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Abstract 
In this paper we study optimal advertising problems that model the introduc-
tion of a new product into the market in the presence of carryover effects of 
the advertisement and with memory effects in the level of goodwill. In partic-
ular, we let the dynamics of the product goodwill to depend on the past, and 
also on past advertising efforts. We treat the problem by means of the sto-
chastic Pontryagin maximum principle, that here is considered for a class of 
problems where in the state equation either the state or the control depend on 
the past. Moreover the control acts on the martingale term and the space of 
controls U can be chosen to be non-convex but now the space of controls U 
can be chosen to be non-convex. The maximum principle is thus formulated 
using a first-order adjoint Backward Stochastic Differential Equations (BSDEs), 
which can be explicitly computed due to the specific characteristics of the 
model, and a second-order adjoint relation. 
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1. Introduction 

We consider a stochastic model for problems of optimal advertising under 
uncertainty, so we have to study a stochastic version of advertising models. We 
start from the stochastic model introduced in [1] (see also [2] and [3]): we 
consider carryover effects of the advertising, which in the model reads as delay 
in the control, and with memory effects of the level of goodwill, which in the 
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model reads as delay in the state. We refer also to [4] for optimal advertising 
problems with memory effects in the level of goodwill. 

In our model the delay in the effect of advertising affects the martingale term 
of the state equation, namely we consider, following [1], the controlled stochastic 
differential equation in   with pointwise delay in the state and in the control  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ]

1 2
0 0 1 2

0

d d d d ,

, ,0 .
d t tx t b u t a x t a x t d t x t W u t d W

x x d

 = − − − + + −   


= ∈ −

σ σ

τ τ τ
  (1.1) 

Following the usual notations, see e.g. [1], x is the level of goodwill, 0a  and da  
are factors related to the image deterioration in case of no advertising, 0b  is a 
constant representing an advertising effectiveness factor. The diffusion term 

( ) 1
1 d tx t Wσ  represents for the word of mouth communication, with 1 0≥σ  the 

so-called “advertising volatility”; while the second diffusion term keeps track of 
the delayed effect of the advertising effort u, and the constant 2 0≥σ  is the 
effectiveness volatility of the communication. Besides, ( )0 0x  is the initial 
goodwill level, while ( ) [ )0 , ,0x d∈ −τ τ  is the history of the goodwill level 
before the advertising campaign is started. 

The functional to maximize, over all controls in  , is the following profit, 
defined on finite horizon: 

( ) ( )( ) ( )( )( ) ( )( ), , d ,
T

t
J t x u c u s l x s s r x T= − + +∫             (1.2) 

where c is the cost of advertising, l is the current reward, and r is the reward 
from the final goodwill. Our purpose is to derive a maximum principle for such 
a problem with non convex control space U, extending the results already 
present in the literature for the convex case, see e.g. [5], where the stochastic 
maximum principle for control problems with pointwise delay in the state and 
in the control is studied, see also [6] and [7] where more general models are 
treated but the convexity of the control space U is still required. We underline 
the fact that stochastic control problems with diffusion depending on the control 
are difficult to treat; concerning problems related to advertising we mention the 
recent paper [8], where the author solves the problem by means of the dynamic 
programming approach, differently from here the case of pointwise delay cannot 
be treated, moreover it is taken into account a diffusion depending linearly on 
the control, but not on the delayed control. We stress that one novelty of this 
paper is to handle the new difficulty coming form the non convexity of U: also in 
the non delayed case the non convexity of U makes the approach based on 
stochastic maximum principle more complicated. First we need to utilize the 
spike variation of the control and introduce the second variation to handle the 
control acting on the martingale term. We will therefore follow [9] to introduce 
this additional step. Thanks to the specific characteristics of the state equation, 
we can derive a quasi-explicit form for both the first adjoint, which results in an 
anticipating backward equation, see [10], and the second adjoint, which is 
written using the optimal cost and a simple auxiliary process. Note that the 
specific case we address is not considered in [11] and does not completely fall 
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within the hypotheses of [9], as we also consider the delay the control appearing 
in the martingale term. 

The structure of the paper is the following: in section 2 we present the 
notation, the assumptions and the control problem. Section 3 is devoted to 
collect the results on the first variation of the optimal state and also on the 
second variation, which we have to study since the space of controls is not 
convex. Section 4 concerns the first and second adjoint relations necessary to 
formulate the stochastic maximum principle, which is stated and proved section 
4.3. 

2. Stochastic Control Problem for Delay Equations  
Appearing in Advertising Models 

2.1. Assumptions and Preliminaries 

Let ( )W t  be a 2 dimensional brownian motion defined on a complete 
probability space ( ), ,FΩ   and ( ) 0t t≥

  the natural filtration generated by W, 
augmented in the usual way. We fix a finite time horizon 0T >  and we set, for 
every 1q ≥  and for every 0 u v T≤ ≤ ≤ , the following spaces: 

[ ]( ) [ ] ( ){ }0 , ; : : , , -progressive measurablek k
tL u v X u vΩ× = Ω× →     (2.1) 

[ ]( )

[ ] ( ) ( )( )1
, ;

: : , , -progr.meas., d

q k

v qqk
t u

L u v

X u v X t t

Ω×

 = Ω× → < ∞ 
 

∫



 




     (2.2) 

[ ]( )( )

[ ] ( )
[ ]

( )
,

1

; , ;

: : , , -progr.meas., sup

q k

qk
t

t u v

q

L C u v

X u v X t
∈

Ω

   = Ω× → < ∞  
   



 




    (2.3) 

2.2. Formulation of the Problem 

We recall the state equation we are interested in: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ) ( ) ( )

1 2
0 0 1 2

0 0

d d d d ,

, ,0 , 0 0 .
d t tx t b u t a x t a x t d t x t W u t d W

x x d x x

 = − − − + + −   


= ∈ − =

σ σ

τ τ τ
  (2.4) 

We assume the following on the coefficients: 
Hypothesis 2.1 

(i) 0 0 1 2, , ,a b ∈σ σ ; 
(ii) the control strategy u, the advertisement in this case, belongs to the space 

[ ]( ) ( ){ }0: 0, , : , . .z L T z t U a s= ∈ Ω× ∈ −   

where U is a bounded subset of   possibly non convex, in particular U can be 
a bounded subset of   and this represents the realistic situation in which the 
advertisement is multiple of a given quantity; 
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(iii) 0d >  is the delay with which the past of the state affects the system; 
We recall that the purpose is to maximize, over all controls in  , the 

following profit, on finite horizon: 

( ) ( )( ) ( )( )( ) ( )( ), , d ,
T

t
J t x u c u s l x s s r x T= − + +∫        (2.5) 

Hypothesis 2.2  We assume the following: 
(i) according to the literature, see e.g. [12], :c U →  is non linear, convex 

and locally lipschitz; 
(ii) [ ]: 0,l T × →   represents the current reward, it is twice differentiable 

with at most linear growth; 
(iii) :r →   represents the foreseen reward from the final goodwill and it 

is twice differentiable and strictly increasing, with bounded second derivatives. 
From now on, since we recall and apply the results in [9] where a mini- 

mization problem is considered, we focus on the problem (equivalent to the 
original one of maximizing the profit J  given in (2.5) since J J= − ) of 
minimizing, over all admissible control in U, the cost functional 

( ) ( )( ) ( )( )( ) ( )( ), , d ,
T

t
J t x u c u s l x s s r x T= − −∫            (2.6) 

We are going to formulate necessary conditions for optimality. 

3. First and Second Order Variations of the Optimal State  
Equation 

Since U is not necessarily convex we use the spike variation method, see [13], see 
also [9] for the case of delay equation. 

Let ( ),u x  be an optimal couple: that is u is an optimal control and x its 
corresponding optimal trajectory, that is solution to Equation (2.4). The spike 
variation works as follows: for 0>ε  we consider an interval [ ]0,V T⊂ε , with 
( )m V =ε ε , where m is the Lebesgue measure. Let v U∈  we set 

( ) ( ) [ ]0, \u t t T V
u t

v t V
 ∈

= 
∈

ε ε

ε

                       (3.1) 

We are going to derive a maximum principle for the control problem with 
state Equation (2.4) and cost functional (2.6) in the case of non convex space of 
controls. We will denote by xε  the solution of (2.4) corresponding to uε  and  

uδ  the spike variation of the control, i.e. ( ) ( )( ) ( ): Vu t u t v I t= −
ε

δ . 

We can write the equation for the first order variation of the state: 

( ) ( ) ( ) ( ) ( ) [ ]
( ) ( )

1 2
0 1 2d d d d , 0, ,

0 0, 0, 0.
d t ty t a y t a y t d t y t W u t d W t T

y y d

ε ε ε ε

ε ε

σ σ δ

τ τ

  = − − − + + − ∈  


= = − ≤ <
 

(3.2) 

where ( ) ( )( ) ( )Vu t d u t d v I t d− = − − −
ε

εδ  and the second variation is, for  

[ ]0,t T∈ , 
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( ) ( ) ( ) ( ) ( )
( ) ( )

1
0 0 1d d d d

0 0, 0, 0.
d tz t a z t a z t d t b u t t z t W

z z d

  = − − − + +  


= = − ≤ <

ε ε ε ε

ε ε

δ σ

τ τ
    (3.3) 

It is well known that such equations are well posed in [ ]( )( )2 ; 0, ;L C TΩ   (see 
e.g. [14] for a general theory on stochastic delay equations). 

The following asymptotic behaviors hold, see ([9, Theorem 3.3]) for the 
delayed system and the classic result in ([15, Theorem 4.4]), 

[ ]
( ) ( )

[ ]
( ) ( )

2 2

0, 0,
sup , sup ,

t T t T
y t O z t O

∈ ∈
= = ε εε ε              (3.4) 

[ ]
( ) ( ) ( ) ( )2 2

0,
sup ,

t T
x t x t y t O

∈
− − = ε ε ε                 (3.5) 

[ ]
( ) ( ) ( ) ( ) ( )2 2

0,
sup ,

t T
x t x t y t z t o

∈
− − − = ε ε ε ε               (3.6) 

Moreover, 1p∀ ≥ , 

[ ]
( )

[ ]
( )

, ,
sup , sup ,

p p

t d T t d T
y t z t

∈ − ∈ −
< +∞ < +∞ ε ε               (3.7) 

4. Maximum Principle for the Stochastic Delay Equation 

In this Section, first we formulate the first order adjoint equation in 4.1, then we 
pass to the second order adjoint in 4.2, and finally we formulate the stochastic 
maximum principle in 4.3. 

4.1. First Order Duality Relation 

Following [9] we define the first order adjoint equation of (3.2), that is the 
anticipated backward equation 

( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )
( ) [ )
( ) ( ) [ )

0

1 1 1 2 2
1

1 2

d d d

d d d

0, for all ,0 ,

0 a.e. ,0 .

s

s

T T T F
x x dt t t

T T TF
s st t t

p t r x T l x s s a p s s a p s d s

q s d s q s W q s W

p T d

q T q T d

 = + − − +

 + + + +

 − = ∈ −

 − = − = ∈ −

∫ ∫ ∫

∫ ∫ ∫



σ

τ τ

τ τ τ

  (4.1) 

that admits a unique solution ( ) [ ]( )( ) [ ]( )2 2 2, ; 0, ; 0, ;p q L C T L T∈ Ω × Ω×   , 
see e.g. [10] where we write ( )1 2,q q q= . 

Since Equation (4.1) is linear, in view of the future times conditions we have 
an explicit, recursive, formulation for the solution ( ),p q : 
Proposition 4.1 Assume Hypotheses 2.1 and 2.2. Define for every  

0, , Tk
d
 =   

 , 

( )
( )( ) ( )

( )| 1 0,
:k

T k d T kd
p t p t

 − + ∨ − 
=  

and 

( )
( )( ) ( )

( ) ( )
( )( ) ( )

( )
1 0, 1 0,

,1 1 ,2 2
| |: , : .

T k d T kd T k d T kd

k kq t q t q t q t
   − + ∨ − − + ∨ −   

= =  

Then ( ),k kp q  solve: 
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( ) ( ) ( )( )( ) ( ) ( )( ) [ ]

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( ) [ ]

( ) ( ) ( ) ( ) ( )

0 0

0 0

0 0

0 0

0

0,1
1 1

0,2
2 2

1 1

1

e e d , , ,

e e , d , for a.e. , ,

e e , d , for a.e. , .

e e d

t t

s

Ta T t a s t
x xt

Ta T t a s t

t
Ta T t a s t

t
T kda T kd t a s t Fk k k

d t

p t r x T l x s s t T d T

q t L t K s t s t T d T

q t L t K s t s t T d T

p t p T kd a p s d s

− − − −

− − − −

− − − −

−− − − − −− −

= + ∈ −

= − ∈ −

= − ∈ −

= − − +

+

∫

∫

∫

∫

 



 

σ ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

0 0

0

1,2 ,1 1

,2 2

e d e d

e d , 1 0, , :1, ,

s
T Ta s t a s tF k k

st t

T a s t k
st

q s d s q s W

Tq s W t T k d T kd k
d

− − − −−

− −












+ +


   + ∈ − + ∨ −     

∫ ∫

∫ 



 (4.2) 

where 1L  and 2L  are given by: 

( )( )( ) ( )( )( ) ( ) ( ) ( ) ( )1 1
1 2d d .t

T TF
x x t t

r X T r X T L s W s L s W s= + +∫ ∫     (4.3) 

and 1K  and 2K  are given by: 

( )( ) ( )( ) ( ) ( ) ( ) ( )1 2
1 2, d , d .t

t tF
x x T d T d

l s l s K s W K s W
− −

= + +∫ ∫  τ τ τ τ    (4.4) 

Proof. Notice that, to avoid trivialities, we are taking d T< . 
Let us consider the first order adjoint Equation (4.1), (, , for ( ],t T d T∈ − : in 
view of the fact that ( ) ( ) 0ip t q t= = , 1,2i =  for a.e. [ ],t T T d∈ + , for 

[ ],t T d T∈ −  it can be rewritten as a linear BSDE 

( ) ( )( ) ( )( ) ( ) ( ) ( )
( ) [ )
( ) ( ) [ )

1 1 2 2
0

1 2

d d d d

0, for all ,0 ,

0 a.e. ,0 ,

T T T T
x x s st t t t

p t r x T l x s s a p s s q s W q s W

p T d

q T q T d

 = + − + +

 − = ∈ −


− = − = ∈ −

∫ ∫ ∫ ∫
τ τ

τ τ τ
 

(4.5) 

and its solution for [ ],t T d T∈ − , is given by 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

0 0

0 0

0

0,1 1 0,2 2

e e d

e d e d

Ta T t a s t
x xt

T Ta s t a s t
s st t

p t r x T l x s s

q s W q s W

− − − −

− − − −

= +

+ +

∫

∫ ∫
          (4.6) 

Formula (4.2) is just the rearrangement of the variation of constant formula, 
while (4.3) and (4.4) is an application of the Martingale Representation Theorem, 
see also [16].                                                     □ 

Using (3.2), (3.2) and (4.1), we deduce the first duality relation: 
Proposition 4.2  Assume 2.1 and 2.2 then: 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )2
0

d

x

T
x

p T y T r x T y T

l x s y s q s u s d s

=

 = − + − ∫

 



ε ε

ε δ
      (4.7) 

( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
0 0

d d

x

T T
x

p T z T r x T z T

l x s z s s p s u s s

=

= − +∫ ∫

 

 

ε ε

ε δ
      (4.8) 

Moreover the cost can be written as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )

2
0 20

2 2

0

d

1 1 , d
2 2

T

T
xx xx

J u J u l t b p t u t q t u t d t

r x T y T l t x t y t t

− = − + − −

+ +

∫

∫



 

ε

ε ε

δ δ σ δ
 (4.9) 
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Proof.  See ([9], Propositions 4.1 and 4.2).                            □ 

4.2. Second Order Duality Relation 

Following ([9], Theorem 4.9]) we introduce the process P, called 0,0P  in [9], 
that in this simplified case can be explicitely defined by means of a auxiliary 
process ,1sy  (here s indicates the initial time and 1 is the initial condition) that 
solves the following equation 

( ) ( ) ( )( ) ( ) ( ) [ ]
( ) ( )

,1 ,1 ,1 ,1
0 1

,1

d d d , , ,

1, 0, .

s s s s
d

s

y t a y t a y t d t y t W t t s T

y s y d s

 = − − − + ∈


= = − ≤ <

   



σ

τ τ
   (4.10) 

By means of the solution process [ ]( )( ),1 2 ; 0, ;sy L C T∈ Ω  , the process P can 
be now defined by 

( ) ( )( ) ( ) ( ) ( )2 2,1 ,1 d .s s
Ts s

xx xxs
P s r x T y T l t y t t= + ∫              (4.11) 

Also in this case, the solution 1,sy  of Equation (4.10) can be explicitly 
defined by recursion: 
Proposition 4.3 Assume Hypotheses 2.1 and 2.2. Define 

( )
( ) ( )( )

( ),1
| , 1

:k s

s kd s k d T
y t y t

 + + + ∧ 
=  , for every : 0, , Tk

d
 
  

  

Then ky  solves 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )

2
1 11

0 1

0 0

0

0 2

1 1

1
1

e , ,

e e d

e d , , 1 , 1, ,

a t s W t W s

ta t s kd a t rk k k
d s kd

t a t r k
ss kd

y t t s s d T

y t y s kd a y r d s

Ty s W t s kd s k d T k
d

− − + −

− − + − −− −

+

−

+


 = ∈ + ∧  
 = + − −


   + ∈ + + + ∧ =     

∫

∫



  




σ
σ

σ

(4.12) 

Proof.  Thanks to the initial condition in (25), we have that for every 
[ ],t s s d T∈ + ∧ : 

( ) ( ) ( )
( )

,1 ,1 ,1 1
0 1

,1

d d d
1,

s s s
t

s

y t a y t t y t W
y s

 = − +


=

  



σ
               (4.13) 

Therefore ( )
( )

( ) ( ) ( ) ( )( )
2

1 11
0 10 ,1 2

| ,
e

a t s W t W ss

s s d T
y t y t

− − + −

+ ∧  
= = 

σ
σ

. Then the general case  

for t s d> +  follows by the application of the constant variation formula on 
any interval ( ) ( )( ), 1s kd s k d T + + + ∧  .                             □ 

The expansion of the cost then becomes: 
Proposition 4.4  Assume 2.1 and 2.2. Then following expansion holds true: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( )

2
0 20

22
20

d

1 d
2

T

T

J u J u c s b p s u s q s u s d t s

u s d P s s o

− = − + − −

+ − +

∫

∫





ε δ δ σ δ

σ δ ε
  (4.14) 

Proof.  The proof is in [9] [Proposition 4.9, Theorem 4.10, Theorem 4.11] and 
is a consequence of an approximation procedure based on the regularization of 
the dirac measure dδ  and the well known reformulation of the delayed 
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problem in infinite dimensions.                                      □ 

4.3. The Stochastic Maximum Principle 

We are now in the position to state our main result. 
Theorem 4.5  Under assumptions 2.1 and 2.2, any optimal couple ( ),x u  
satisfies the following variational inequality: 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( )

2
0 2

2
2

1 0, , . . . .
2

t

t

F

F

b u t v p t u t v q t d c u t c v

u t v P t d v U a e a s

− − − + − −

+ − + ≤ ∀ ∈ −



 

σ

σ
      (4.15) 

Where ( ) [ ]( )( ) [ ]( )2 2 2, ; 0, ; 0, ;p q L C T L T∈ Ω × Ω×   , is the solution of the 
first order adjoint equation (16), and P is the second adjoint process given by 
(4.11). 
Proof.  Let [ ]0,t T∈ , and [ ],V t t= +ε ε , then 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( )( ) ( )

( )( )( ) ( ) ( )( ) ( )(
( ) ( )( ) ( ))

( )( ) ( ) ( )
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      (4.16) 

Letting ε  tends to 0, by standard arguments we deduce (4.15). 
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