial genes were 
found within the protein-protein network of prognosis-related DEGs.  

2.4. Prognostic Key Genes Verification  

The MV of the critical gene profile was established as the threshold in the profile 
data analysis of gene expression in patients with PaCa from the TCGA and GEO, 
and the essential gene expression profile of patients with pancreatic cancer was 
categorized into high-expression and low-expression key genes categories. 
Through R software applying the “survival” package, K-M assessment followed 
by multivariate Cox model testing was used to examine the disparity in total 
survival status between the crucial genes high- and low-expression categories. 
The survival proportion and plot were then interpreted and graphed. Indepen-
dent prognostic identification of individual and multiple gene merging of crucial 
genes was performed using the “survival” package, and the hazard ratio and 
graphs were plotted based on univariate and multivariate Cox model testing. Fi-
nally, the risk scores (RS) of crucial genes and all the available clinical and pa-
thological parameters were associated with precisely predicting the survival out-
come of pancreatic cancer patients. We calculated the risk score of the model 
using the following formula: 

( )Risk Score Gene Expression Weight= ×∑  

The prognostic risk score was determined using K-M analysis, which classified 
PaCa patients into a low-group risk and high-group risk based on the median 
values of the RS of crucial genes in the expression profile of PaCa patients. The R 
language’s “RMS” tool is then used to construct the nomogram according to the 
multivariate Cox model testing.  

2.5. Go and KEGG Analysis of Prognostic Genes  

Pancreatic cancer gene expression datasets from the GEO and TCGA reposito-
ries were categorized into two categories considering the median expression 
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value of each essential gene, namely high-expression and low-expression catego-
ries. The DEG was then identified between the two categories of crucial genes. 
Subsequently, the Go functional and the pathways enrichment analysis of each 
DEG were performed using Go and KEKK through R software packages, “in-
cluding limma”, “clusterProfiler”, “enrichplot”, and “ggplot2”. With criteria P < 
0.05 and log (fold-change) > 0.5. 

2.6. Statistics analysis  

Data statistical analysis was conducted using R Software (2023 version) and in-
volved K-M method and Cox model testing (univariate and multivariate) to de-
termine the essential genes. The “survival” package in the R software was used to 
create survival curves and forest plots for analyzing the prognostic significance 
of individual-gene or multiple-gene merging of crucial genes. With P < 0.05 as 
the criteria.  

3. Results 
3.1. Identification of Prognosis-Related Genes  

Using R software, we mined the TCGA-PAAD (n = 178) and GSE-183795 (n = 
189) databases for gene expression profile data from PaCa patients. The log 
transformation and normalization were performed using the “limma” sets, and 
the K-M method was used to categorize genes into high-expression and 
low-expression categories in the gene expression matrix using the MV of each 
gene before comparing the two groups for significant differences. Multivariate 
and survival analysis were used through the proportional hazard model testing 
to identify DEGs within the gene expression datasets of GSE183795 (1311 genes) 
and TCGA (2244 genes) that were strongly associated with the prognosis of Pa-
Ca. Then, 132 shared prognostic DEGs were obtained using cross-validation of 
two datasets: 132 of 1311 genes from GSE183795 and 132 of 2244 genes from 
TCGA-PAAD data (Figure 1(A)).  

3.2. Module-Centrality Assessment of the Prognosis-Related Genes 

To systematically investigate the molecular mechanization that can alter the 
prognosis of PaCa patients, we constructed a PPI network of prognosis-related 
DEGs in STRING with a confidence score >0.15 while excluding unconnected 
nodes. The data shows that the PPI network comprised 131 nodes and 1665 
edges. In addition, the modules for investigating even more closely linked genes 
within the PPI network were analyzed using the MCODE extension in the Cy-
toscape platform. Module 1, with a score of 48.500; Module 2, with a score of 
4.000; and Module 3, with a score of 3.333, were the three modules revealed by 
the analysis (Figure 1(B)). Since the first module’s score was the highest and it 
was the section of the PPI network with the most interactions, this was taken as 
the outcome of the MCODE analysis. By inspecting each gene’s degree, bet-
weenness, and eigenvector scores, we could do a centrality analysis of the PPI 
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network using the CytoNCA plug-in. Next, CDK2, PLK1, CCNB1, and TOP2A, 
rated in the top 5% across all three topologies and present in module 1, were 
chosen as crucial genes, all from module 1 (Figure 1(C)). 
 

 
Figure 1. Selection of key genes for pancreatic cancer patients. (A) In total, 132 common prognosis-related-DEGs were obtained 
from the overlapping of TCGA and GEO datasets. (B) three modules 1-3, and a score ranked up in the top 5% in three topology 
from CytoNCA’s centrality analysis. (C) Key genes (CDK2, CCNB1, PLK1, and TOP2A, green in the picture) were obtained.      

3.3. Prognostic Value of Key Genes in PaCa 

To figure out what roles essential genes play in the development of PaCa, we 
used the K-M method to look at the survival of our genes of interest. Survival 
curves were made for PaCa patients, who were put into two categories: those 
with high expression and those with low expression. In the TCGA and GEO da-
tabases, the survival assessment for patients with PaCa demonstrated a close re-
lationship between the frequency of specific genes and the length of time they 
survived. Based on survival analysis, the median overall survival of pancreatic 
cancer patients with decreased expression of CDK2, PLK1, CCNB1, and TOP2A 
was 1.79, 1.74, 1.90, and 1.92 years. In contrast, those with higher expression of 
CDK2, PLK1, CCNB1, and TOP2A had 1.36, 1.36, 1.45, and 1.33 years, respec-
tively. Figures 2(A) and Figures 2(B) show that the patients (GEO, n = 103; 
TCGA, n = 90) whose essential genes were more active had a much worse prog-
nosis. As shown by univariate and multivariate Cox model testing, crucial genes 
with hazards ratio > 1, that were 1.75, 1.34, 1.43, and 1.50, in corresponding or-
der with a (p < 0.05) in the GEO and TCGA repositories, can autonomously in-
fluence the prognosis of pancreatic cancer patients. The impact of crucial genes 
is significant and could be used as biomarkers to predict a patient’s prognosis 
and as therapeutic targets for PaCa patients (Figure 3).  
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(A) 

 
(B) 

Figure 2. (A) Survival analyses of key genes CDK2, CCNB1, PLK1, and TOP2A. Patients with high expression of key genes have a 
poor prognosis in the TCGA database (p < 0.05); (B) Survival analyses of key genes CDK2, CCNB1, PLK1, and TOP2A. Patients 
with high expression of key genes have a poor prognosis in the GEO database (p < 0.05).     
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Figure 3. Independent Prognostic analyses based on key genes in TCGA database.     

3.4. GO and Pathways Enrichment Analyses  

To better understand how the essential genes impact the prognosis of pancreatic 
cancer, we conducted GO functional and pathways enrichment analyses. The 
GO functional analysis revealed that the majority of the enriched terms were as-
sociated with functions such as nuclear division, organelle fission, mitotic nuc-
lear division, meiotic nuclear division and more. Additionally, the findings from 
the pathways analyses revealed significant enrichment of pathways such as P53 
signaling pathways, FoxO signaling pathways, cell cycle, cellular senescence and 
others (Figure 4 and Figure 5).  

3.5. Key Gene Prognostic Risk Model Construction and Validation 

Using univariate and multivariate Cox model testing, CDK2, PLK1, CCNB1, and 
TOP1A were combined to create a key gene prognostic risk model (Table 1). The 
risk score of key genes was determined as follows: HRCDK2 x expression value of 
CDK2 + HRPLK1 x expression value of PLK1 + HR CCNB1 x expression value of 
CCNB1 + HRTOP2A x expression value of TOP2A. As per the prognostic risk 
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Figure 4. Go function and pathways enrichment analyses from the TCGA database. 
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Figure 5. Go function and pathways enrichment analyses from the GEO database. 
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Table 1. Univariate and Multivariate analyses of overall survival in TCGA database. 

Variables Univariate Analysis Multivariate Analysis 

 HR p-value HR p-value 

Risk Score 1.1167 0.0002 1.10163 0.00126 

Age 1.02227 0.0346 1.01746 0.00897 

GenderMale 0.8324 0.375 0.90881 0.64695 

T lower stage 0.5348 0.052 0.80397 0.51866 

N N1 1.8378 0.0144 1.53677 0.09834 

 

 
Figure 6. Monogram based on risk model and clinicopathological parameters. 
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(A) 

 
(B) 

Figure 7. (A) Survival analyses of the risk score of key genes from the Prognostic group from the TCGA database; (B) Survival 
analyses of the risk score of key genes from the Prognostic group from the TCGA database.     
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model, the medical significance and prognostic importance of the available clini-
copathology, namely the age, gender, and TNM classification, were used to con-
struct a nomogram to validate the prognostic importance of the risk factors. The 
overall scores, the sum of the scores of each component, can be used to calculate 
the 1-year, 3-year, and 5-year survival probability represented in the nomogram. 
The monogram showed the prognostic risk model and individual patient survival 
predictions were accurate (Figure 6). To explore in more detail the validity of 
crucial genes, PaCa patients were categorized into high- and low-risk categories 
based on the risk score cutoff value derived using the maximally selected rank 
statistics approach in each database (TCGA and GEO). The survival graph 
(Figures 7(A) and Figures 7(B)) demonstrated that the category with higher risk 
had a poorer outcome than the category with lower risk. Both univariate and 
multivariate Cox model testing was done according to the gene expression profile 
data. The findings revealed that the RS for crucial genes was autonomously asso-
ciated with the total survival proportion of PaCa patients. The findings suggest 
the key genes could be referenced as PaCa prognostic genes. The key genes 
(CDK2, TOP2A, CCNB1, and PLK1) can be used to plan the next treatment step. 
These genes could also be used to improve the prognosis of pancreatic cancer. 

4. Discussion  

In industrialized countries, pancreatic cancer will soon be the fourth leading 
cause of cancer death after lung cancer in the 2030s. With more than 30.000 
deaths per year due to pancreatic cancer. This death rate goes hand in hand with 
the number of cases in these countries exponentially rising. There isn’t yet a sys-
tematic way to screen for pancreatic cancer like some other types of cancer, such 
as breast and colon cancer, which can be screened early. Pancreatic cancer has 
the trait of being able to lie dormant for years. Usually, when symptoms show 
up, the disease is already at its late stage [8].  

The development of Pancreatic cancer is a slow molecular process described 
by a previous report to have more than 60 genetic mutations and abnormal mo-
lecular signaling pathways networks that can all play a crucial function in the 
development of pancreatic cancer [9].  

Findings of unique prognostic biomarkers of pancreatic cancer in order to 
come up with a more specific treatment plan for cancerous pancreatic tissues 
have become the focus of more and more scholars. These problems show the 
importance of finding biomarkers with prognosis significance in pancreatic 
cancer. To date, big data platforms for screening gene expression have been 
broadly used in others to identify novel targets that can be used as new thera-
peutic strategies and predictive to create cancer.  

Studies have shown that crucial genes that can impact the initiation and pro-
liferation of cancers tend to be in the modules with the top scores and obtain the 
top ranking in centrality assessment results. Those findings suggest that the 
MCODE and CytoNCA extensions in the protein-protein interactions network 
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significantly contribute to identifying and selecting molecular biomarkers in 
many cancers, such as gastric and breast cancer [10].  

Researchers have demonstrated that module analysis can improve the accura-
cy of many cancers’ crucial gene screening [11]. CytoNCA, on the other hand, 
can assess the importance of each gene’s connections over the whole PPI net-
work and highlight those genes with the most significant links [12]. With 
MCODE and CytoNCA analysis methods, we were able to identify four genes 
(CDK2, CCNB1, PLK1, and TOP2A) that play crucial roles throughout the 
whole protein-protein interaction network.  

Previous studies have highlighted the effects of key genes in many cancers.  
First, CCNB1, a crucial protein essential for cell cycle division, particularly at 

the G2/M phase, significantly impacts tumour development and progression. 
For instance, multiple studies have shown that CCNB1 is overexpressed in many 
cancer, such as gastric and lung cancer, compared to normal tissues [13] [14]. In 
addition, CCNB1 overexpression has also been reported by studies to be corre-
lated with poor outcomes in some patients with cancer [15] [16]. Moreover, 
overexpression of CCNB1 was also said to be associated with cancer metastasis 
and to have a poor outcome [16] [17] [18] [19]. Besides overexpression of CCNB1, 
reducing the level of CCB1 can lead to DNA damage [20].  

PLK1 has been reported by studies to be overexpressed in many cancer; it has 
also been associated with poor prognosis [21] [22]. PLK1 plays a role in cell divi-
sion, regulating stability in the cell division process and responding to DNA 
damage [23] [24]. Silencing PLK1 can significantly impact cancer progression by 
inhibiting its proliferation and stopping tumour cell growth [25] [26].  

Previous research has shown that the overexpression of CDK2 deregulates the 
cell cycle and significantly impacts various cancer development [27] [28]. The 
overexpression of One of The CDK2, known as cyclin E1, has been reported in 
many cancers [29] [30]. Besides CDK2 overexpression, silencing CDK2 inhibi-
tors was associated with poor outcomes in various tumours compared to normal 
tissues [31] [32].  

The overexpression of TOP2A-induced genomic deregulation and this me-
chanism has not yet been elucidated. For instance, previous research has shown 
that the overexpression of TOP2A is associated with poor outcomes in various 
cancer parents [32]. Another study reported that TOP2A overexpressions could 
be independent predictive biomarkers for survival outcomes in patients with re-
sected pancreatic cancer; at the same time, TOP2A expression combined with 
some other biomarkers can have a significant positive impact on various cancer 
patients [33].  

Meiotic nuclear division is a protein involved in the meiosis process; it’s 
known to facilitate the pairing of homologous chromosomes and repair DNA 
double-strand [34]. In tumor cells, MND interacts with some homologous pair-
ing protein, to facilitate the use of an alternative mechanism for lengthening te-
lomeres when telomerase is not reactivated [35] [36] this mechanism drives the 
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development of cancer and boosts cell proliferation, thereby increasing the evo-
lutionary capacity of cancer cells [37] [38]. Previous research has demonstrated 
that the Meiotic component can be a biomarker and therapeutic target in cancer 
patients [39] [40] [41] [42].  

P53 signaling pathways consist of a complex network such as genes and their 
components that are activated in response to endogenous and exogenous stress 
signals. These signals can affect the mechanism that regulates DNA replication 
and cellular division, which are fundamental for maintaining cellular stability 
[43]. Previous studies reported that p53 is significantly elevated intracellularly to 
fixed abnormal intracellular function [44] [45]. 

On the other hand, the activation of the FoxO signaling pathways is known 
to be initiated by P3IK/AKT pathways [46]; the FoxO signaling pathways play 
a fundamental role in controlling cellular functions such as cell proliferation 
and growth [47]. Various studies showed that the FoxO signaling pathways, 
known to be activated by the PI3K/AKT pathways, play a significant role in the 
initiation and development of many cancers, such as hepatocellular carcinoma 
[48] [49].  

In this research based on bioinformatics tools, we overlap the GEO and TCGA 
matrix data to extract and analyze high-volume data to perform through the 
MCODE and CytoNCA the module and centrality assessment of the pro-
tein-protein network; based on all those techniques, we identified four essential 
genes (CDK2, CCNB1, PLK1 and TOP2A) who have a significant influence on 
the prognosis of pancreatic cancer patients. They can also be used as potential 
biological markers and targets for treating pancreatic cancer prognosis. We es-
tablished a predictive risk model in accordance with the four essential genes to 
confirm that they play a crucial role in pancreatic cancer development.  

5. Conclusion  

The overlapping analysis of the GEO and the TCGA genes expression matrix has 
led us to identify 132 typical prognosis-significant DEGs, CDK2, CCNB1, PLK1 
and TOP2A of the CPR-DEGs can be considered prognosis biomarkers and the-
rapeutic targets for pancreatic cancer patients. However, the results of these 
analyses should be confirmed through verification with laboratory experiments, 
even though this study supports similar findings in previous research on the de-
velopment of personalized pancreatic cancer management. 
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