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Abstract 
Although there are many measures of variability for qualitative variables, they 
are little used in social research, nor are they included in statistical software. 
The aim of this article is to present six measures of variation for qualitative 
variables of simple calculation, as well as to facilitate their use by means of the 
R software. The measures considered are, on the one hand, Freeman’s varia-
tion ratio, Moral’s universal variation ratio, Kvalseth’s standard deviation 
from the mode, and Wilcox’s variation ratio which are most affected by 
proximity to a constant random variable, where the measures of variability 
for qualitative variables reach their minimum value of 0. On the other hand, 
the Gibbs-Poston index of qualitative variation and Shannon’s relative entro-
py are included, which are more affected by the proximity to a uniform dis-
tribution, where the measures of variability for qualitative variables reach 
their maximum value of 1. Point and interval estimation are addressed. Boot-
strap by the percentile and bias-corrected and accelerated percentile methods 
are used to obtain confidence intervals. Two calculation situations are pre-
sented: with a sample mode and with two or more modes. The standard devi-
ation from the mode among the six considered measures, and the universal 
variation ratio among the three variation ratios, are particularly recom-
mended for use. 
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1. Introduction 

Many measures of variation have been defined for qualitative variables [1] [2] 
[3]; however, they are little known and utilized, even though qualitative variables 
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are frequent and highly important in social and health research [4] [5]. In fact, 
many basic or applied statistics manuals do not even mention them, and com-
mercial or open-access statistical software does not include them. It is important 
to note that their development is relatively recent, beginning in the mid-20th 
century with the publication of the seminal article by the American mathemati-
cian Claude Elwood Shannon (1916-2001) on the mathematical theory of com-
munication [6], and with the diversity index proposed by Simpson [7]. These 
measures proliferated between the 1960s, and 1980s [2], and continue to be de-
veloped today [3] [8] [9]. 

In this article, six measures are considered: Freeman’s [10] Variation Ratio 
(FVR), Wilcox’s [1] Variation Ratio (WVR), Moral’s [3] Universal Variation Ratio 
(UVR), Kvalseth’s [11] Standard Deviation from Mode (SDM), Gibbs-Poston’s [12] 
Index of Qualitative Variation (IQV), and Shannon’s [13] Relative Entropy 
(RelE). The selected measures are simple to calculate, practical to use, clear to 
interpret, and have been applied in social research [3] [14] [15]. 

A characteristic shared by all these measures of variability is to have a range 
from 0 to 1. In this range, 0 corresponds to the distribution of a constant ran-
dom variable, in which one value concentrates all the probability at the popula-
tion level or all the frequency at the sample level. The value of 1 corresponds to a 
uniform distribution, in which all its values have the same probability at the 
population level or the same frequency at the sample level. 

The aim of this article is twofold. On the one hand, the six measures of varia-
tion are presented in a simple way for better understanding among social re-
searchers, since they are not included in commonly used statistical software, 
whether commercial or freely available. On the other hand, an additional objec-
tive is to facilitate their use through the R software, which is freely available. Two 
calculation situations are considered: qualitative data random samples with a 
single mode and with two or more modes. 

2. Freeman’s Variation Ratio 

The variation ratio was developed by the American psychology Larry C. Free-
man for unimodal distributions and can be denoted by FVR [10]. It starts from a 
formula of variation around the mode, and its expression is simplified to the 
complement of the frequency of the single mode. Refer to Formula (1), where ni 
represents absolute frequency of each value (i = 1, 2, …, k), k is the number of 
qualitative categories, nmo denotes absolute frequency of the single mode (mo), n 
signifies sample size, fi stands for relative frequency, and fmo represents relative 
frequency of the single mode. 
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It only applies to a unimodal distribution. In the case of a constant random 
variable, where a single value a concentrates all the frequency (fa = 1), the varia-
tion ratio is 0, since the value a is the mode and its relative frequency is one 
(FVR = 1 −fmo = 1 − 1 = 0). This represents the minimum variability condition. 
In the case of a uniform distribution, it can be argued that its value is 1 because 
this distribution has no mode, and consequently, the relative frequency of its 
mode is 0 (FVR = 1 − fmo = 1 − 0 = 1). This represents the situation of maximum 
variability. Its advantage is the simplicity of calculation and its disadvantage is 
the scarce information on the distribution used for its computation. 

3. Wilcox’s Variation Ratio 

The American political scientist Allen R. Wilcox published a standardized varia-
tion ratio based on the mode, which can be denoted by WVR [1]. Refer to For-
mula (2). 
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It is straightforward to establish the relationship between WVR and FVR, as 
shown in Formula (3). 
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       (3) 

Based on this equality, it can be stated that WVR is greater than or equal to 
FVR. This measure of variability necessarily requires that the distribution be 
unimodal. When there are two or more modes, it cannot be calculated. In the 
case of a uniform distribution, the modal frequency cannot be given a value of 0, 
as was argued with FVR, since the WVR statistic falls outside the range of 0 to 1 
stipulated for standardized indices of variation of qualitative variables: WVR = 
k/(k − 1) × FVR = k/(k − 1) × 1 = k/(k − 1) > 1. Consequently, it has more limi-
tations than FVR; however, it includes additional information on the number of 
qualitative categories of the variable. 

4. Moral’s Universal Variation Ratio 

The Spanish-Mexican psychologist José Moral proposed a modification of 
Freeman’s formula [3]. This new proposal allows its application in cases of mul-
tiple modes and considers the number of categories (k), as does the WRV. The 
author called this modified statistic the Universal Variation Ratio (UVR), be-
cause it can be applied to any type of qualitative variable distribution. Refer to 
Formula (4), where k represents number of qualitative categories of the variable, 
c stands for number of values with maximum (absolute or relative) frequency 
and this value can vary from 1 to k, fmax denotes maximum relative frequency 
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corresponding to the mode (fmo), except in a uniform distribution (c = k), in 
which it is considered that there is no mode and the value of all frequencies is 
1/k. 

max max
2max
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2 2
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111 1 111 max

f ff fkc c cUVR
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− × − −  = = = = × − − 
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     (4) 

Starting from Freeman’s formula, 1 − fmo, the proposed formula weights the 
modal relative frequency by the inverse of the number of modes (1/c) and di-
vides the expression by its maximum value. This maximum is reached with the 
uniform distribution, when c = k, fmax = 1/k y 1 – 1/c × fmax = 1 – 1/k × 1/k = 1 – 
1/k2. 

When a value monopolizes the entire frequency (constant random variable), 
where the modal frequency is unique and has a unit value (c = 1 and fmax = 1), 
the Universal Variation Ratio (UVR) reaches its minimum value of 0 (Formula 
(5)). 

2 2 2
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If there is no mode (uniform distribution), all categories have the same fre-
quency and this frequency is the maximum (1/k), the value of c is k and the 
Universal Variation Ratio (UVR) reaches its maximum value of 1 (Formula (6)). 
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As c approaches k, where k is the number of categories (uniform distribution), 
the result of the proposed modification approaches 1, as shown in Formula (7). 
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This is because, to the extent that the sample of qualitative variable A presents 
more categories with maximum frequency (c), the subtractive effect of the 
maximum frequency decreases in the modified variation ratio (1 − fmax/c), and 
consequently, the value of this measure of variability increases (UVR). The lower 
the number of categories (k), the greater the increase in the Universal Variation 
Ratio (UVR), since the variability is more evenly distributed, moving the distri-
bution of variable A away from that of a constant random variable (minimum 
value) and closer to that of a uniform distribution (maximum value). 

In the case of a mode (c = 1), which is the situation in which FVR and Moral’s 
UVR are comparable, UVR yields a value greater than or equal to FVR, as does 
WRV. Refer to Formula (8). 
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When the number of qualitative categories (k) is very small, there is a greater 
difference between UVR and FVR. With two categories, the difference or in-
crease is one third: UVR-FVR = k2/(k2 − 1) = 0.333. With three categories, the 
difference or increase is one-eighth: UVR-FVR = k2/(k2 − 1) = 0.125. However, 
as the number of categories increases, the difference becomes smaller. With four 
categories, the difference or increment is 0.067, and with five, it is 0.042. When 
the number of categories tends to infinity, UVR converges to FVR, as shown in 
Formula (9), where c = 1. 

( )
2 2
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2 2lim 1 lim 1 1

1 1 mo mok k

fk kUVR f f FVR
ck k→∞ →∞

 = − = − = − = − − 
      (9) 

In contrast to FVR, the new measure of variation proposed by Moral [3] is less 
than or equal to Wilcox’s WVR [1], when there is a single qualitative category 
with maximum frequency (c = 1). Consequently, FVR always takes a value less 
than or equal to UVR, and UVR always takes a value less than or equal to WVR. 
Refer to Formula (10). 
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5. Kvalseth’s Standard Deviation from Mode 

The Norwegian-born American engineer Tarald O. Kvalseth proposed a new 
standardized index named Standard Deviation from Mode (SDM) [11]. Its ad-
vantage is that it utilizes all frequencies. Although it can be calculated with mul-
tiple modes (two or more of the k values with modal frequency), or even with a 
uniform distribution (the k values with maximum frequency), the author pro-
posed the measure of variation for a unimodal distribution (Formula (11)). This 
restriction allows him to determine an asymptotic standard error, define an 
asymptotic confidence interval, and specify the use of inferential statistics to 
compare two or more SDM statistics. 
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Algebraically, it can be demonstrated that the value of Kvalseth’s SDM esti-
mator is less than or equal to WVR. Refer to Formula (12). 
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As the sample size increases ( n →∞ ), the sampling distribution of the SDM 
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statistic converges to a normal distribution with mean SDM and variance 2
DEMσ . 

Refer to Formula (13). 
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The square root of the above expression gives the standard deviation of the 
sampling distribution of SDM or standard error of SDM, as shown in Formula 
(14). 
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Substituting the probability with its estimator ˆ ii ip n n f= =  and using the 
sample mode, we obtain the estimator of the standard deviation of the sampling 
distribution of SDM or standard error of SDM (Formula (15)) 
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When the sample size is reasonably large (n ≥ 30), the standard error allows 
for interval estimates of SDM. See Formula (16), where z1-α/2 represents quantile 
of order 1 − α/2 in a standard normal distribution and 1 − α = level of confi-
dence. 
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6. Gibbs-Poston Index of Qualitative Variation 

The American sociologists Jack P. Gibbs and Dudley L. Poston [12] took up the 
M1 index (Formula (17)), which had been defined as a diversity index by the 
English statistician Edward Hugh Simpson [7], who derived it from the Italian 
statistician and sociologist Corrado Gini [16]. 
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= −∑                       (17) 

This index can be interpreted as the complement of the probability that a 
random pair of samples belongs to the same category; in other words, it esti-
mates the probability that the pair does not belong to the same category. This 
index has also been referred to as the differentiation index, livelihood differen-
tiation index, and geographical differentiation index, depending on the context 
in which it has been used [17]. 

Gibbs and Poston [12] proposed a second index (M2), which is the standar-
dized version of the previous one, called the Index of Qualitative Variation 
(IQV). Refer to Formula (18). It is the most widely used measure of qualitative 
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variation, especially in the social sciences [11]. 
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In the case of a constant random variable or random sample in which the n 
data points correspond to a single value a, the value of IQV is 0 (Formula (19)). 
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In the case of a uniform distribution, the value of IQV is 1 (Formula (20)). 
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This measure of variation applies to any type of distribution. It uses all the in-
formation of the distribution, but usually gives high values, especially as the fre-
quency is more distributed (proximity to a uniform distribution). 

7. Shannon’s Relative Entropy 

Entropy is the measure of disorder in a system of elements [18]. In probability 
theory, entropy is at its maximum when all elements are equiprobable and the 
presence of some elements does not allow predicting the appearance of others. 
The concept originates from thermodynamics and was applied to information 
theory by the American mathematician and electrical engineer Claude Elwood 
Shannon [13]. From there, it transitioned to statistics as a property to character-
ize both discrete and continuous distributions and to measure variability in qua-
litative variables (classification systems). At the population level, it is denoted by 
the capital Greek letter eta (Η), and at the sample level, by the capital Latin letter 
E. Entropy is the mathematical expectation of Shannon’s information or loga-
rithm of the probability mass function [13]. Refer to Formula (21). 

( ) ( ) ( )( ) ( )( )log logb b XH X E I E P X x E f x   = = − = = −          (21) 

When the information (IX) is in base 2, we speak of bits or binary units of in-
formation. When the information is in decimal base, we speak of dits or decimal 
units of information. When the information is in the natural base, we speak of 
nats or natural units of information. This last option is the most used. 

For an empirical or sample frequency distribution of a qualitative variable A 
(with k values), the entropy is calculated as shown in Formula (22), where fn(ai) 
represents relative frequency of the value ai of the qualitative variable A, n(ai) 
denotes absolute frequency of the value ai of the qualitative variable A, and n 
stands for sample size. 

( ) ( )( )
1 1

ln lni i
k k

a a
n i n i

i i

n n
E f a f a

n n= =

 
= − = −  

 
∑ ∑              (22) 

Any null frequency must be omitted in the entropy calculation. Proceeding in 
this manner, the statistic ΗA can take values in the interval [0, ln(k)], where k is 
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the number of categories, including the categories omitted due to null frequency. 
Knowing the maximum value of entropy in a discrete distribution, which cor-

responds to the discrete uniform distribution U{a, b}, the Shannon’s normalized 
or relative entropy can be calculated. This maximum value is the natural loga-
rithm of the cardinality or number of values (k) in the bounded interval from a 
(minimum) to b (maximum) of the support of a discrete uniform distribution: 
ln(k), where k = #{a, b}. The relative entropy is denoted by RelΗ at the popula-
tion level and RelE at the sample level, and it is the average entropy or informa-
tion divided by its maximum value [13]. For an empirical or sample frequency 
distribution, the relative entropy is calculated using Formula (23). In the case of 
a constant random variable, the number of categories (k) is given a value of 2. 

( )
( ) ( )( )
( ) ( )

1
1

ln
ln

max ln ln

i ixk x
i

n i n ii
k

n n
f a f a n nERelE

E k k

=
=

 
−  −  = = =
∑∑      (23) 

Like the Gibbs-Poston measure [12], it applies to any type of distribution. It 
utilizes all the information of the distribution, but usually gives high values, par-
ticularly when the frequency is more evenly distributed (approaching a uniform 
distribution). 

8. Pattern of Behavior of the Six Defined Variation Measures 

Moral [3] studied the behavior of these six measures in relation to different dis-
tributions: the distribution of a constant random variable and eight discrete dis-
tributions with five nominal categories: the first with a distribution close to that 
of a constant random variable; the second with a distribution close to symmetry 
around a single mode; the third with strict symmetry around a single mode; the 
fourth close to a uniform distribution, although with a single mode; the fifth 
with a bimodal distribution; the sixth with a trimodal distribution; the seventh 
with a quadrimodal distribution; and the eighth with a uniform distribution. 

After analyzing this data, Moral [3] notes that FVR, UVR, WVR, and SDM are 
more sensitive to the proximity to a distribution in which a category concen-
trates all the probability than IQV and RelE, as their value is closer to the ex-
pected value for the distribution of a constant random variable, which is 0. On 
the contrary, the last two indices are more sensitive to the proximity to a uni-
form distribution, albeit with a poorly defined mode, i.e., a unimodal distribu-
tion with very similar frequencies, so their value is closer to the expected value 
for a uniform distribution, which is 1. When the distribution is uniform, imply-
ing that all categories have exactly the same probability or frequency, the value 
of all indices is 1, except for Wilcox’s variation ratio, which cannot be calculated. 
It should be noted that the universal variation ratio closely resembles Freeman’s 
variation ratio when the distribution is unimodal. The more defined the single 
mode is, the closer the latter two indices are to the value of 0, indicating the 
presence of a constant random variable. 

In the case of more than one mode, Freeman’s and Wilcox’s variation ratios 
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cannot be calculated. With the presence of more than one mode, the increase in 
the index value is experienced more strongly in IQV and RelE. The universal 
variation ratio shows the most moderate increase with two modes, while the 
standard deviation from the mode is the most moderate with more than two 
modes. 

9. Confidence Intervals for Qualitative Measures of  
Variability 

There are essentially five methods to define the confidence interval of a statistic: 
1) Asymptotic normal method: Also known as the Wald-type confidence in-

terval [19]. This method relies on the central limit theorem. It is based on the 
convergence in distribution of the sampling distribution of the standardized sta-
tistic to a standard normal distribution. It necessitates a large random sample 
and that the sampling distribution has finite mean and variance. The delta me-
thod is typically employed to determine such mean and variance [20]. If the 
sampling distribution is normal, a large but random sample is not necessary. 

2) Student’s t-distribution method: It is a robust variant of the asymptotic 
normal method, utilized when the finite population standard deviation is un-
known and the sample size is small [21]. 

3) Resampling methods: This approach involves obtaining the sampling dis-
tribution of the statistic by generating numerous samples from the original ran-
dom sample and calculating the statistic in each of them. The point estimator of 
the parameter is the mean of this generated distribution, and the standard error 
is the sample standard deviation of the generated distribution. The first tech-
nique developed was the permutation of the data from the original sample, fol-
lowed by the jackknife technique, in which one element is removed, and n sam-
ples of n − 1 data are generated. Finally, the technique of sampling with re-
placement improved the jackknife procedure. Confidence intervals, such as 
Wald-type or t-type, or using the percentiles of the simulated sampling distribu-
tion, are defined [22]. 

4) Bayesian method: In Bayesian statistics, confidence intervals are replaced 
by credible intervals. These intervals represent the range within which a para-
meter value falls with a certain probability, given the observed data and prior 
knowledge [23]. 

5) Exact method: The confidence interval is constructed using the probability 
distribution of the sample statistic. Unlike approximate methods, exact confi-
dence intervals provide precise coverage probabilities for the true parameter of 
interest, regardless of the sample size or distributional assumptions. They have 
primarily been developed for statistics that follow a discrete distribution, such as 
binomial, multinomial, hypergeometric, or Poisson distribution [24]. 

Each method has its strengths and weaknesses. The choice of method depends 
on the sample size and the population distribution or sampling distribution of 
the statistic. For example, when the finite population standard deviation is un-
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known and the sample size is small, the t-distribution method is preferred over 
the Wald-type method. Bootstrap methods are useful when the underlying dis-
tribution is unknown or non-normal. Bayesian methods are powerful when 
prior knowledge about the parameter of interest is available. When the probabil-
ity distribution of the statistic is known, the exact confidence interval is pre-
ferred, especially with small samples. 

Since the sampling distributions of the six measures of variation considered 
are unknown, repetitive sampling with replacement (bootstrap) can be used to 
obtain these distributions. Through nonparametric methods: percentile (PERC) 
and Corrected-Bias and Accelerated (BCa) percentile, confidence intervals can 
be defined [25]. In cases of bias and skewness, the latter method is preferred over 
the former [26]. When the bias-corrected percentile has an extreme value, the 
confidence interval cannot be calculated by the BCa method. In this case, the bi-
as-corrected percentile can be given a value of 0, which yields a result equivalent 
to the percentile method, as suggested by Efron [27]. The calculation algorithms 
to obtain the confidence interval for both methods are shown below [28]. 

1) A random sample, denoted by x, of size n from the variable X is utilized as 
the starting point: { }1 2, , , nx x x x X= ⊆ . The variable X can be qualitative, or-
dinal, or quantitative. In this work, our focus is on qualitative variables. 

2) The measure of variability for qualitative variable is calculated: ( )ˆ t xθ = , 
which is the estimate of the parameter θ in the original sample of size n. 

3) B independent samples of size n are drawn with replacement from the 
original random sample x of size n. It is recommended that there be at least 1000 
draws (B ≥ 1000), that the sample size be at least 30 (n ≥ 30), and that the ran-
dom sample be representative of the population from which it was collected. 

4) In each of the B samples, the measure of variability ( )* 1,2, ,i i Bθ =   is 
calculated, which generates the bootstrap sampling distribution of the statistic or 
estimator. This distribution can be represented by means of a histogram, using 
the Freedman-Diaconis rule to determine the uniform width of class intervals 
[29]. This method searches for an optimal interval width without making as-
sumptions about the distribution of the statistic. 

5) The bootstrap estimate of the parameter θ is the arithmetic mean of the 
bootstrap sampling distribution of the statistic or estimator and is denoted by 

b̂ootstrapθ  (Formula (24)). Bootstrap standard error is the sample or bi-
as-corrected standard deviation of the bootstrap sampling distribution of the 
statistic or estimator and is denoted by seboostrap (Formula (25)). Bootstrap bias is 
the difference between the bootstrap estimate and the estimate in the original 
sample ( θ̂ ) and is denoted by biasboostrap (Formula (26)). 

1
ˆ

ˆ ˆ ii
bootstra

B

p B
θ

θ θ
∗

∗ === ∑                      (24) 

( )2

1
ˆ ˆ

1
i bootstrapi

bootstra

B

p B
se

θ θ∗
=

−
=

−

∑
                (25) 
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ˆ ˆ
boostrap bootstrapbias θ θ= −                      (26) 

6) The α/2 order quantile of the bootstrap sampling distribution of the statis-
tic or estimator defines the lower limit, and the 1 − α/2 order quantile consti-
tutes the upper limit of the confidence interval at (1 − α) × 100 by the percentile 
method (Formula (27)). 

{ } { }* *
2 1 21 1

ˆ ˆ 1
B B

i ii i
P q qα αθ θ θ α−= =

  ≤ ≤ = −   



 
 

           (27) 

The quantile can be obtained using Rule 8 of the R software, as recommended 
by Hyndman and Fan [30] for calculating sample quantiles (Formula (28)). This 
rule expresses the order of the quantile (p) as the median of the order statistic i 
of a standard continuous uniform distribution U [0, 1], which serves as the 
non-informative prior when estimating a probability in Bayesian inference and 
is the distribution followed by randomly chosen probability values. If many 
random samples of size n are drawn from a standard continuous uniform dis-
tribution and the data of each sample are sorted in ascending order, the statistic 
of order i follows the beta distribution of shape parameters: α = i and β = n + 1 − 
i. Since α and β are not less than 1 and when they are equivalent are greater than 
1, its median is approximately: (α − 1/3)/(α + β − 2/3). 

( )

( ) ( ) ( ) ( ) ( )( )1

1 3 1 3 1 3
2 3 1 2 3 1 3

1 1
3 3

p i i i

i ip
i n i n

i p n i i i
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+

− − −
= = =

+ − + + − − +

 = + + = + −       
 

= + − −  

             (28) 

7) To obtain the confidence interval using the second method, we start by 
calculating the bias-corrected percentile, as shown in Formula (29), where I is 
the indicator function (0 when the condition is not met and 1 when it is met), 
and Φ−1 represents the probit function or quantile function of the standard nor-
mal distribution. 

( )*
1* 1

0

ˆ ˆB
ii I

z
B

θ θ
=−

 ≤
 = Φ
 
 

∑
                    (29) 

For extreme values, when the argument of the probit function in the Formula 
(29) approaches 0 or 1, *

0z  becomes undefined. In this case, *
0z  can be as-

signed a value of 0, so that the bootstrap Bias-Corrected and accelerated (BCa) 
confidence interval corresponds to the percentile bootstrap confidence interval 
[27]. 

8) The asymmetry correction factor (acceleration) is calculated using Formula 
(30) based on the jackknife method. Following this method, n samples are gen-
erated from the random sample x of size n, removing one sample datum in each 
sample, and the statistic or estimator ( )

ˆ
iθ −  is calculated in each of the n sam-

ples. 
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9) The orders of the bias-corrected and accelerated quantiles corresponding to 
the lower and upper limits of the confidence interval at (1 − α) × 100 are deter-
mined. Refer to Formula (31), where Φ is probit function, and zα/2 and z1-α/2 are 
quantiles of a standard normal distribution. 

( ) ( )
* *
0 2 0 1 2* *

0 0* *
0 2 0 1 2

and
1 1LL UL

z z z z
p z p z

a z z a z z
α α

α α

−

−

   + +
   = Φ + = Φ +
   − + − +   

  (31) 

10) The pLL order quantile of the bootstrap sampling distribution of the statis-
tic or estimator defines the lower limit, and the pUL order quantile defines the 
upper limit of the confidence interval at (1 − α) × 100 by the bias-corrected and 
accelerated percentile method, as shown in Formula (32). These quantiles can be 
computed using rule 8 of the R software [30]. 

{ } { }* *

1 1
ˆ ˆ 1

LL UL

B B

p i p ii i
P q qθ θ θ α

= =

   ≤ ≤ = −    
 
 

             (32) 

10. Computation of Measures of Variability for Qualitative  
Variables with the R Software 

One of the reasons for the underutilization of these measures of variability is 
their unavailability in statistical software. Below are two scripts for the R soft-
ware, which can be adjusted to accommodate sample data other than those pro-
vided. The elements requiring change for such adjustment are highlighted in 
blue. 

The first script pertains to a random sample with one mode, whereas the 
second script is designed for a random sample with two modes. In the first sam-
ple, the script calculates the six measures of variation and the asymptotic confi-
dence interval for Kvalseth’s SDM, given the unique mode. 

For the two-mode sample, commands for FVR and WRV are excluded, along 
with the standard error and asymptotic confidence interval for the SDM, as they 
cannot be computed. In the first script, bootstrap confidence intervals are com-
puted using the percentile method. In the second script, these confidence inter-
vals are calculated using the bias-corrected and accelerated percentile method. All 
results are rounded to four decimal places. The first script provides low-definition 
graphics output generated by the R program, while the second script displays the 
commands used to save these graphics as high-definition image files (*.jpeg). 

10.1. Example 1 

From the qualitative variable A = “marital status in a population of adult men 
aged 20 to 60 years living in a northern Mexican border city”, a random sample 
of 72 participants was drawn. It is required to represent its distribution by means 
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of a frequency table and a bar chart. Additionally, calculating the mode of the 72 
sample data as a measure of central tendency, along with Freeman’s Variation 
Ratio (FVR), Wilcox’s Variation Ratio (WVR), Moral’s Universal Variation Ra-
tio (UVR), Kvalseth’s Standard Deviation from Mode (SDM) with its asymptotic 
standard error, Gibbs-Poston Index of Qualitative Variation (IQV), and Shan-
non’s Relative Entropy (RelE) as measures of variation is desired. 

Furthermore, obtaining the 95% confidence interval for the six measures of 
variation is necessary. For this purpose, it is advisable to utilize bootstrap using 
the percentile method. 

As additional information, including the bootstrap point estimate, standard 
error, and bias is necessary, along with representing the bootstrap distribution 
using a histogram with the density curve superimposed, following the Freed-
man-Diaconis rule to determine the width of class intervals [29]. 

---R script for Example 1--- 
# Data definition (common for all six measures of variation) 
A<- c(“Single”, “Married”, “Living together”, “Separated”, “Divorced”, “Wi-

dowed”) 
a<- c(2, 1, 3, 3, 6, 5, 3, 2, 1, 1, 3, 2, 5, 6, 1, 1, 2, 3, 4, 1, 2, 1, 5, 2, 3, 2, 2, 3, 2, 2, 1, 

2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 4, 2, 2, 4, 1, 3, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 2, 2, 2, 1, 4, 2, 
1, 4, 2, 1, 3, 2, 1) 

 
# Frequency table and bar plot (common for all six measures) 
frequency_table<- table(factor(a, levels = 1:6, labels = A)) 
Marital_status<- names(frequency_table) 
abs_freq<- as.vector(frequency_table) 
N <- sum(abs_freq) 
rel_fre<- abs_freq/N 
rel_freq = round(rel_fre, 4) 
pct <- rel_freq * 100 
complete_table<- data.frame(Marital_status, abs_freq, rel_freq, pct) 
print_table<- complete_table[, c(“Marital_status”, “abs_freq”, “rel_freq”, 

“pct”)] 
cat(“Frequency distribution of marital status among men\n”) 
print(print_table) 
barplot(rel_freq, names.arg = A, xlab = “MS”, ylab = “Relative frequency”, 

main = “Bar chart: Marital status”, las = 2, col = “lightgray”) 
 

# Mode calculation (common for all six measures) 
modes <- Marital_status[abs_freq == max(abs_freq)] 
mode_frequency<- max(rel_fre) 
n <- length(a) 
k <- length(Marital_status) 
c <- length(modes) 
cat(“Sample size: n =”, n, “\n”) 
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cat(“Number of nominal categories: k =”, k, “\n”) 
cat(“Modal categories: mo =”, modes, “\n”) 
cat(“Number of modal values: c =”, c, “\n”) 
cat(“Relative frequency of the mode: fmo =”, round(mode_frequency, 4), 

“\n”) 
 

# Calculation of FVR and its 95% PERC bootstrap confidence interval 
FVR <- 1 - mode_frequency 
cat(“Freeman’s (1965) Variation Ratio: FVR =”, round(FVR, 4), “\n”) 
set.seed(123) 
B <- 1000 
boot_FVR<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(a, replace = TRUE) 
boot_freq_table<- table(factor(boot_sample, levels = 1:6, labels = A)) 
boot_mode<- max(boot_freq_table)/sum(boot_freq_table) 
boot_FVR[i] <- 1 - boot_mode 
} 
BE_FVR <- mean(boot_FVR) 
bias_FVR<- mean(boot_FVR) - FVR 
se_FVR<- sd(boot_FVR) 
cat(“Bootstrap estimation for FVR:”, round(BE_FVR, 4), “\n”) 
cat(“Bootstrap bias for FVR:”, round(bias_FVR, 4), “\n”) 
cat(“Bootstrap standard error for FVR:”, round(se_FVR, 4), “\n”) 
PERC_CI_FVR <- quantile(boot_FVR, c(0.025, 0.975), type = 8) 
cat(“The 95% PERC bootstrap confidence interval for FVR: [”, round 

(PERC_CI_FVR[1], 4), “,”, round(PERC_CI_FVR[2], 4), “]\n”) 
 

# Freedman-Diaconis histogram with overlaid density curve for FVR 
hist(boot_FVR, breaks = “fd”, col = “lightgrey”, border = “black”, freq = 

FALSE, main = “Freedman-Diaconis histogram with overlaid density curve”, 
xlab = “Bootstrap Freeman Variation Ratio”, ylab = “Density”, xlim = c(0, 1)) 

lines(density(boot_FVR), col=“black”, lwd=4) 
 

# Calculation of WVR and its 95% PERC bootstrap confidence interval 
WVR <- k/(k - 1) * (1 - mode_frequency) 
cat(“Wilcox’s (1973) Variation ratio: WVR =”, round(WVR, 4), “\n”) 
set.seed(123) 
boot_WVR<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(a, replace = TRUE) 
boot_freq_table<- table(factor(boot_sample, levels = 1:6, labels = A)) 
boot_mode<- max(boot_freq_table)/sum(boot_freq_table) 
boot_WVR[i] <- k/(k - 1) * (1 - boot_mode) 
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} 
BE_WVR <- mean(boot_WVR) 
bias_WVR<- mean(boot_WVR) - WVR 
se_WVR<- sd(boot_WVR) 
cat(“Bootstrap estimation for WVR:”, round(BE_WVR, 4), “\n”) 
cat(“Bootstrap bias for WVR:”, round(bias_WVR, 4), “\n”) 
cat(“Bootstrap standard error for WVR:”, round(se_WVR, 4), “\n”) 
percentile_conf_interval_WVR<- quantile(boot_WVR, c(0.025, 0.975), type = 

8) 
cat(“The 95% PERC bootstrap confidence interval for WVR: [”, round (per-

centile_conf_interval_WVR[1], 4), “,”, round(percentile_conf_interval_WVR[2], 
4), “]\n”) 

 
# Freedman-Diaconis histogram with overlaid density curve for WVR 
hist(boot_WVR, breaks = “fd”, col = “lightgrey”, border = “black”, freq = 

FALSE, 
main = “Freedman-Diaconis histogram with overlaid density curve”,  
xlab = “Bootstrap Wilcox Variation Ratio”, ylab = “Density”, xlim = c(0, 1)) 
lines(density(boot_WVR), col = “black”, lwd = 4) 

 
# Calculation of UVR and its 95% PERC bootstrap confidence interval 
UVR <- k^2 /( k^2-1) * (1 - mode_frequency/c) 
cat(“Moral’s (2022) Universal Variation Ratio: UVR =”, round(UVR, 4), “\n”) 
set.seed(123) 
boot_UVR<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(a, replace = TRUE) 
boot_freq_table<- table(factor(boot_sample, levels = 1:6, labels = A)) 
boot_mode<- max(boot_freq_table)/sum(boot_freq_table) 
boot_mode_num<- sum(boot_freq_table == max(boot_freq_table)) 
boot_UVR[i] <- k^2/(k^2 - 1) * (1 - boot_mode/boot_mode_num) 
} 
BE_UVR <- mean(boot_UVR) 
bias_UVR<- mean(boot_UVR) - UVR 
se_UVR<- sd(boot_UVR) 
cat(“Bootstrap estimation for UVR:”, round(BE_UVR, 4), “\n”) 
cat(“Bootstrap bias for UVR:”, round(bias_UVR, 4), “\n”) 
cat(“Bootstrap standard error for UVR:”, round(se_UVR, 4), “\n”) 
PERC_CI_UVR <- quantile(boot_UVR, c(0.025, 0.975), type = 8) 
cat(“The 95% PERC bootstrap confidence interval for UVR: [”, round 

(PERC_CI_UVR[1], 4), “,”, round(PERC_CI_UVR[2], 4), “]\n”) 
 

# Freedman-Diaconis histogram with overlaid density curve for UVR 
hist(boot_UVR, breaks = “fd”, col = “lightgrey”, border = “black”, freq = 
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FALSE, main = “Freedman-Diaconis histogram with overlaid density curve”, 
xlab = “Bootstrap Moral Universal Variation Ratio”, ylab = “Density”, xlim = c(0, 
1)) 

lines(density(boot_UVR), col=“black”, lwd=4) 
 

# Calculation of Tvalseth’s Standard Deviation from Mode (SDM) 
f_mo<- mode_frequency 
SDM <- 1 - sqrt(sum((f_mo - rel_fre)^2)/(k - 1)) 
cat(“Tvalseth’s (1988) Standard Deviation from Mode: SDM =”, round(SDM, 

4), “\n”) 
 

# Calculating the asymptotic standard error and 95% confidence interval for 
SDM 

ase <- sqrt((f_mo * (1 - k * f_mo)^2 + sum(rel_fre * (f_mo - rel_fre)^2))/(N * 
(k - 1)^2 * (1 - SDM)^2) - (1 - SDM)^2/N) 

cat(“Asymptotic Standard Error of SDM: ASE(SDM) =”, round(ase, 4), “\n”) 
alpha <- 0.05 
z_crit<- qnorm(1 - alpha/2) 
ACI<- c(SDM - z_crit * ase, SDM + z_crit * ase) 
cat(“The 95% asymptotic confidence interval for SDM: [”, round(ACI[1], 4), 

“,”, round(ACI[2], 4), “]\n”) 
 

# Calculation of the 95% PERC bootstrap confidence interval for SDM 
set.seed(123) 
boot_SDM<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(a, replace = TRUE) 
boot_freq_table<- table(factor(boot_sample, levels = 1:6, labels = A)) 
boot_mode_freq<- max(boot_freq_table)/sum(boot_freq_table) 
boot_SDM[i] <- 1 - sqrt(sum((boot_mode_freq - rel_fre)^2)/(k - 1)) 
} 
BE_SDM <- mean(boot_SDM) 
bias_SDM<- mean(boot_SDM) - SDM 
se_SDM<- sd(boot_SDM) 
cat(“Bootstrap estimation for SDM:”, round(BE_SDM, 4), “\n”) 
cat(“Bootstrap bias for SDM:”, round(bias_SDM, 4), “\n”) 
cat(“Bootstrap standard error for SDM:”, round(se_SDM, 4), “\n”) 
PERC_CI_SDM <- quantile(boot_SDM, c(0.025, 0.975), type= 8) 
cat(“The 95% PERC bootstrap confidence interval for SDM: [”, round 

(PERC_CI_SDM[1], 4), “,”, round(PERC_CI_SDM[2], 4), “]\n”) 
# Freedman-Diaconis histogram with overlaid density curve for SDM 
hist(boot_SDM, breaks = “fd”, col = “lightgrey”, border = “black”, freq = 

FALSE, main = “Freedman-Diaconis histogram with overlaid density curve”, 
xlab = “Bootstrap Tvalseth Standard Deviation from Mode”, ylab = “Density”, 
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xlim = c(0, 1)) 
lines(density(boot_SDM), col=“black”, lwd=4) 

 
# Calculation of IQVand its 95% PERC bootstrap confidence interval 
IQV <- k/(k - 1) * (1 - sum(rel_fre^2)) 
cat(“Gibbs-Poston (1975) Index of Qualitative Variation: IQV =”, round(IQV, 

4), “\n”) 
boot_IQV<- numeric(B) 
set.seed(123) 
for (i in 1:B) { 
boot_sample<- sample(a, replace = TRUE) 
boot_frequency_table<- table(factor(boot_sample, levels = 1:6, labels = A)) 
boot_rel_fre<- as.vector(boot_frequency_table)/sum(boot_frequency_table) 
boot_IQV[i] <- k/(k - 1) * (1 - sum(boot_rel_fre^2)) 
} 
BE_IQV <- mean(boot_IQV) 
bias_IQV<- mean(boot_IQV) - IQV 
se_IQV<- sd(boot_IQV) 
cat(“Bootstrap estimation for IQV:”, round(BE_IQV, 4), “\n”) 
cat(“Bootstrap bias for IQV:”, round(bias_IQV, 4), “\n”) 
cat(“Bootstrap standard error for IQV:”, round(se_IQV, 4), “\n”) 
PERC_CI_IQV <- quantile(boot_IQV, c(0.025, 0.975), type = 8) 
cat(“The 95% PERC bootstrap confidence interval for IQV: [”, round 

(PERC_CI_IQV[1], 4), “,”, round(PERC_CI_IQV[2], 4), “]\n”) 
 

# Freedman-Diaconis histogram with overlaid density curve for IQV 
hist(boot_IQV, breaks = “fd”, col = “lightgrey”, border = “black”, freq = 

FALSE, main = “Freedman-Diaconis histogram with overlaid density curve”, 
xlab = “Bootstrap Gibbs-Poston Index of Qualitative Variation”, ylab = “Densi-
ty”, xlim = c(0, 1)) 

lines(density(boot_IQV), col=“black”, lwd=4) 
 

# Calculation of RelE and its 95% PERC bootstrap confidence interval 
entropy <- -sum(rel_fre * log(rel_fre + (rel_fre == 0))) 
RelE <- entropy/log(k) 
cat(“Shannon’s (1948) Entropy: E =”, round(entropy, 4), “\n”) 
cat(“Shannon’s (1948) Relative Entropy: RelE =”, round(RelE, 4), “\n”) 
set.seed(123) 
boot_RelE<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(a, replace = TRUE) 
boot_freq_table<- table(factor(boot_sample, levels = 1:6, labels = A)) 
boot_rel_fre<- as.vector(boot_freq_table)/sum(boot_freq_table) 
boot_entropy<- -sum(boot_rel_fre* log(boot_rel_fre + (boot_rel_fre== 0))) 
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boot_RelE[i] <- boot_entropy/log(k) 
} 
BE_RelE<- mean(boot_RelE) 
bias_RelE<- mean(boot_RelE) - RelE 
se_RelE<- sd(boot_RelE) 
cat(“Bootstrap estimation for RelE:”, round(BE_RelE, 4), “\n”) 
cat(“Bootstrap bias for RelE:”, round(bias_RelE, 4), “\n”) 
cat(“Bootstrap standard error for RelE:”, round(se_RelE, 4), “\n”) 
PERC_CI_RelE<- quantile(boot_RelE, c(0.025, 0.975), type = 8) 
cat(“The 95% PERC bootstrap confidence interval for RelE: [”, round 

(PERC_CI_RelE[1], 4), “,”, round(PERC_CI_RelE[2], 4), “]\n”) 
 

# Freedman-Diaconis histogram with overlaid density curve for RelE 
hist(boot_RelE, breaks = “fd”, col = “lightgrey”, border = “black”, freq = 

FALSE, main = “Freedman-Diaconis histogram with overlaid density curve”, 
xlab = “Bootstrap Shannon Relative Entropy”, ylab = “Density”, xlim = c(0, 1)) 

lines(density(boot_RelE), col=“black”, lwd=4) 
 

This script can be executed online as the R software is accessible at 
https://rdrr.io/snippets/ with over 19000 pre-installed packages available for free. 
Table 1 along with the requested statistics and confidence intervals are displayed 
as output. The graphs are excluded because they are low-definition. It should be 
noted that the ggplot2 library of the R software can be utilized to save these 
graphics as high-definition image files (*.jpeg), as shown the second script. 

Sample size: n = 72 
Number of nominal categories: k = 6 
Modal categories: mo = Married 
Number of modal values: c = 1 
Relative frequency of the mode: fmo = 0.3889 
Freeman’s (1965) Variation Ratio: FVR = 0.6111 
Bootstrap estimation for FVR: 0.597 
Bootstrap bias for FVR: −0.0142 
Bootstrap standard error for FVR: 0.0459 
The 95% PERC bootstrap confidence interval for FVR: [0.5, 0.6806] 

 
Table 1. Frequency distribution of marital status among men. 

Marital_status abs_freq rel_freq pct 

Single 23 0.3194 31.94% 

Married 28 0.3889 38.89% 

Free union 10 0.1389 13.89% 

Separated 5 0.0694 6.94% 

Divorced 4 0.0556 5.56% 

Widowed 2 0.0278 2.78% 

https://doi.org/10.4236/ojs.2024.143013
https://rdrr.io/snippets/


J. Moral de la Rubia 
 

 

DOI: 10.4236/ojs.2024.143013 277 Open Journal of Statistics 
 

Wilcox’s (1973) Variation ratio: WVR = 0.7333 
Bootstrap estimation for WVR: 0.7163 
Bootstrap bias for WVR: −0.017 
Bootstrap standard error for WVR: 0.055 
The 95% PERC bootstrap confidence interval for WRV: [0.6, 0.8167] 
Moral’s (2022) Universal Variation Ratio:UVR = 0.6286 
Bootstrap estimation for UVR: 0.6229 
Bootstrap bias for UVR: −0.0057 
Bootstrap standard error for UVR: 0.0682 
The 95% PERC bootstrap confidence interval for UVR: [0.5143, 0.85] 
Tvalseth’s (1988) Standard Deviation from Mode: SDM = 0.7133 
Asymptotic Standard Error of SDM: ASE(SDM) = 0.061 
The 95% asymptotic confidence interval for SDM: [0.5939, 0.8328] 
Bootstrap estimation for SDM: 0.6990 
Bootstrap bias for SDM: −0.0143 
Bootstrap standard error for SDM: 0.0434 
The 95% PERC bootstrap confidence interval for SDM: [0.6047, 0.7743] 
Gibbs-Poston (1975) Index of Qualitative Variation: IQV = 0.8625 
Bootstrap estimation for IQV: 0.8505 
Bootstrap bias for IQV: −0.012 
Bootstrap standard error for IQV: 0.0359 
The 95% PERC bootstrap confidence interval for IQV: [0.775, 0.9126] 
Shannon’s (1948) Entropy: E = 1.4514 
Shannon’s (1948) Relative Entropy: RelE = 0.81 
Bootstrap estimation for RelE: 0.7896 
Bootstrap bias for RelE: −0.0204 
Bootstrap standard error for RelE: 0.0486 
The 95% PERC bootstrap confidence interval for RelE: [0.6894, 0.8771] 

10.2. Example 2 

From the qualitative variable C = marital status of the population of adult wom-
en aged 18 to 60 years living in a border city in northern Mexico, a random 
sample was drawn. It is necessary to represent these data with a frequency table 
and a bar chart, calculate the mode as a measure of central tendency, as well as 
Moral’s Universal Variation Ratio (UVR), Kvalseth’s Standard Deviation from 
Mode (SDM), Gibbs-Poston Index of Qualitative Variation (IQV), and Shan-
non’s Relative Entropy (RelE) as measures of variation. Additionally, obtaining 
the 95% confidence interval for the four qualitative measures of variation is de-
sired. For this purpose, it is advisable to utilize bootstrap using the bi-
as-corrected and accelerated percentile method. Furthermore, information on 
the bootstrap point estimate, standard error, and bias is needed, along with dis-
playing the bootstrap distribution using a histogram, determining the width of 
class intervals by the Freedman-Diaconis rule [29]. 

https://doi.org/10.4236/ojs.2024.143013


J. Moral de la Rubia 
 

 

DOI: 10.4236/ojs.2024.143013 278 Open Journal of Statistics 
 

---R script for Example 2--- 
# Data definition 
C<- c(“Single”, “Married”, “Free union”, “Separated”, “Divorced”, “Wi-

dowed”) 
c<- c(2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 1, 2, 5, 1, 2, 2, 1, 3, 2, 1, 2, 1, 5, 2, 2, 2, 2, 1, 2, 2, 4, 

5, 3, 3, 3, 2, 1, 1, 5, 1, 1, 1, 2, 2, 3, 1, 2, 3, 4, 1, 4, 4, 1, 1, 3, 3, 1, 1, 1, 1, 6, 1, 4, 1, 1, 
2, 2, 6, 2, 1, 1, 1, 1, 2, 3, 2, 2) 

 
# Frequency table (common for all four measures of variation) 
frequency_table<- table(factor(c, levels = 1:6, labels = C)) 
Marital_status<- names(frequency_table) 
abs_freq<- as.vector(frequency_table) 
N <- sum(abs_freq) 
rel_fre<- abs_freq/N 
rel_freq = round(rel_fre, 4) 
pct <- rel_freq * 100 
complete_table<- data.frame(Marital_status, abs_freq, rel_freq, pct) 
print_table<- complete_table[, c(“Marital_status”, “abs_freq”, “rel_freq”, “pct”)] 
cat(“Frequency distribution of marital status among women\n”) 
print(print_table) 

 
# Bar plot using ggplot2 and saved as a JPEG file (common for all four meas-

ures) 
library(ggplot2) 
df<- data.frame(Marital_Status = factor(C, levels = C), Relative_Frequency = 

rel_fre) 
plot <- ggplot(df, aes(x = Marital_Status, y = Relative_Frequency)) +  
geom_bar(stat = “identity”, fill = “lightgray”, color = “black”) +  
labs(x = “Marital status”, y = “Relative frequency”) +  
theme(axis.text.x.bottom = element_text(angle = 10, hjust = 0.5, size = 7), 

axis.text.y = element_text(size = 7), axis.title.x = element_text(size = 9), 
axis.title.y = element_text(size = 9), panel.background = element_rect(fill = “white”), 
panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line 
= element_line(color = “black”)) 

jpeg(“bar_chart.jpeg”, width = 800, height = 600, units = “px”, res = 300) 
print(plot) 
dev.off() 
plot 

 
# Mode calculation (common for all four measures) 
modes <- Marital_status[abs_freq == max(abs_freq)] 
mode_frequency<- max(rel_fre) 
n <- length(c) 
k <- length(Marital_status) 
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nmo<- length(modes) 
cat(“Sample size: n =”, n, “\n”) 
cat(“Number of nominal categories: k =”, k, “\n”) 
cat(“Modal categories: mo =”, modes, “\n”) 
cat(“Number of modal values: c =”, nmo, “\n”) 
cat(“Relative frequency of the mode: fmo =”, round(mode_frequency, 4), 

“\n”) 
 

# Calculation of UVR and its bootstrap sampling distribution 
UVR <- k^2 /( k^2-1) * (1 - mode_frequency/nmo) 
cat(“Moral’s (2022) Universal Variation Ratio: UVR =”, round(UVR, 4), “\n”) 
set.seed(123) 
B <- 1000 
boot_UVR<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(c, replace = TRUE) 
boot_freq_table<- table(factor(boot_sample, levels = 1:6, labels = C)) 
boot_mode_freq<- max(boot_freq_table)/sum(boot_freq_table) 
boot_mode_num<- sum(boot_freq_table == max(boot_freq_table)) 
boot_UVR[i] <- k^2/(k^2 - 1) * (1 - boot_mode_freq/boot_mode_num) 
} 
BE_UVR <- mean(boot_UVR) 
bias_UVR<- mean(boot_UVR) - UVR 
se_UVR<- sd(boot_UVR) 
cat(“Bootstrap estimation for UVR:”, round(BE_UVR, 4), “\n”) 
cat(“Bootstrap bias for UVR:”, round(bias_UVR, 4), “\n”) 
cat(“Bootstrap standard error for UVR:”, round(se_UVR, 4), “\n”) 

 
# Histogram with overlaid density curve for UVR (save as JPEG file) 
hist_data1 <- data.frame(boot_UVR) 
q25 <- quantile(hist_data1$boot_UVR, 0.25, type = 8) 
q75 <- quantile(hist_data1$boot_UVR, 0.75, type = 8) 
iqr<- q75 - q25 
FD <- 2 * iqr/(length(hist_data1$boot_UVR)^(1/3)) 
hist_plot1 <- ggplot(hist_data1, aes(x = boot_UVR)) +  
geom_histogram(binwidth = FD, fill = “lightgrey”, color = “black”, aes(y 

= ..density..)) + geom_density(color = “black”, size = 1.5) + labs(x = “Bootstrap 
Moral’s UVR”, y = “Density”) + theme(panel.background = element_rect(fill = 
“white”), axis.text.x.bottom = element_text(size = 8), axis.text.y = element_text 
(size = 8), axis.title.x = element_text(size = 9), axis.title.y = element_text(size = 
9), axis.line = element_line(color = “black”)) 

jpeg(“histogram_UVR.jpeg”, width = 800, height = 600, units = “px”, res = 
300) 

print(hist_plot1) 
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dev.off() 
hist_plot1 

 
# Bias-corrected percentile for UVR 
z_0_UVR<- qnorm(sum(boot_UVR<= UVR)/B) 
if (is.infinite(z_0_UVR)) {z_0_UVR<- 0} else {z_0_UVR<- z_0_UVR} 
cat(“Bias-corrected percentile for UVR:”, round(z_0_UVR, 4), “\n”) 

 
# Skewness correction factor (acceleration) using jackknife estimation for 

UVR 
jackknife_UVR<- numeric(n) 
for (i in 1:n) { 
jackknife_sample<- c[-i] 
jackknife_freq_table<- table(factor(jackknife_sample, levels = 1:6, labels = C)) 
jackknife_mode_freq<- max(jackknife_freq_table)/sum(jackknife_freq_table) 
jackknife_mode_num<- sum(jackknife_freq_table == max(jackknife_freq_ 

table)) 
jackknife_UVR[i] <- k^2/(k^2 - 1) * (1 - jackknife_mode_freq/jackknife_ 

mode_num) 
} 
jackknife_UVR_mean<- sum(jackknife_UVR)/n 
a_UVR<- sum((jackknife_UVR_mean - jackknife_UVR)^3)/(6 * sum ((jack-

knife_UVR_mean - jackknife_UVR)^2)^(3/2)) 
cat(“Skewness correction factor (acceleration):”, round(a_UVR, 4), “\n”) 

 
# BCa bootstrap confidence interval for UVR 
z_LL<- qnorm(0.025) 
z_UL<- qnorm(0.975) 
LL_BCa_UVR<- pnorm(z_0_UVR + (z_0_UVR + z_LL)/(1 - a_UVR* (z_0_UVR 

+ z_LL))) 
UL_BCa_UVR<-pnorm(z_0_UVR + (z_0_UVR + z_UL)/(1 - a_UVR* (z_0_UVR 

+z_UL))) 
BCa_confidence_interval_UVR<- quantile(boot_UVR, probs = c(LL_BCa_ 

UVR, UL_BCa_UVR), type = 8) 
cat(“The 95% BCabootstrapconfidenceintervalfor UVR: [”, round(BCa_ 

confidence_interval_UVR[1], 4), “,”, round(BCa_confidence_interval_UVR[2], 
4), “]\n”) 

 
# Calculation of SDM and its bootstrap sampling distribution 
f_mo<- mode_frequency 
SDM <- 1 - sqrt(sum((f_mo - rel_fre)^2)/(k - 1)) 
cat(“Tvalseth’s (1988) Standard Deviation from Mode: SDM =”, round(SDM, 

4), “\n”) 
set.seed(123) 
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boot_SDM<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(c, replace = TRUE) 
boot_frequency_table<- table(factor(boot_sample, levels = 1:6, labels = C)) 
boot_mode_frequency<- 

max(boot_frequency_table)/sum(boot_frequency_table) 
boot_rel_fre<- as.vector(boot_frequency_table)/sum(boot_frequency_table) 
boot_SDM[i] <- 1 - sqrt(sum((boot_mode_frequency-boot_rel_fre)^2)/(k - 

1)) 
} 
BE_SDM <- mean(boot_SDM) 
bias_SDM<- mean(boot_SDM) - SDM 
se_SDM<- sd(boot_SDM) 
cat(“Bootstrap estimation for SDM:”, round(BE_SDM, 4), “\n”) 
cat(“Bootstrap bias for SDM:”, round(bias_SDM, 4), “\n”) 
cat(“Bootstrap standard error for SDM:”, round(se_SDM, 4), “\n”) 

 
# Histogram with overlaid density curve for SDM (save as JPEG file) 
hist_data2 <- data.frame(boot_SDM) 
q25 <- quantile(hist_data2$boot_SDM, 0.25, type = 8) 
q75 <- quantile(hist_data2$boot_SDM, 0.75, type = 8) 
iqr<- q75 - q25 
FD <- 2 * iqr/(length(hist_data2$boot_SDM)^(1/3)) 
hist_plot2 <- ggplot(hist_data2, aes(x = boot_SDM)) + geom_histogram 

(binwidth = FD, fill = “lightgrey”, color = “black”, aes(y = ..density..)) + 
geom_density(color = “black”, size = 1.5) + labs(x = “Bootstrap Tvalseth’s SDM”, 
y = “Density”) + theme(panel.background = element_rect(fill = “white”), 
axis.text.x.bottom = element_text(size = 8), axis.text.y = element_text(size = 8), 
axis.title.x = element_text(size = 9), axis.title.y = element_text(size = 9), axis.line 
= element_line(color = “black”)) 

jpeg(“histogram_SDM.jpeg”, width = 800, height = 600, units = “px”, res = 
300) 

print(hist_plot2) 
dev.off() 
hist_plot2 

 
# Bias-corrected percentile for SDM 
z_0_SDM <- qnorm(sum(boot_SDM<= SDM)/B) 
if (is.infinite(z_0_SDM)) {z_0_SDM <- 0} else {z_0_SDM <- z_0_SDM} 
cat(“Bias-corrected percentile for SDM:”, round(z_0_SDM, 4), “\n”) 

 
# Skewness correction factor (acceleration) using jackknife estimation for 

SDM 
jackknife_SDM<- numeric(n) 
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for (i in 1:n) { 
jackknife_sample<- c[-i] 
jackknife_freq_table<- table(factor(jackknife_sample, levels = 1:6, labels = C)) 
jackknife_mode_freq<- max(jackknife_freq_table)/sum(jackknife_freq_table) 
jackknife_rel_fre<- as.vector(jackknife_freq_table)/sum(jackknife_freq_table) 
jackknife_SDM[i] <- 1 - sqrt(sum((jackknife_mode_freq - jack-

knife_rel_fre)^2)/(k - 1)) 
} 
jackknife_SDM_mean<- sum(jackknife_SDM)/n 
a_SDM<- sum((jackknife_SDM_mean - jackknife_SDM)^3)/(6 * 

sum((jackknife_SDM_mean - jackknife_SDM)^2)^(3/2)) 
cat(“Skewness correction factor (acceleration):”, round(a_SDM, 4), “\n”) 

 
# BCa bootstrap confidence interval for SDM 
LL_BCa_SDM<- pnorm(z_0_SDM + (z_0_SDM + z_LL)/(1 - a_SDM* (z_0_SDM 

+ z_LL))) 
UL_BCa_SDM<-pnorm(z_0_SDM + (z_0_SDM + z_UL)/(1- a_SDM* (z_0_SDM 

+ z_UL))) 
BCa_confidence_interval_SDM<- quantile(boot_SDM, probs = c(LL_BCa_ 

SDM, UL_BCa_SDM), type = 8) 
cat(“The 95% BCa bootstrap confidence interval for SDM: [”, round 

(BCa_confidence_interval_SDM[1], 4), “,”, round(BCa_confidence_ inter-
val_SDM[2], 4), “]\n”) 

 
# Calculation of IQV and its bootstrap sampling distribution 
IQV <- k/(k - 1) * (1 - sum(rel_fre^2)) 
cat(“Gibbs-Poston (1975) Index of Qualitative Variation: IQV =”, round(IQV, 

4), “\n”) 
set.seed(123) 
boot_IQV<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(c, replace = TRUE) 
boot_frequency_table<- table(factor(boot_sample, levels = 1:6, labels = C)) 
boot_rel_fre<- as.vector(boot_frequency_table)/sum(boot_frequency_table) 
boot_IQV[i] <- k/(k - 1) * (1 - sum(boot_rel_fre^2)) 
} 
BE_IQV <- mean(boot_IQV) 
bias_IQV<- mean(boot_IQV) - IQV 
se_IQV<- sd(boot_IQV) 
cat(“Bootstrap estimation for IQV:”, round(BE_IQV, 4), “\n”) 
cat(“Bootstrap bias for IQV:”, round(bias_IQV, 4), “\n”) 
cat(“Bootstrap standard error for IQV:”, round(se_IQV, 4), “\n”) 
# Histogram with overlaid density curve for IQV (save as JPEG file) 
hist_data3 <- data.frame(boot_IQV) 
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q25 <- quantile(hist_data3$boot_IQV, 0.25, type = 8) 
q75 <- quantile(hist_data3$boot_IQV, 0.75, type = 8) 
iqr<- q75 - q25 
FD <- 2 * iqr/(length(hist_data3$boot_IQV)^(1/3)) 
hist_plot3 <- ggplot(hist_data3, aes(x = boot_IQV)) + geom_histogram 

(binwidth = FD, fill = “lightgrey”, color = “black”, aes(y = ..density..)) + 
geom_density(color = “black”, size = 1.5) + labs(x = “Bootstrap Gibbs-Poston 
IQV”, y = “Density”) + theme(panel.background = element_rect(fill = “white”), 
axis.text.x.bottom = element_text(size = 8), axis.text.y = element_text(size = 8), 
axis.title.x = element_text(size = 9), axis.title.y = element_text(size = 9), axis.line 
= element_line(color = “black”)) 

jpeg(“histogram_IQV.jpeg”, width = 800, height = 600, units = “px”, res = 
300) 

print(hist_plot3) 
dev.off() 
hist_plot3 

 
# Bias-corrected percentile for IQV 
z_0_IQV <- qnorm(sum(boot_IQV<= IQV)/B) 
if (is.infinite(z_0_IQV)) {z_0_IQV <- 0} else {z_0_IQV <- z_0_IQV} 
cat(“Bias-corrected percentile for IQV:”, round(z_0_IQV, 4), “\n”) 

 
# Skewness correction factor (acceleration) using jackknife estimation for IQV 
jackknife_IQV<- numeric(n) 
for (i in 1:n) { 
jackknife_sample<- c[-i] 
jackknife_freq_table<- table(factor(jackknife_sample, levels = 1:6, labels = C)) 
jackknife_mode_freq<- max(jackknife_freq_table)/sum(jackknife_freq_table) 
jackknife_rel_fre<- as.vector(jackknife_freq_table)/sum(jackknife_freq_table) 
jackknife_IQV[i] <- k/(k - 1) * (1 - sum(jackknife_rel_fre^2)) 
} 
jackknife_IQV_mean<- sum(jackknife_IQV)/n 
a_IQV<- sum((jackknife_IQV_mean - jackknife_IQV)^3)/(6 * 

sum((jackknife_IQV_mean - jackknife_IQV)^2)^(3/2)) 
cat(“Skewness correction factor (acceleration):”, round(a_IQV, 4), “\n”) 

 
# BCa bootstrap confidence interval for IQV 
LL_BCa_IQV<- pnorm(z_0_IQV + (z_0_IQV + z_LL)/(1 - a_IQV* (z_0_IQV 

+ z_LL))) 
UL_BCa_IQV<- pnorm(z_0_IQV + (z_0_IQV + z_UL)/(1 - a_IQV* 

(z_0_IQV + z_UL))) 
BCa_confidence_interval_IQV<- quantile(boot_IQV, probs = c(LL_BCa_IQV, 

UL_BCa_IQV), type = 8) 
cat(“The 95% BCa bootstrap confidence interval for IQV: [”, round 

(BCa_confidence_interval_IQV[1], 4), “,”, round(BCa_confidence_ inter-
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val_IQV[2], 4), “]\n”) 
 

# Calculation of RelE and its bootstrap sampling distribution 
entropy <- -sum(rel_fre * log(rel_fre + (rel_fre == 0))) 
RelE <- entropy/log(k) 
cat(“Shannon’s (1948) Entropy: E =”, round(entropy, 4), “\n”) 
cat(“Shannon’s (1948) Relative Entropy: RelE =”, round(RelE, 4), “\n”) 
set.seed(123) 
boot_RelE<- numeric(B) 
for (i in 1:B) { 
boot_sample<- sample(c, replace = TRUE) 
boot_freq_table<- table(factor(boot_sample, levels = 1:6, labels = C)) 
boot_rel_fre<- as.vector(boot_freq_table)/sum(boot_freq_table) 
boot_entropy<- -sum(boot_rel_fre * log(boot_rel_fre + (boot_rel_fre == 0))) 
boot_RelE[i] <- boot_entropy/log(k) 
} 
BE_RelE<- mean(boot_RelE) 
bias_RelE<- mean(boot_RelE) - RelE 
se_RelE<- sd(boot_RelE) 
cat(“Bootstrap estimation for RelE:”, round(BE_RelE, 4), “\n”) 
cat(“Bootstrap bias for RelE:”, round(bias_RelE, 4), “\n”) 
cat(“Bootstrap standard error for RelE:”, round(se_RelE, 4), “\n”) 

 
# Histogram with overlaid density curve for RelE (save as JPEG file) 
hist_data4 <- data.frame(boot_RelE) 
q25 <- quantile(hist_data4$boot_RelE, 0.25, type = 8) 
q75 <- quantile(hist_data4$boot_RelE, 0.75, type = 8) 
iqr<- q75 - q25 
FD <- 2 * iqr/(length(hist_data4$boot_RelE)^(1/3)) 
hist_plot4 <- ggplot(hist_data4, aes(x = boot_RelE)) + geom_histogram 

(binwidth = FD, fill = “lightgrey”, color = “black”, aes(y = ..density..)) + 
geom_density(color = “black”, size = 1.5) + labs(x = “Bootstrap Shannon’s RelE”, 
y = “Density”) + theme(panel.background = element_rect(fill = “white”), 
axis.text.x.bottom = element_text(size = 8), axis.text.y = element_text(size = 8), 
axis.title.x = element_text(size = 9), axis.title.y = element_text(size = 9), axis.line 
= element_line(color = “black”)) 

jpeg(“histogram_RelE.jpeg”, width = 800, height = 600, units = “px”, res = 
300) 

print(hist_plot4) 
dev.off() 
hist_plot4 

 
# Bias-corrected percentile for RelE 
z_0_RelE <- qnorm(sum(boot_RelE<=RelE)/B) 

https://doi.org/10.4236/ojs.2024.143013


J. Moral de la Rubia 
 

 

DOI: 10.4236/ojs.2024.143013 285 Open Journal of Statistics 
 

if (is.infinite(z_0_RelE)) {z_0_RelE <- 0} else {z_0_RelE <- z_0_RelE} 
cat(“Bias-correctedpercentile for RelE:”, round(z_0_RelE, 4), “\n”) 
 
# Skewness correction factor (acceleration) using jackknife estimation for 

RelE 
jackknife_RelE<- numeric(n) 
for (i in 1:n) { 
jackknife_sample<- c[-i] 
jackknife_freq_table<- table(factor(jackknife_sample, levels = 1:6, labels = C)) 
jackknife_mode_freq<- max(jackknife_freq_table)/sum(jackknife_freq_table) 
jackknife_rel_fre<- as.vector(jackknife_freq_table)/sum(jackknife_freq_table) 
jackknife_entropy<- -sum(jackknife_rel_fre * log(jackknife_rel_fre + 

(jackknife_rel_fre == 0))) 
jackknife_RelE[i] <- jackknife_entropy/log(k) 
} 
jackknife_RelE_mean<- sum(jackknife_RelE)/n 
a_RelE<- sum((jackknife_RelE_mean - jackknife_RelE)^3)/(6 * 

sum((jackknife_RelE_mean - jackknife_RelE)^2)^(3/2)) 
cat(“Skewness correction factor (acceleration):”, round(a_RelE, 4), “\n”) 
 
# BCa bootstrap confidence interval for RelE 
LL_BCa_RelE<- pnorm(z_0_RelE + (z_0_RelE + z_LL)/(1 - a_RelE* 

(z_0_RelE + z_LL))) 
UL_BCa_RelE<- pnorm(z_0_RelE + (z_0_RelE + z_UL)/(1 - a_RelE* 

(z_0_RelE + z_UL))) 
BCa_confidence_interval_RelE<- quantile(boot_RelE, probs = 

c(LL_BCa_RelE, UL_BCa_RelE), type = 8) 
cat(“The 95% BCa bootstrap confidence interval for RelE: [”, round 

(BCa_confidence_interval_RelE[1], 4), “,”, round(BCa_confidence_interval_ 
RelE[2], 4), “]\n”) 

 
When the script is executed with the R software installed on the personal 

computer, Table 2, along with the requested statistics and confidence intervals, 
is displayed as output alongside Figures 1-5. If the script is run online, the table, 
statistics, and low-definition graphs appear, but the *.jpeg files are not created. 

 
Table 2. Sample frequency distribution of marital status in women. 

Marital_status abs_freq rel_freq pct 

Single 28 0.3636 36.36% 

Married 28 0.3636 36.36% 

Free union 10 0.1299 12.99% 

Separated 5 0.0649 6.49% 

Divorced 4 0.0519 5.19% 

Widowed 2 0.0260 2.60% 
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Figure 1. Bar chart of marital status in women. 
 

Sample size: n = 77 
Number of nominal categories: k = 6 
Modal categories: mo = Single Married 
Number of modal values: c = 2 
Relative frequency of the mode: fmo = 0.3636 
Moral’s (2022) Universal Variation Ratio:UVR = 0.8416 
Bootstrap estimation for UVR: 0.6257 
Bootstrap bias for UVR: −0.2158 
Bootstrap standard error for UVR: 0.064 
Bias-corrected percentile for UVR: 2.1201 
Skewness correction factor (acceleration): −0.0194 
The 95% BCa bootstrap confidence interval for UVR: [0.8482, 0.875] 

 

 

Figure 2. Freedman-Diaconis histogram and density curve of 
the bootstrap UVR distribution. 
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Tvalseth’s (1988) Standard Deviation from Mode: SDM = 0.7335 
Bootstrap estimation for SDM: 0.6963 
Bootstrap bias for SDM: −0.0372 
Bootstrap standard error for SDM: 0.0438 
Bias-corrected percentile for SDM: 0.8134 
Skewness correction factor (acceleration): 0.0211 
The 95% BCa bootstrap confidence interval for SDM: [0.6853, 0.8162] 

 

 

Figure 3. Freedman-Diaconis histogram and density curve of 
the bootstrap SDM distribution. 
 

Gibbs-Poston (1975) Index of Qualitative Variation: IQV = 0.8533 
Bootstrap estimation for IQV: 0.8435 
Bootstrap bias for IQV: −0.0098 
Bootstrap standard error for IQV: 0.0337 
Bias-corrected percentile for IQV: 0.2378 
Skewness correction factor (acceleration): 0.0212 
The 95% BCa bootstrap confidence interval for IQV: [0.7942, 0.9229] 

 

 

Figure 4. Freedman-Diaconis histogram and density curve of 
the bootstrap IQV distribution. 
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Shannon’s (1948) Entropy: E = 1.4268 
Shannon’s (1948) Relative Entropy: RelE = 0.7963 
Bootstrap estimation for RelE: 0.779 
Bootstrap bias for RelE: −0.0173 
Bootstrap standard error for RelE: 0.047 
Bias-corrected percentile for RelE: 0.3319 
Skewness correction factor (acceleration): 0.0303 
The 95% BCa bootstrap confidence interval for RelE: [0.7207, 0.903] 

 

 

Figure 5. Freedman-Diaconis histogram and density curve of 
the bootstrap RelE distribution. 

11. Conclusions 

The present article focuses on nominal category qualitative variables but can also 
be applied to ordered category variables with a discrete set of categories. For 
these variables, Kvalseth’s SDM is highly recommended as it utilizes more in-
formation than the variation ratios and is less affected by the ceiling effect in-
duced by the proximity to the upper bounding distribution (uniformitarian dis-
tribution) than IQV and RelE [3]. Although Kvalseth [11] initially restricted the 
use of SDM to unimodal distributions, this measure is applicable to multimodal 
distributions and even to a uniform distribution, just like Moral’s UVR, which is 
the best option among the variation ratios that are very easy to calculate. It 
should be noted that the most commonly used measure of variability is the 
Gibbs-Poston IQV [12] [31], and another important measure is Shannon’s rela-
tive entropy [32]. Nevertheless, both measures are significantly influenced by 
proximity to the uniform distribution [3]. 

By utilizing bootstrap, it is feasible to derive the confidence interval and even 
the standard error. When the distribution is unknown, the preferable option is a 
non-parametric bootstrap method. Among these, the percentile method and the 
bias-corrected and accelerated percentile method stand out [26]. Both methods 
are perfectly valid when the bias and acceleration are minimal. However, when 
one of these two indices becomes moderate (|bias| ≥ 0.1 or |a| ≥ 0.025), the bi-
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as-corrected and accelerated percentile method outperforms [33]. The primary 
issue with the latter method arises when the bias-corrected percentile (z0) exhi-
bits an extreme value. In such instances, assigning a value of 0 to z0 yields a re-
sult equivalent to the percentile method, as proposed by Efron [27]. 

In each of the two scripts presented, its bootstrap sample is the same for all 
calculated measurements by using one seed and staying constant when generat-
ing the six or four sampling distributions. The selection of the seed (123) is arbi-
trary and could be any number. However, it is customary to employ fixed num-
bers or straightforward patterns to facilitate code reproducibility [28]. At the 
same time, the assessment of asymmetry (acceleration) is conducted using the 
jackknife method, ensuring complete stability and consistency in the confidence 
intervals across various measures of variation. It should be noted that these 
scripts should be applied with random, representative, and sufficiently large 
samples, with a minimum of 30 data points for the estimation to be deemed va-
lid [26] [27]. 

The application of these six measures of variability is feasible with discrete and 
continuous variables, particularly when their distribution exhibits a defined peak. 
Nonetheless, it is discouraged due to the underutilization of the information in-
herent in the data compared to absolute or relative measures based on the aver-
age or median of differential scores concerning the arithmetic mean or median 
[34]. With discrete quantitative variables, the mode is still estimated using the 
maximum frequency value method, akin to qualitative variables [35]. However, 
for continuous quantitative variables, it necessitates employing a density estima-
tion method to identify the value with the highest density [36]. 

An additional issue with samples of continuous variables is the necessity to 
discretize the distribution into k class intervals, which further exacerbates the 
loss of information and disregards the quantitative nature of the sample data 
[37]. To determine the number of class intervals, a viable option is Freed-
man-Diaconis rule [29]. Among all measures of variation for quantitative va-
riables, Kvalseth’s SDM and estimation of the mode via the maximum density 
value would be the optimal choice for continuous quantitative variables with 
unimodal distribution [36]. It’s worth noting that, from the density function of a 
continuous distribution, Shannon’s information can be directly calculated using 
integrals. Additionally, with certain continuous functions, one can ascertain the 
maximum entropy and obtain the relative entropy through the quotient between 
the entropy and its maximum [38]. 

It is recommended to utilize measures of variability, such as Kvalseth’s SDM 
[11] and Moral’s UVR [3], alongside well-known measures like the Gibbs-Poston 
IQV [12] and Shannon’s relative entropy [13]. Additionally, measures of shape, 
such as Moral’s skewness and peakedness, [39] should be used in conjunction 
with frequency tables, bar charts, and the measure of central tendency, the mode, 
when describing qualitative variables. Statistical tests to check whether one or 
more point data represent outliers are well known with quantitative variables [40] 
[41] [42]. However, there are new methods for detecting outliers with qualitative 
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variables, such as k-mode based cluster analysis [43]. 
Persisting on the development of descriptive measures for these variables, 

which are highly relevant in the social and health sciences, is important, as this 
area remains scarcely addressed in mathematical statistics [4] [8]. What might 
be the directions of future research in qualitative variation? Apart from confi-
dence intervals, inferential tests for comparing measures of variation are an im-
portant future direction. Kvalseth’s work with standard deviation from the mode 
[11] and a later-introduced measure of the odds measure of qualitative variation 
[44] are situated in this line. A related approach to qualitative variation measures 
that has been developed for some time in social research is segregation indices 
[45], among which the Hutchens index [46] [47] can be highlighted. Interval es-
timation and inferential comparisons with these indices may also be interesting 
lines of development. 
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