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Abstract 
This paper examines the progression and advancements in fault detection 
techniques for photovoltaic (PV) panels, a target for optimizing the efficiency 
and longevity of solar energy systems. As the adoption of PV technology 
grows, the need for effective fault detection strategies becomes increasingly 
paramount to maximize energy output and minimize operational downtimes 
of solar power systems. These approaches include the use of machine learning 
and deep learning methodologies to be able to detect the identified faults in 
PV technology. Here, we delve into how machine learning models, specifical-
ly kernel-based extreme learning machines and support vector machines, 
trained on current-voltage characteristic (I-V curve) data, provide informa-
tion on fault identification. We explore deep learning approaches by taking 
models like EfficientNet-B0, which looks at infrared images of solar panels to 
detect subtle defects not visible to the human eye. We highlight the utilization 
of advanced image processing techniques and algorithms to exploit aerial 
imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large 
solar installations. Some other techniques like DeepLabV3+, Feature Pyramid 
Networks (FPN), and U-Net will be detailed as such tools enable effective 
segmentation and anomaly detection in aerial panel images. Finally, we dis-
cuss implications of these technologies on labor costs, fault detection preci-
sion, and sustainability of PV installations. 
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1. Introduction 

Photovoltaic (PV) panels have been growing in popularity as an energy source 
over the past two decades. Their prevalence, particularly for large scale energy 
generation, has been increasing as pressures to develop green energy sources in-
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crease and the impacts of climate change on human health and society become 
more obvious. As energy producers build larger solar panel complexes, improv-
ing the efficiency of these fields is critical. Such PV panel complexes typically 
require employees to survey the fields on a regular basis to determine if any of 
the panels are experiencing faults. Fault detection is a process in which the sur-
veyor must evaluate the power producing character of the solar panel and assess 
its efficiency. If a panel is deemed to be faulty or underperforming, maintenance 
is them conducted to improve the panel’s function. 

As the size of solar fields increase, the need for more high throughput me-
thods for fault detection evaluation becomes even more evident. In recent years, 
computer scientists have begun applying image processing and deep learning to 
establish methodologies for fault detection in solar fields [1]. Here, we present 
the various strategies employed by the field and describe the mathematical un-
derpinnings of these strategies. Though these strategies are primarily proof of 
concept in nature, energy producers are beginning to adopt these techniques in-
to their practices. We envision that this review will serve as an introduction to 
the scientific community and to the PV industry to the variety of computational 
technologies available for fault detection. 

2. Machine Learning Approaches in Fault Detection 
2.1. Selecting a Template 

Within the solar power industry, the most common techniques for fault detec-
tion are fairly archaic in the age of big data. Typically, I-V curves and other elec-
trical parameters of PV panels are manually analyzed and fault detection is de-
termined based on subjective parameters, introducing room for error and utiliz-
ing significant amounts of time. The application of machine learning, especially 
kernel-based extreme learning machines and support vector machines, to this 
problem of accurate fault detection is, therefore, sufficiently motivated [1] [2]. 
These models learn from historical data captured on PV systems. These models 
can then be used to interpret real-time data from PV panels and identify ano-
malous patterns, thereby reducing the rate of false negatives that may be cap-
tured during manual I-V curve analysis. Machine-learning algorithms can the-
reby provide insights on PV systems that require maintenance and minimize the 
downtime of that system. In most cases, the best models are trained on data that 
incorporate a variety of PV fault types that capture the spectrum of possible sys-
tem errors [3]. 

The efficiency of PV systems is influenced by the electronic health of individ-
ual cells or modules. Any one of these cells may experience a number of flaws, 
such as shading, soiling, and physical damage; all of which can result in subs-
tandard performance and significant energy loss over long periods of time. To 
overcome these challenges in PV fault detection, machine learning approaches 
have started gaining ground by aiding in accurate fault detection and fault type 
classification using electrical characteristic analysis of PV system components, in 

https://doi.org/10.4236/msce.2024.126001


J. Y. Zheng 
 

 

DOI: 10.4236/msce.2024.126001 3 Journal of Materials Science and Chemical Engineering 
 

particular, the current-voltage (I-V) characteristics [4]. 

2.2. I-V Curve Analysis for Fault Detection 

The electrical performance of a PV cell can be captured in its I-V curve. Notably, 
these characteristic behaviors can be influenced by environmental conditions 
and internal cell properties. The typical I-V curve of a healthy PV cell can be 
modeled by the single-diode equation: 

 0 exp 1s s
ph

t sh

V I R V I R
I I I

n V R
  + ⋅ + ⋅

= − − −  ⋅   
 (1) 

Here, I is the current, Iph is the photo-generated current, I0 is the diode reverse 
saturation current, V is the output voltage, Rs is the series resistance, n is the 
ideality factor, Vt is the thermal voltage, and Rsh is the shunt resistance [4]. Faults 
in the PV system can alter the shape and characteristics of the I-V curve signifi-
cantly. Simple algorithmic models can be designed to calculate deviations in ob-
served I-V curves relative to the theoretical model. However, simply calculating 
deviations from the theoretical model alone may not capture experimental con-
ditions. Therefore, machine learning models which can take processed data that 
has been accurately labeled as operating properly or experiencing a fault to de-
rive features that are predictors of fault behavior. 

Typical data processing approaches that optimize for the utilization of ma-
chine learning approaches involve extracting features from the I-V curves that 
are potentially indicative of different types of faults [5]. Such features might in-
clude parameters like the short-circuit current, open-circuit voltage, maximum 
power point, fill factor, or I-V curve shape/concavity. These features can then be 
used to train a machine learning classifier, such as a Support Vector Machine 
(SVM) or a Neural Network (NN), to distinguish between healthy and faulty 
conditions in new data samples from PV systems of unknown operational status. 
Focusing in on the SVM, these types of models aim to find the hyperplane that 
best separates the feature space into classes representing different health statuses 
of the PV system. The decision function for a binary classification SVM can be 
expressed as: 

 ( ) ( )( )1sign ,N
i i iif x y K x x bα

=
= +∑  (2) 

Here, K would be an input function, α and y would be weights, and b would 
be a bias term. By optimizing the feature weights, the SVM model can classify 
the I-V characteristics into healthy or faulty operational status. Further models 
can be developed to subdivide faulty operation into shaded, damaged, soiled, etc. 
with more granular labeling of the input data. 

2.3. Training and Validation 

The effectiveness of the machine learning model is highly dependent on the 
quality and quantity of the training data. Typically, a dataset comprising several 
thousand I-V curves, each labeled with the correct fault category, is required for 
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training a robust model. The data is usually split into a training set (e.g., 80% of 
the data) and a test set (e.g., 20% of the data) to assess the model’s performance. 
Key performance metrics include accuracy, precision, recall, and the F1 score. 

3. Deep Learning Enhancements in PV Fault Analysis 

Deep learning—a subset of machine learning—has been particularly impactful 
for advancing PV panel fault detection. Making use of convolutional neural 
networks (CNNs) like “Efficientb0,” deep learning algorithms have proved to 
work well for the analysis of infrared images of solar modules to detect defects 
[6] [7]. Convolutional neural networks enable the handling of complex data 
structures and the derivation of predictive models from that data. These trained 
network models can identify complex patterns, codified in a series of data 
processing layers and weights, to identify abnormalities within panel images that 
correlate with operational status. Often times, as with other use cases of deep 
learning models, these insights or classifications would escape the human eye or 
remain undiscoverable with standard machine learning techniques. The typical 
architecture of a CNN used in image analysis, such as EfficientNet-B0, compris-
es several layers. 

3.1. Input Layer 

The input layer takes an image data in multidimensional arrays (encoding pixel 
position and pixel values). Here, we utilize a model involving an input array with 
3 dimensions (an x and y directional value of the pixel of interest and a pixel 
depth/value). Here, H, W, and D represent the length of the image height, image 
width, and pixel values, respectively. 

 H W DX × ×∈  (3) 

3.2. Convolution Layers 

These layers apply several parallelized filters F to the input layer to extract fea-
tures from the data. Similarly, X is the input function, Y is the output, σ is a 
scaling factor, and bk are a set of bias terms. 

 ( ),
1 1

, 1, 2, ,
f f

k ijk ks i s j
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Y F X b k Kσ ⋅ ⋅
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 
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The main mathematical operation of a convolutional layer is discrete convo-
lution-a method in which the filter is convolved over the width and height of the 
input array. At each position, a dot product is computed between the filter coef-
ficients and the part of the image in the overlap. This operation is repeated on a 
sliding scale over the entire image, systematically grouping local patches of pix-
els to generate a feature map. This transform is designed to derive image features 
using small subsets of pixels from the input data while preserving the spatial re-
lationship between pixels. In many cases, these convolutional layers incorporate 
a bias term that is added to the result to provide the model with an extra degree 
of freedom to shift the resulting activation function. The mathematical analog of 
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this approach is a linear regression in which we fit individual slopes to a given 
independent-dependent variable pairing but add a “y-intercept” or constant 
term to account for any shifts of variables relative to each other. The activation 
function, typically a Rectified Linear Unit (ReLU), can convert these linear out-
puts of the convolution layers to non-linear outputs (for example, sigmoidal 
shapes) to capture more complex relationships between features and labels. 

3.3. Pooling Layer 

Pooling reduces the dimensionality of each feature map but retains the most 
important information. Max pooling is a common choice in the field: 

 ( )maxk kP Y=  (5) 

Here, Pk is the output and Yk are the input layers. Pooling layers down sample 
the feature maps produced by convolutional layers to reduce their dimensional-
ity and to create an aggregated summary of the features detected. The most 
common form is max pooling, where only the maximum value in a certain area 
(pooling window) is retained. This process is equivalent to blurring algorithms 
that retain a single value for a segment of a given image and report that averaged 
value as the output. This process reduces the sensitivity of the output to the exact 
location of features in the input, enforcing translation invariance and lowering 
the computational burden for subsequent layers. 

3.4. Fully Connected Layer 

The final layers of the network, where all neurons are connected to all activa-
tions in the previous layer, are typically used for classification (e.g., operational 
status). Once again, W is the scaling factor, P is the output of pooling layer, and 
c is the bias term. 

 ( )( )softmax flattenZ W P c= ⋅ +  (6) 

Fully connected layers take the high-level features extracted by convolutional 
and pooling layers and translate them into the final output, such as classifica-
tion scores. These layers flatten the two-dimensional feature maps into a 
one-dimensional vector that acts as input. A weight matrix then transforms this 
vector into another vector of raw scores, one for each class in the classification 
task. A bias vector is typically added, like the bias correction seen in the convo-
lutional layers, to these scores. Then, a softmax function converts them into 
normalized probabilities, with the highest probability indicating the model's 
prediction for that classification. The softmax function exponentiates each raw 
score and then normalizes by dividing by the sum of all exponentiated scores. 
This operation ensures that the output of the fully connected layer is a valid 
probability distribution, which quantifies the network's confidence in each po-
tential class for the input image. 

4. Image Processing Techniques for Fault Identification 

The shift towards image processing techniques has provided a new dimension to 
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PV fault detection. High-resolution aerial images captured by unmanned aerial 
vehicles (UAVs) equipped with infrared sensors offer a comprehensive view of 
large solar installations. This is particularly relevant to large scale energy pro-
duction farms in which energy loss in any one solar panel can impart significant 
financial losses and output losses to the operating firm. Advanced image 
processing algorithms, including DeepLabV3+, Feature Pyramid Networks 
(FPN), and U-Net, have been adapted to process these aerial images, and identi-
fy panel defects in new aerial images [8]-[15]. This approach not only enhances 
the accuracy of fault detection but also significantly reduces the time and labor 
costs associated with manual inspections performed by purveyors or other em-
ployees. 

4.1. Segmentation with U-Net and the Dice Coefficient 

U-Net is structured for effective segmentation of images, especially useful in 
identifying small anomalies in large images such as PV panels. However, it is of-
ten recommended to use a statistic like the Dice coefficient to assess the effec-
tiveness of the U-Net algorithm in properly segmenting the image at hand [16]. 

The Dice coefficient is used to evaluate segmentation performance, particu-
larly handling unbalanced data where the area of interest (faults) is much small-
er compared to the background. In these situations, the signal to noise ratio is 
low and therefore segmentation checks need to be performed to ensure that in-
formation is not lost. The Dice coefficient is calculated as follows: 

 
2

Dice
X Y

X Y
× ∩

=
+

 (7) 

Here, X and Y are two samples that we wish to compare. The Dice coefficient 
is a similarity measure between two samples that are regularly used in statistics, 
image processing, and other related computational analysis. In the context of 
image processing, these samples are usually binary images or segmentation 
maps. This measures the similarity among segmentations. In practice, Dice coef-
ficients are considered an important measure of performance in applications 
where accurate image segmentation is especially critical to model performance, 
such as in medical imaging. High values of the Dice coefficient indicate good 
performance of the model, i.e., the algorithm used for segmentation accurately 
captures the desired features. Lower scores would suggest that a review in the 
model or methodology is necessary to identify the source of discrepancies be-
tween the prediction and ground truth. 

4.2. Feature Pyramid Networks (FPN) for Object Detection 

FPNs utilize an architecture with lateral connections to generate an accurate 
model for object detection or classification over multiple scales. The network 
boosts feature extraction at every scale which is critical in the context of PV 
characterization where image arrays may span small or large plots of land [12]. 
FPN architecture works both bottom-up and top-down pathways in parallel to 
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effectively make use of semantic information being extracted at every scale. This 
is a remarkable advantage for the application of fault detection in solar panels 
because shapes and sizes can vary tremendously across various arrays. The bot-
tom-up processing pathway enables processing of input images at increasing le-
vels of abstraction, while the top-down processing pathway refines information 
by using higher-resolution features from the lower levels. With this, FPNs can 
form lateral connections between corresponding levels of these two pathways, 
enriching the semantic value of the high-resolution features. 

Researchers can train the FPN on a dataset of aerial images of solar panels 
where faults have been labeled at varying scales. Adaptive wavelet analysis makes 
it possible for the network to work at different resolutions. The result is that not 
only small cracks but also large, damaged areas, which may emerge on different 
feature sets on their own, can be detected by the same model. Multi-scale feature 
extraction of FPN gives improved performances over single-scale models, which 
have the disadvantage of generating false positives or false negatives if the model 
is trained on a skewed dataset. 

4.3. DeepLabV3+ for Semantic Segmentation 

DeepLabV3+ applies atrous, or dilated, convolution to capture the multi-scale 
context of input data and classifications by adopting multiple atrous rates, which 
aids in capturing spatial hierarchies in input images [6]. Atrous convolution in-
volves inserting unitary holes into the convolutional filters to increase the field 
of view. By modulating these unitary hole sizes, the model can control the reso-
lution at which feature responses are computed. Therefore, it can generate fea-
ture weights at various scale for classification. 

 [ ] [ ] [ ]Output Input Filter
k

i i r k k= + ⋅ ⋅∑  (8) 

The equation above defines the output of the operation of atrous convolution. 
The output, defined at position i of the input feature map, is calculated by sum-
ming over the element-wise product of the input feature map and the filter 
weights. The dilation rate r scales the index k in determining the step by which 
to sample the input feature map. This allows the filter to increase its field of view 
without increasing the number of parameters or the computational cost.  

DeepLabV3+ is an advanced network neural network architecture that has 
been proposed for semantic segmentation with the goal of labeling every pixel of 
the image with a class. Semantic segmentation models are very relevant for ap-
plications such as autonomous driving, medical image analysis, or landscape ca-
tegorization. In each of these applications, multi-scale context emerges as an 
important criterion to capture the semantics of the segmentation as they involve 
features of interest in images only notable at different scales or at several resolu-
tions. Atrous convolution allows DeepLabV3+ to perform multi-scale context 
aggregation by modifying the dilation rate, which specifies how many pixels in a 
kernel should be skipped while performing convolution. This makes the model 
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adaptive in such a way that it can control the level of the computed feature res-
ponses and results, thereby effectively capturing spatial hierarchies. This allows 
the exponential growth of the receptive field without loss of either resolution or 
coverage, one of the most important advantages of atrous convolution. This de-
monstrates the advantageous nature of such convolutional networks when seg-
menting large objects in such a way that the details of the smaller objects are 
preserved. It is a powerful tool that guarantees feature maps of high resolution 
are maintained throughout the network. In practice, the atrous convolution is 
applied as a module within DeepLabV3+ architecture and is known as the Atr-
ous Spatial Pyramid Pooling (ASPP). ASPP probes an incoming feature set using 
filters at multiple sampling rates and effective fields of views to capture objects 
and image context in multiple scales. In practice, this really needs to be carefully 
weighed against the trade-off of receptive field sizes and feature map resolutions. 
It is, therefore, upon the research team to make model decisions that ensure that 
the selected rates of atrous convolution are in alignments with the scales of the 
objects of interest in the dataset, and thus, optimizing segmentation perfor-
mance. 

5. Data Mining and Artificial Intelligence in PV Monitoring 

The integration of artificial intelligence (AI) techniques and data mining in 
photovoltaic (PV) monitoring systems marks significant progress in the devel-
opment of renewable energy management systems [2] [3] [4] [7] [15] [16]. Ap-
plication of such advanced computational technologies enables fault detection 
pinpointing in PV systems and prediction of probable failures prior to such oc-
currences possible. With such tools, proactive maintenance of PV systems has 
become possible. In the PV monitoring context, data mining offers an important 
way to filter and process enormous operational data recorded in data loggers 
and collected from solar panels. This data includes electrical parameters, such as 
voltage, current, and temperature, in addition to the environmental parameters, 
such as sunlight intensity and meteorological conditions. Advanced data mining 
algorithms are then applied for the purpose of identifying useful correlations 
and patterns. For instance, the use of clustering algorithms may be helpful in 
grouping PV cells or modules based on performance or degradation similarities. 
This helps in the isolation of particular cells or units with the greatest likelihood 
of failure.  

Faults prediction, specifically through the use of machine learning models, is 
fundamental to shifting the PV monitoring paradigm from a reactive approach 
to proactive maintenance strategies. Models such as neural networks, decision 
trees, and ensemble methods like random forests have been used to forecast fail-
ures with high accuracy levels. These models are trained on historical perfor-
mance data and are capable of processing non-linear relationships and complex 
interactions between various electrical and environmental parameters. For ex-
ample, a neural network could be developed to forecast the chances of inverter 
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failure by learning from patterns of fluctuating voltage levels and high sur-
rounding temperatures. These proactive maintenance deployments avoid infra-
structure downtimes and additional maintenance costs. 

Real-Time Monitoring and Anomaly Detection 

Real-time monitoring is an area of particular interest in which machine learning 
models can prove their benefit [2] [7] [16]. Anomaly detection algorithms are 
designed to incorporate machine learning predictions while continuously scan-
ning data streams of PV installations. Based on these data updates, the algorithm 
can predict the likelihood of any given PV cell experiencing a fault or an immi-
nent fault. Such models can capture outlier data points that might predict the 
onset of a fault condition, so the operating firm can address maintenance issues 
at the onset of or prior to failure. Furthermore, reinforcement learning (RL) can 
be implemented to dynamically update model weights and parameters based on 
real-time data and additional manual labeling to allow the model to shift its pre-
dictive capabilities over time to reflect the most recent pool of data on PV sys-
tems.  

This adaptive element provided by reinforcement learning serves as a contrast 
to the traditional static anomaly detection systems. RL models learn from new 
datasets encoding novel or shifting relationships between features and classifica-
tions to improve decision making over time. These models do so by optimizing 
to receive an encoded reward by scoring algorithms if classifications are made 
accurately on new sets of data. This approach has been applied effectively in en-
vironments like industrial water treatment facilities, showcasing its potential in 
practical applications. These positive outlooks of RL in anomaly detection, how-
ever, are not without challenges: “The fully labeled data needed for RL training is 
a challenge unto itself, but more than that, one still needs to design and develop 
a robust model that can work effectively on real-world complexities”. However, 
RL’s pliant nature enables the continuous model improvement and adaptation 
that might bring about a solution to these limitations over larger time ranges. RL 
has gained support in its implementation for the detection of anomalies in view 
of network security and industrial systems. For example, experiments carried out 
on datasets like the SWaT Dataset from the Singapore University of Technology 
and Design have demonstrated the potential of RL in extracting anomalies from 
complex, multivariate time-series data. 

6. Future Directions and Challenges 

Despite these notable advances in machine learning approaches for PV system 
monitoring and fault detection, several challenges remain. First, the computa-
tional cost of large data sets is of big concern and raises a question, especially for 
deep learning models. Future research should work towards optimizing these 
algorithms for faster processing times and greater accuracy within the consider-
ation of real-world application constraints. The development of standardized 
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datasets for training and testing algorithms could also enhance model reliability 
across different geographic locations and conditions. The further integration of 
internet-of-things (IoT) devices, smart sensors within the PV systems, and hu-
man factors will open the doors to increasingly dynamic and responsive moni-
toring solutions [2] [3] [7] [16]. 

7. Conclusion 

In summary, this study has reviewed the significant development of machine 
learning methods for the detection of faults in photovoltaic (PV) panels, from 
the traditional manual methods to the array of advanced machine learning and 
deep learning techniques currently available. The integration of machine learn-
ing has, therefore, proven to be a very important tool in the analysis of electrical 
parameters, such as the I-V curves. Such models are capable of increasingly ac-
curate, more efficient, and real-time fault detection. In addition, the advance-
ment of deep learning, especially through the application of convolutional neural 
networks like EfficientNet-B0, has furthered the ability of identifying subtle 
faults on the solar panels using infrared imaging as an alternative model input. 
These technological improvements are more precisely able to detect faults and 
have the added advantage of making PV systems sustainable and durable by re-
ducing energy wastage and enabling timely maintenance. 
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