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Abstract 
Kellogg gave a version of the Peaceman-Radford method. In this paper, we 
introduce a SSOR iteration method which uses Kellogg’s method. The new 
algorithm has some advantages over the traditional SSOR algorithm. A Cyclic 
Reduction algorithm is introduced via a decoupling in Kellogg’s method. 
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1. Introduction 

Throughout this paper, one studies a solution method for the system of linear 
equations which occurs throughout the literature [1]-[11]. 
 Ax b=  (1) 

where ( ) n n
ijA a R ×= ∈  is non-singular matrix with unit diagonal b and nx R∈  

with x being an unknown vector in nR . 
Splitting the matrix A into 

 A I L U= − −  (2) 

where I is the identity matrix, L and U are the strictly lower and strictly upper 
triangular parts of the matrix A, respectively; see [8] and [9], the successive 
overrelaxation iteration formula for the SOR iteration method for an optimal 
relaxation factor ω  is as follows: 

 ( ) ( )( )11 1 .k kx I L I U x bω ω ω ω−+ = − − + +  (3) 

While the following 2-step scheme: 

 
( ) ( )( )
( ) ( )( )1

1 ,k k

k k

I L y I U x b

I U x I I L y b

ω ω ω ω

ω ω ω ω+

− = − + +

− = − + +
 (4) 
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for any initial guess 0x  defines the iteration formula for the SSOR iteration 
method with relaxation factor 0ω > , [12] and [10]. The study of allowable ω  
for convergence of (4) appears throughout the literature [2] and [5]. 

Define the iteration matrix for the SOR iteration method as 

 ( ) ( ) ( )( )1: 1 ,I L I Uω ω ω ω−∆ = − − +  (5) 

and the iteration matrix for the SSOR iteration method as 

 ( ) ( ) ( )( )( ) ( )( )1 1: 1 1 .I U I L I L I Uω ω ω ω ω ω ω− −Γ = − − + − − +  (6) 

The required two step iteration is a drawback of the SSOR iteration method, 
when compared to SOR iteration method. However, for a symmetric matrix A, 
the iteration matrix has real spectrum, and the spectral radius of ( )ωΓ  i.e. 

( )( )ρ ωΓ , is equal to the square of a norm of ( )ω∆  ([9]: pg. 237). This paper 
introduces a variation of the SSOR iteration method based on the work of Kel-
logg [13] and is similar to work that appears in [7] for the HSS algorithm. This 
new algorithm requires approximately the amount of work per iteration as the 
SOR iteration method, and uses an iteration matrix which is similar to the SSOR 
iteration method matrix with equal spectral radius. This iteration scheme will be 
entitled the Kellogg-type SSOR iteration method, and its iteration matrix will be 
denoted by the KSSOR iteration matrix. 

2. Different Iterations 

Letting the terms in ( )ωΓ  be somewhat permuted, one defines 

 
( ) ( ) ( )( )( ) ( )( )
( ) ( ) ( )( )( ) ( )( )

1 1

1 1

: 1 1 ,

: 1 1 .

I L I L I U I U

I U I U I L I L

ω ω ω ω ω ω ω

ω ω ω ω ω ω ω

− −

− −

Ψ = − − + − − +

Θ = − − + − − +
 (7) 

If A is a symmetric matrix then ( )ωΨ  and ( )ωΘ  are symmetric matrices 
and in this case, the SSOR iteration matrix has real spectrum. A relationship 
between the spectral radii of the three matrices ( )ωΓ , ( )ωΨ  and ( )ωΘ  
follows. 

Lemma 1. ( )( ) ( )( ) ( )( )ρ ω ρ ω ρ ωΓ = Ψ = Θ , for all 0ω > . 
Proof. Since  

( ) ( )( ) ( )( )( ) ( )( )( )1 1 11 1I U I U I L I L I U I Uω ω ω ω ω ω ω ω ω− − −− Γ − = − + − − + −  
( )ω= Ψ , then ( )ωΓ  is similar to ( )ωΨ . Now ( )ωΘ  and ( )ωΨ  have the 

same spectral radius from the well known product theorem [14], i.e.  
( ) ( )AB BAρ ρ=  for any A and B. Hence, ( )( )ρ ωΓ , ( )( )ρ ωΨ  and  

( )( )ρ ωΘ  are equal. 
Lemma 1 suggests using a different ordering for the SSOR iteration scheme. 
Assuming that the SSOR iterative method converges for 0ω > , i.e. 

( )( ) 1ρ ωΓ <  with ω  a positive acceleration factor, then the Kellogg-type 
SSOR iteration method is written as: 

 
( ) ( )( )
( ) ( )( )

1

1
2

1 ,

1

k k

k k

I L y I L x b

I U x I U y b

ω ω ω ω

ω ω ω ω+

− = − + +

− = − + +
 (8) 

https://doi.org/10.4236/ajcm.2024.142009


T. Smotzer, J. Buoni 
 

 

DOI: 10.4236/ajcm.2024.142009 250 American Journal of Computational Mathematics 
 

where 1 2b b b= + . Now for 1k kz y x += +  in our trial solution, one tests Az b−  
where ⋅  is the 2-norm. If this quantity fails to satisfy our convergence crite-
ria, one assigns 1kx +  to kx , and reiterates. 

Upon eliminating ky  and the kx , from (8) one has 

( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( )( ) ( )

1 1 11
1 2

1 1 11
2 1

1

and

1 .

k k

k k

x x I L I L I U b I U b

y y I U I U I L b I L b

ω ω ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

− − −+

− − −+

= Θ + − − + − + −

= Ψ + − − + − + −

 (9) 

This decouples the original system (4). 
The following lemma will be used to show the convergence of the Kel-

logg-type SSOR iteration method to a unique solution to the system of equations 
Ax b= . 

Lemma 2. For any 1 2,c c  then there exists unique ,y x  satisfying 

 
( ) ( )( )
( ) ( )( )

1
1

1
2

1 ,

1 .

x I L I L y c

y I U I U x c

ω ω ω

ω ω ω

−

−

= − − + +

= − − + +
 (10) 

Furthemore, 

 
( ) ( ) ( )( )
( ) ( ) ( )( )

1
2 1

1
1 2

,

.

y y I L I I L c c

x x I U I I U c c

ω ω ω ω

ω ω ω ω

−

−

= Ψ + − − + +

= Θ + − − + +
 (11) 

Proof. The system of equations (10) may be represented by 

1

2

cx
A

cy
  

=   
   
� , 

where 

( ) ( )( )
( ) ( )( )

( ) ( )( ) ( )

( ) ( )( )

1

1

1

1

0 0
0

.
0

I I L I I L
A

I U I I U I

I I
II U I I U I

I I L I I L

I

ω ω ω

ω ω ω

ωω ω ω

ω ω ω

−

−

−

−

 − − − +
 =
 − − − + 
   

=    −Θ− − − +    
 − − − +

∗  
  

�

 
The det of A�  is non-zero, completing the proof of the first part. The second 

part follows immediately. 
The following theorem proves that the sequences { }kx  and { }ky  converge 

to x and y, respectively, and x y+  is the solution to Ax b= . 
Theorem 1. Let kx  and ky  be defined by (9) Then (i) lim k

k x x→∞ = ,  
lim k

k y y→∞ = , and (ii) ( )A x y b+ = . 

Proof. Setting n ne x x= − , ( ) 1
1 1c I L bω ω−= −  and ( ) 1

2 2c I U bω ω−= − . 
Then 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1
1 1

1 1

n n

n

y y I L I I L x c I L I I L x c

I L I I L x I L I I L x

ω ω ω ω ω ω

ω ω ω ω ω ω

− −

− −

− = − − + + − − − + −

= − − + − − − +
.  
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Since ( ) ( )( )1
2x I U I I U y cω ω ω−= − − + +  and  

( ) ( )( )1 1
2

n nx I U I I U y cω ω ω− −= − − + + , then  

( ) ( )( ) ( ) ( )( )1 1 nI L I I L x I L I I L xω ω ω ω ω ω− −− − + − − − +  becomes 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 1
2 2

ny I L I I L c x I L I I L cω ω ω ω ω ω ω ω− −Θ + − − + −Θ − − − +
 

In which case, ( )1n ne eω+ = Θ  and since ( )( ) 1ρ ωΘ < , then lim k
k x x→∞ = . 

In a similar fashion, lim k
k y y→∞ = . 

To show that ( )A x y b+ = , set ( ) 1
1 1c I L bω ω−= −  and ( ) 1

2 2c I U bω ω−= −  

by (i) and Lemma 2, the vector 
x
y
 
 
 

 satisfies 

 
( ) ( )( )
( ) ( )( )

1
1

1
2

1

1 .

y I L I L x c

x I U I U y c

ω ω ω

ω ω ω

−

−

= − − + +

= − − + +
 (12) 

Rewriting this as 

 
( ) ( )( )
( ) ( )( )

1

2

1

1 ,

I L y I L x b

I U x I U y b

ω ω ω ω

ω ω ω ω

− = − + +

− = − + +
 (13) 

and then adding them together, canceling, and dividing by ω . This simplifies to 
( ) ( ) ( ) ( )( ) 1 2x y L x y U x y I L U x y b b+ − + − + = − − + = +  as promised. 
A flowchart for the Kellog-type SSOR iteration method follows, see Figure 1. 

3. A Closer Look 

For strictly lower and strictly upper triangular parts of an n n×  matrix, the fol-
lowing holds. 

Lemma 3. For L and U the strictly lower and strictly upper triangular parts of 
the n n×  matrix A then 

 ( ) ( )( ) ( ) ( )( )1 11 and 1I L I L I U I Uω ω ω ω ω ω− −− − + − − +  (14) 

are lower triangular and upper triangular matrices respectively. 

Proof. Since nL  is equal to the zero matrix and ( ) 1Lρ ω <  then ( ) 1I Lω −−  

exists and is given by ( )
1

0

n i

i
Lω

−

=
∑ . 

Upon multiplying by ( )( )1 I Lω ω− +  gives the result that  

( ) ( )( )1 1I L I Lω ω ω−− − +  is a lower triangular matrix. 

Similarly, ( ) ( )( )1 1I U I Uω ω ω−− − +  is upper triangular. 
One of the main drawbacks of the SSOR iteration method when compared to 

SOR iteration method is its two step iteration. Some benefits of SSOR iteration 
method for a symmetric matrix A, is ( )ωΓ  will have positive real spectrum 
and that ( )( )ρ ωΓ  is equal to the square of a norm of ( )ω∆ . See [9] pg. 237. 
In the KSSOR iteration method, if one takes 1b b=  and 2 0b = , then each step 
is a triangular matrix (one lower, in the first step of the iteration, while upper in 
the second step of the iteration) times a vector operation. Since the amount of  
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Figure 1. Kellog-type SSOR iteration method flowchart. 

 
work done by KSSOR iteration may be considered less than the SSOR iteration 
method. Furthermore, since the spectral radius of the SSOR iteration matrix and 
the KSSOR iteration matrix are equal, their iteration counts should be fairly 
equal. However, in most instances the inverse would not be taken. 

4. Cyclic Reduction 

A Cyclic Reduction Algorithm, similar to [3], and [8] pg. 170, is as follows. 

Set 
( ) ( )( )

( ) ( )( )

1

1

I I L I I L
A

I U I I U I

ω ω ω

ω ω ω

−

−

 − − − +
 =
 − − − + 

�  one  

sets 
( ) ( )( )

( ) ( )( )

1

1

0

0

I L I I L
K I A

I U I I U

ω ω ω

ω ω ω

−

−

 − − +
 = − =
 − − + 

�  and  

then 
( )

( )
2 0

0
K

ω
ω

Θ 
=  Ψ 

. 

Lemma 4. If ( )( ) 1ρ ωΓ <  then ( )2 1Kρ <  and ( ) 1Kρ < . 
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Proof. Since ( ) ( )( ) ( )( ) ( )( )2Kσ σ ω σ ω σ ω= Θ Ψ = Θ∪ , where the last  

equality follows from the similarity of ( )ωΘ  and ( )ωΨ  then ( )2 1Kρ < . By 

the spectral mapping theorem ( )Kλ σ± ∈  if and only if ( )2Kλ σ∈ ; i.e.  

( ) ( ) ( )2determinant determinant determinantA I A I A Iλ λ λ− = + − . hence,  

( ) 1Kρ < , see [14]. This completes the proof of the lemma. 
2K  defines the following uncoupled iteration scheme. 

 
( )
( )

2
1

2
2

m m

m m

x x k

y y k

ω

ω

+

+

= Θ +

= Ψ +
 (15) 

where ( ) ( )( )( ) ( )1 1 1
1 2 1k I L I I L I U b I L bω ω ω ω ω− − −= − − + − + −  and  

( ) ( )( )( ) ( )1 1 1
2 1 2k I U I I U I L b I U bω ω ω ω ω− − −= − − + − + − . 

We now focus our attention on the solution of this reduced equation  
( )2

1
m mx x kω+ = Θ + . 
Since ( )( ) 1ρ ωΘ < , then the Cyclic Reduction Scheme mx  converges to x 

and having found the vector x in (10), form the vector  

( ) ( )( ) ( )1 1
2y I U I I U x I U bω ω ω ω− −= − − + + −  and from which x y+  is a so-

lution. 
A flowchart for the Cyclic Reduction iteration method follows, see Figure 2. 

5. Examples 

In the following examples, a solution vector x is constructed as  

( ) sin
6

i ix i
N

∗π =  
 

 for 1, ,i N= �  and an initial guess is [ ]T0 1,1, ,1x = � .  

The error in each of our schemes will be measured by the 2-norm Ay b− . 
where y is the resulting approximate answer and our desired error tolerance will 
be 10−6. Our table includes the x y−  i.e. the actual 2-norm difference between 
the true solution, x, and our approximate solution y, the iteration count, and the 
elapsed time in seconds for the work of the loop doing the iteration. ω is found 
through an iterative search, all decimals are rounded to two places and in the 
KSSOR iteration method and the Cyclic Reduction Method, 1b b=  and 2 0b = . 

Example 1. Consider the system of linear equations with the n × n sym-
metric matrix which appears in [4] Set P to be the m × m matrix 

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0

0 1 2 1 0 0 ... 0
. . . . . .
0 0 0 .. 1 2 1
0 0 0 0 .. 0 1 2

P

− 
 − − 
 − −

=  
 
 − −
 

−    
and ( ) ( ) 6T I P P I P P= ⊗ + ⊗ − ⊗ , and 1A D T−= ∗  where D is the diagonal 
of T. The resulting matrix A, is then n × n where 2n m= . For 32m = , the n × n 
matrix is 1024 × 1024 and Table 1 summarizes our results. 
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Figure 2. Cyclic Reduction iteration method flowchart. 

 
Table 1. Example 1. 

Method ω Iterations Ay b−  x y−  Time 

SOR 1.81 96 9.25 × 10−7 6.24 × 10−5 0.78 secs 

SSOR 1.85 81 9.14 × 10−7 1.06 × 10−7 1.12 secs 

KSSOR 1.85 83 8.98 × 10−7 1.04 × 10−4 0.80 secs 

CyclicRed. 1.85 81 1.137 × 10−6 1.30 × 10−4 0.53 secs 
 

Example 2. Consider the system of linear equations with 1024 × 1024 
coefficient matrix which appears in [11]. 

1 1 0 0 0 0 0 0
1 3 2 0 0 0 0 0

0 1 5 3 0 0 ... 0
. . . . . .
0 0 0 .. 1 2 3 1
0 0 0 0 .. 0 1 2 1

T

N N
N

 
 − 
 −

=  
 
 − ∗ − −
 

− ∗ −    
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Table 2. Example 2. 

Method ω Iterations Ay b−  x y−  Time 

SOR 0.88 18 9.70 × 10−7 1.63 × 10−6 0.21 secs 

SSOR 1.2 8 6.27 × 10−7 4.45 × 10−7 0.14 secs 

KSSOR 1.2 9 3.19 × 10−7 3.23 × 10−7 0.13 secs 

CyclicRed. 1.1 9 1.00 × 10−7 1.17 × 10−74 0.44 secs 

 
Table 3. Example 3. 

Method ω Iterations Ay b−  x y−  Time 

SOR 1.51 175 9.9 × 10−7 7.6 × 10−5 1.78 secs 

SSOR 1.6 82 9.19 × 10−7 7.64 × 10−5 1.48 secs 

KSSOR 1.6 86 9.54 × 10−7 7.94 × 10−5 1.05 secs 

CyclicRed. 1.6 82 1.63 × 10−6 1.36 × 10−4 0.83 secs 

 
Then A becomes 1D T− ∗  where D is the diagonal of T. Table 2 summarizes 

our results. 
Example 3 Consider the system of linear equations with n × n coefficient 

matrix  

0.5
B E

T
E I

 
=  ′− ∗ 

 

where 
0

0
I C C I

B
I C C I

⊗ + ⊗ 
=  ⊗ + ⊗ 

, 
I F

E
F I
⊗ 

=  ⊗ 
. 

Where ( )tridiag 1,2, 1C = − − , ( )tridiag 1,1,0F h= ∗ −  are m × m matrices 

with 
1

1
h

m
=

+
 resulting in 23n m= . Then A becomes 1D T− ∗  where D is 

the diagonal of T and for 20m =  is a 1200 × 1200 matrix. Table 3 summarizes 
our results. 

Since the spectral radius of all iteration matrices is the same in all the iteration 
schemes, the convergence to a solution of the system of linear equations has 
about the same number of iterations for all the iteration convergence schemes 
considered in this paper. 

6. Conclusion 

The KSSOR algorithm requires an upper and lower triangular solution to a li-
near system which may be more accurate than the SSOR algorithm which on the 
surface requires full matrix solves at each step. 
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