
Journal of Software Engineering and Applications, 2024, 17, 448-461
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.175024 May 31, 2024 448 Journal of Software Engineering and Applications

Design & Test of an Advanced Web Security
Analysis Tool (AWSAT)

Meenakshi S. P. Manikandaswamy, Vijay Madisetti

School of Cybersecurity and Privacy, Georgia Institute of Technology, Atlanta, USA

Abstract
Considering the escalating frequency and sophistication of cyber threats tar-
geting web applications, this paper proposes the development of an auto-
mated web security analysis tool to address the accessibility gap for non-security
professionals. This paper presents the design and implementation of an au-
tomated web security analysis tool, AWSAT, aimed at enabling individuals
with limited security expertise to effectively assess and mitigate vulnerabilities
in web applications. Leveraging advanced scanning techniques, the tool iden-
tifies common threats such as Cross-Site Scripting (XSS), SQL Injection, and
Cross-Site Request Forgery (CSRF), providing detailed reports with actiona-
ble insights. By integrating sample payloads and reference study links, the
tool facilitates informed decision-making in enhancing the security posture of
web applications. Through its user-friendly interface and robust functionality,
the tool aims to democratize web security practices, empowering a wider au-
dience to proactively safeguard against cyber threats.

Keywords
Web Security, Automated Analysis, Vulnerability Assessment, Web Scanning,
Cross-Site Scripting, SQL Injection, Cross-Site Request Forgery

1. Introduction

In an era marked by the escalating frequency and complexity of cyber threats
targeting web applications, the imperative for robust web security measures has
never been more pronounced. According to projections, cybercrime is expected
to reach a staggering $10.5 trillion by 2025 [1], with web application attacks
comprising 26% of all breaches [2]. Compounding this challenge is the fact that
60% of organizations are operating with understaffed security teams [3], exacer-
bating the risks associated with potential security breaches. The average cost of a
data breach stands at a daunting $9.48 million [4], underscoring the substantial

How to cite this paper: Manikandaswamy,
M.S.P. and Madisetti, V. (2024) Design &
Test of an Advanced Web Security Analysis
Tool (AWSAT). Journal of Software Engi-
neering and Applications, 17, 448-461.
https://doi.org/10.4236/jsea.2024.175024

Received: April 28, 2024
Accepted: May 28, 2024
Published: May 31, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.175024
https://www.scirp.org/
https://doi.org/10.4236/jsea.2024.175024
http://creativecommons.org/licenses/by/4.0/

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 449 Journal of Software Engineering and Applications

financial ramifications of inadequate security measures. Against this backdrop,
the ubiquitous utilization of web applications, accounting for 66.2% of all web
traffic [5], underscores the critical need for accessible and effective web security
solutions.

Traditional security tools, while indispensable in fortifying digital defenses,
often present a formidable barrier to entry for individuals lacking specialized
security expertise. This inherent complexity limits their accessibility, sidelining
the active participation of non-security professionals, such as Quality Assurance
(QA) specialists and developers, in the security testing process. To address this
gap, our paper aims to “shift left” security by integrating security testing earlier
into the software development lifecycle. The paper endeavors to democratize
web security by developing an intuitive and user-friendly automated web securi-
ty analysis tool.

The proposed tool aims to empower non-security professionals to efficiently
comprehend and evaluate web application vulnerabilities without necessitating
extensive security knowledge. By furnishing detailed reports, sample payloads,
and reference study links, the tool equips users with the resources needed to bol-
ster the security posture of their web applications comprehensively. Moreover,
the tool’s emphasis on usability and contextual reporting ensures that even indi-
viduals lacking a strong security background can contribute meaningfully to the
protection of online assets.

The implementation of the proposed tool leverages the Selenium web driver
on Python to accept the target webpage from the user. Subsequently, the tool
traverses through the Document Object Model (DOM) elements, scouring for
potential attack vectors such as input elements, forms, and more. Equipped with
a preset list of payloads, the tool endeavors to execute common exploits includ-
ing Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), and others.
The tool provides a quick summary of its findings via the terminal interface,
along with a comprehensive report outlining identified vulnerabilities and ac-
tionable next steps.

The organization of this paper is structured as follows: Section 2 provides an
overview of existing approaches to web security analysis, highlighting their re-
spective limitations. Section 3 introduces the proposed approach, delineating
how it addresses the shortcomings of existing methodologies. Section 4 delves
into the implementation and testing of the proposed tool, elucidating its archi-
tecture, and presenting key results. Section 5 offers a comparative analysis of the
proposed tool against prior approaches, showcasing its efficacy in overcoming
existing limitations. Finally, Section 6 encapsulates the paper with a summary of
findings and concluding remarks, followed by a comprehensive list of references
in Section 7.

2. Existing Work
2.1. Evaluation Criteria

We evaluated and analyzed the performance of various tools available in the

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 450 Journal of Software Engineering and Applications

market. A diverse range of tools, including Owasp ZAP, Burp Suite, Invicti, Qu-
alys WAS, AppSpider, Detectify, Skipfish, Nessus, and OpenVAS, were assessed
against multiple criteria, including their web application scanning capabilities,
ease of use, level of automation, contextual reporting features, resource efficien-
cy, and cost considerations [6].

2.2. Assessment of Existing Tools

As depicted in Figure 1, Owasp ZAP was found to offer robust web application
scanning capabilities, albeit lacking in ease of use and contextual reporting fea-
tures [7]. Similarly, Burp Suite, while renowned for its comprehensive web secu-
rity testing capabilities, posed challenges in terms of usability and automation
[8]. Invicti and Qualys WAS excelled in ease of use but lacked automation and
contextual reporting capabilities [9]. AppSpider and Detectify demonstrated
commendable automation but fell short in contextual reporting and resource ef-
ficiency [10]. Skipfish showcased contextual reporting capabilities but lacked
automation and ease of use [11]. Nessus, although user-friendly and highly au-
tomated, did not offer contextual reporting features [12]. OpenVAS, despite be-
ing open-source and featuring automation and contextual reporting capabilities,
was found to be less user-friendly [13].

2.3. Proposed Tool Significance

Our proposed Automated Web Security Analysis Tool (AWSAT) integrates the
best features of existing tools while addressing their limitations. AWSAT offers
comprehensive web application scanning, user-friendly interface, advanced au-
tomation, contextual reporting capabilities, low resource usage, and free accessi-
bility. This holistic approach positions AWSAT as a significant advancement in
the field of web security analysis.

3. Proposed Approach

The proposed approach entails the development of an Automated Web Security
Analysis Tool (AWSAT) designed to revolutionize web security testing by

Figure 1. Comparison of AWSAT with existing tools.

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 451 Journal of Software Engineering and Applications

providing a fast, robust, comprehensive, and user-friendly solution. AWSAT
aims to address the limitations of existing approaches by offering a low resource
intensive, intuitive, and automated tool that enables users to efficiently under-
stand and mitigate web application vulnerabilities.

Figure 2 block diagram illustrates the workflow of AWSAT, showcasing its
seamless operation. Initially, the tool acquires the target URL input by the user,
serving as the intuitive starting point for the security analysis process. Utilizing a
Selenium web driver, AWSAT dynamically crawls through the webpage, meti-
culously inspecting DOM elements to identify potential threat vectors. Upon
detection, the tool launches targeted exploits on these vectors, executing a series
of predefined payloads to assess the susceptibility of the web application to com-
mon vulnerabilities. Subsequently, AWSAT compiles its findings into a com-
prehensive report, detailing the identified vectors, exploit details, and severity
assessments. Moreover, the report includes step-by-step walkthroughs to repro-
duce and mitigate the detected vulnerabilities, ensuring clarity and actionable
insights for users. By offering such usability and contextual reporting, AWSAT
caters to both technical and non-technical users, facilitating informed deci-
sion-making and effective security measures.

Unlike traditional security tools that require significant expertise and manual
intervention, AWSAT streamlines the scanning process, making it accessible to
individuals with varying levels of security knowledge. By automating vulnerabil-
ity detection, AWSAT significantly reduces the time and effort required for se-
curity testing, allowing users to focus on remediation efforts rather than the in-
tricacies of scanning methodologies.

Figure 2. Block diagram of AWSAT.

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 452 Journal of Software Engineering and Applications

One key aspect of AWSAT is its emphasis on comprehensive reporting. Tra-
ditional security tools often generate complex, technical reports that are chal-
lenging for non-security professionals to interpret. In contrast, AWSAT pro-
duces clear, actionable reports that provide detailed insights into identified vul-
nerabilities, including risk severity ratings, affected components, and recom-
mended mitigation steps. By presenting information in a user-friendly format,
AWSAT empowers users to understand the nature of security threats and take
proactive measures to address them effectively.

Furthermore, AWSAT prioritizes accessibility and inclusivity in web security
testing. Many existing tools are designed primarily for security experts, requiring
extensive training and expertise to operate effectively. AWSAT, on the other
hand, features an intuitive user interface that caters to individuals with limited
security backgrounds, democratizing web security testing and enabling a broader
audience to contribute to the protection of online assets.

Overall, AWSAT represents a significant advancement in web security testing,
offering an automated, user-friendly solution that addresses the limitations of
existing approaches. By streamlining the scanning process, providing compre-
hensive reporting, and prioritizing accessibility, AWSAT empowers users to en-
hance the security posture of their web applications effectively and efficiently.

4. Implementation and Test of AWSAT

In implementing our proposed approach, we leverage the Selenium web driver
on Python to execute our Automated Web Security Analysis Tool (AWSAT).
The tool begins by accepting the target webpage URL from the user, initiating a
dynamic crawl through the DOM elements of the page to identify potential at-
tack vectors such as input fields, login inputs, forms, file uploads, and hyper-
links.

Using a preset list of payloads, AWSAT then systematically launches common
exploits including Cross-Site Scripting (XSS), SQL Injection (SQLi), Cross-Site
Request Forgery (CSRF), file upload vulnerabilities, and open redirection vulne-
rabilities. Upon completion, the tool provides users with a quick summary of the
analysis in the terminal, highlighting detected attack vectors and successful ex-
ploits.

Additionally, AWSAT generates a comprehensive report detailing each at-
tempted exploit, including a brief description, the steps taken by the tool, find-
ings, severity assessment, and guided next steps for remediation. This reporting
structure aims to empower both technical and non-technical users to understand
and mitigate identified vulnerabilities effectively.

To ensure the effectiveness of AWSAT, iterative testing and continuous im-
provements were needed. One significant hurdle encountered was the scarcity of
authentic testing environments closely mirroring real-world scenarios. Many
testing platforms necessitated the deployment of virtual machines or the estab-
lishment of personal server sandboxes, complicating the testing process. Moreo-

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 453 Journal of Software Engineering and Applications

ver, certain platforms relied heavily on iFrames, which failed to accurately repli-
cate actual sites, thereby hindering the tool’s evaluation under realistic condi-
tions.

Despite these obstacles, AWSAT persevered, ultimately undergoing rigorous
testing across a diverse array of websites known to harbor vulnerabilities as
listed below. This proactive approach sought to ensure a multifaceted evaluation
of the tool’s capabilities.

1) https://xss-quiz.int21h.jp
2) http://sudo.co.il/xss/level0.php
3) http://www.xssgame.com/f/m4KKGHi2rVUN/
4) https://demo.testfire.net/login.jsp
5) http://testphp.vulnweb.com/userinfo.php
6) https://xss-game.appspot.com/level1/frame
The insights gained from these tests have been instrumental in refining the

tool’s capabilities, enhancing its efficiency in vulnerability identification and ex-
ploitation. Through this iterative process, AWSAT continues to evolve, ensuring
its effectiveness and reliability in real-world web application security assess-
ments.

Figure 3 shows a representative output generated from the tool execution on
a susceptible website. The illustration provides a succinct overview of the identi-
fied threat vectors and the successful exploitation of associated vulnerabilities.

Figure 4 depicts the preliminary layout of the comprehensive report generat-
ed by the tool. It encompasses an executive summary detailing the report’s scope
and content, along with the URL specific to the website subjected to testing.

Figure 5 illustrates the structure of each subsection within the report, with
each subsection dedicated to a distinct vulnerability detected and exploited.

Figure 3. Terminal Output summary from a run.

https://doi.org/10.4236/jsea.2024.175024
https://xss-quiz.int21h.jp/
http://sudo.co.il/xss/level0.php
http://www.xssgame.com/f/m4KKGHi2rVUN/
https://demo.testfire.net/login.jsp
http://testphp.vulnweb.com/userinfo.php
https://xss-game.appspot.com/level1/frame

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 454 Journal of Software Engineering and Applications

Figure 4. Basic Structure of the AWSAT’s report.

Figure 5. Details of AWSAT actions on each vulnerability.

Within each section, a concise overview of the attack is provided, detailing the
method of detection by the tool, the payload responsible for successful execu-
tion, the tool’s findings, and the Common Vulnerability Scoring System (CVSS)
score indicative of the exploit’s severity.

Figure 6 depicts the step-by-step process for reproducing each vulnerability.
It offers a comprehensive guide on configuring the environment to craft the ex-
ploit and subsequently exploit the identified vulnerability. This guide is designed

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 455 Journal of Software Engineering and Applications

Figure 6. Steps to reproduce the attack.

to be highly inclusive, employing straightforward language to ensure readability
and execution accessibility for individuals, regardless of their familiarity with
security concepts.

In Figure 7, the report presents mitigation recommendations in easily un-
derstandable terms, catering to individuals with varying levels of security exper-
tise. The recommendations offer multiple avenues for mitigation, allowing or-
ganizations to tailor their security measures according to their specific use case
and desired level of protection.

In Figure 8, the references section is depicted, which is present under each
vulnerability entry. This section provides users with additional resources for
delving deeper into the intricacies of the vulnerability. Additionally, a compre-
hensive conclusion section is included at the end of the report to summarize key
findings and insights gleaned from the analysis.

Thus, during the implementation and testing phase, significant progress was
made in enhancing the functionality and reliability of the Automated Web Secu-
rity Analysis Tool. Despite encountering challenges related to the scarcity of
suitable testing environments, the tool was successfully tested on diverse web-
sites. These tests yielded valuable feedback, enabling iterative improvements to
the tool’s efficiency and effectiveness in identifying and mitigating vulnerabili-
ties in real-world web applications.

5. Comparison with Prior Work

During the evaluation phase, the focus was on comparing the performance of

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 456 Journal of Software Engineering and Applications

Figure 7. Mitigation recommendations.

Figure 8. References and conclusion.

existing market tools against the Automated Web Security Analysis Tool
(AWSAT) on the same set of websites used in testing. OpenVAS, primarily de-
signed as a system and network scanner, struggled to address web security vul-
nerabilities effectively. Its setup was challenging, requiring users to navigate
through complex configurations, and the generated reports lacked actionable in-

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 457 Journal of Software Engineering and Applications

sights for users. Despite offering manual penetration testing options, OpenVAS
lacked automated web security analysis capabilities, which limited its effective-
ness in identifying and mitigating web-based threats.

Our analysis of OWASP ZAP is shown in Figure 9 and Figure 10, and of
BurpSuite in Figures 11-13. Similarly, while the free version of BurpSuite dem-
onstrated robustness in web security testing, its complexity and lack of auto-
mated scanning in the free version posed usability challenges. Setting up Burp-
Suite proved to be notably more complex due to its various components like the
proxy, target, intruder, and repeater. The free version’s limitations hindered its
usability, particularly for users without extensive security knowledge.

Figure 9. Output from OWASP ZAP.

Figure 10. Triaging output from OWASP ZAP.

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 458 Journal of Software Engineering and Applications

ZAP, another widely used tool, exhibited promising results during evaluation
but had notable limitations compared to AWSAT. Although relatively easy to set
up and use, ZAP was slower in identifying vulnerabilities compared to AWSAT
and lacked contextual report generation. Additionally, ZAP consumed consi-
derable resources during operation, leading to performance issues, particularly
on more vulnerable sites. AWSAT’s streamlined architecture and efficient re-
source utilization mitigate these issues, ensuring faster scanning speeds and
smoother operation across various web applications.

Figure 11. Scan output from BurpSuite premium.

Figure 12. Overall scan results from BurpSuite premium.

Figure 13. Succeeded Payload from BurpSuite Premium.

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 459 Journal of Software Engineering and Applications

Figure 14. Speed comparison.

Figure 15. Market comparison with existing tools and desired metrics practically.

Notably, testing on the paid version of Burp Suite’s automated scanning tool
revealed slower speeds and occasional missed exploits. By leveraging Selenium
over Python, AWSAT streamlines the web scanning process, making it faster
and more accessible to users with limited security backgrounds. These compara-
tive analyses underscore AWSAT’s advancements in efficiency and usability over
existing market tools.

The speed comparison in Figure 14 and market comparison in Figure 15 re-
veal AWSAT’s remarkable efficiency compared to industry-leading tools like
OWASP ZAP and BurpSuite, both in the free and paid segments. While the lat-
ter tools may excel in identifying a higher number of low-severity issues,
AWSAT is faster than them in detecting high-severity vulnerabilities at a re-
markable response time, often surpassing them by a factor of 100. Additionally,
AWSAT demonstrates superior reporting capabilities, providing users with
comprehensive insights and actionable recommendations.

6. Summary and Conclusions

The development of the Automated Web Security Analysis Tool (AWSAT)
represents a significant milestone in the realm of web application security. The
journey from inception to implementation has been guided by a meticulous ap-
proach encompassing thorough market analysis, inclusive design, efficient im-
plementation, iterative testing, and comparative evaluation against existing tools.

The market analysis phase served as the foundation for AWSAT’s develop-
ment, offering deep insights into the landscape of automated security tools. This

https://doi.org/10.4236/jsea.2024.175024

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 460 Journal of Software Engineering and Applications

comprehensive examination involved scrutinizing various tools available in the
market, identifying their strengths, weaknesses, and areas for improvement. By
leveraging this detailed understanding, AWSAT was conceptualized to address
the inherent limitations of existing solutions while anticipating the evolving
needs of web security.

The design phase of AWSAT was characterized by a commitment to accessi-
bility and inclusivity. The user centered design approach ensured that the tool
caters to a diverse audience, including individuals with limited security exper-
tise. Through intuitive interfaces and contextual reporting features, AWSAT
aims to empower users of all backgrounds to conduct effective web security
analysis.

Efficient implementation using Selenium with Python was instrumental in
ensuring that AWSAT remains lightweight and resource-efficient while deliver-
ing robust security analysis capabilities. The choice of technology not only
streamlines the scanning process but also enhances the tool’s scalability and
compatibility across different web environments.

The iterative testing phase of AWSAT involved meticulous evaluation on a
diverse set of websites closely resembling real-world scenarios. This rigorous
testing approach enabled the refinement of AWSAT’s capabilities, ensuring its
effectiveness in identifying and mitigating vulnerabilities across various web ap-
plications.

Comparative evaluation against existing market tools provided valuable in-
sights into AWSAT’s competitive edge. By benchmarking performance against
established metrics, AWSAT demonstrated superior efficiency, usability, and ef-
fectiveness in web security analysis. This comparative analysis underscored
AWSAT’s potential to set a new standard for automated web security tools.

In conclusion, AWSAT represents a culmination of careful market analysis,
inclusive design, efficient implementation, iterative testing, and comparative
evaluation. With its comprehensive feature set, intuitive interface, and robust
security analysis capabilities, AWSAT empowers a broader range of users in en-
hancing the security posture of their web applications. For those interested in
exploring further, the AWSAT repository is available on GitHub: AWSAT Gi-
tHub Repository.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] https://www.cobalt.io/blog/cybersecurity-statistics-2024

[2] https://expertinsights.com/insights/50-web-security-stats-you-should-know

[3] https://www.ponemon.org/research/ponemon-library/security/reducing-enterprise-
application-security-risks-more-work-needs-to-be-done.html

https://doi.org/10.4236/jsea.2024.175024
https://www.cobalt.io/blog/cybersecurity-statistics-2024
https://expertinsights.com/insights/50-web-security-stats-you-should-know
https://www.ponemon.org/research/ponemon-library/security/reducing-enterprise-application-security-risks-more-work-needs-to-be-done.html
https://www.ponemon.org/research/ponemon-library/security/reducing-enterprise-application-security-risks-more-work-needs-to-be-done.html

M. S. P. Manikandaswamy, V. Madisetti

DOI: 10.4236/jsea.2024.175024 461 Journal of Software Engineering and Applications

[4] https://www.statista.com/statistics/273575/us-average-cost-incurred-by-a-data-brea
ch/

[5] https://www.statista.com/statistics/617136/digital-population-worldwide

[6] Daud, N.I., Bakar, K.A.A. and Hasan, M.S.M. (2014) A Case Study on Web Applica-
tion Vulnerability Scanning Tools. 2014 Science and Information Conference, Lon-
don, 27-29 August 2014, 595-600. https://doi.org/10.1109/SAI.2014.6918247

[7] Alzahrani, A., Alqazzaz, A., Zhu, Y., Fu, H. and Almashfi, N. (2017) Web Applica-
tion Security Tools Analysis. In 2017 IEEE 3rd International Conference on Big
Data Security on Cloud, Beijing, 26-28 May 2017, 237-242.
https://doi.org/10.1109/BigDataSecurity.2017.47

[8] Curphey, M. and Arawo, R. (2006) Web Application Security Assessment Tools.
IEEE Security & Privacy, 4, 32-41. https://doi.org/10.1109/MSP.2006.108

[9] Mohammed, R. (2016) Assessment of Web Scanner Tools. International Journal of
Computer Applications, 133, 1-4. https://doi.org/10.5120/ijca2016907794

[10] Dukes, L., Yuan, X. and Akowuah, F. (2013) A Case Study on Web Application Se-
curity Testing with Tools and Manual Testing. In 2013 Proceedings of IEEE Sou-
theastcon, Jacksonville, 4-7 April 2013, 1-6.
https://doi.org/10.1109/SECON.2013.6567420

[11] Wakhale, A. (2018) Web Application Vulnerability Assessment Tools Analysis.
UMBC Student Collection.

[12] Joshi, C. and Singh, U.K. (2016) Performance Evaluation of Web Application Secu-
rity Scanners for More Effective Defense. International Journal of Scientific and Re-
search Publications (IJSRP), 6, 660-667.

[13] http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.ht
ml

https://doi.org/10.4236/jsea.2024.175024
https://www.statista.com/statistics/273575/us-average-cost-incurred-by-a-data-breach/
https://www.statista.com/statistics/273575/us-average-cost-incurred-by-a-data-breach/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://doi.org/10.1109/SAI.2014.6918247
https://doi.org/10.1109/BigDataSecurity.2017.47
https://doi.org/10.1109/MSP.2006.108
https://doi.org/10.5120/ijca2016907794
https://doi.org/10.1109/SECON.2013.6567420
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html

	Design & Test of an Advanced Web Security Analysis Tool (AWSAT)
	Abstract
	Keywords
	1. Introduction
	2. Existing Work
	2.1. Evaluation Criteria
	2.2. Assessment of Existing Tools
	2.3. Proposed Tool Significance

	3. Proposed Approach
	4. Implementation and Test of AWSAT
	5. Comparison with Prior Work
	6. Summary and Conclusions
	Conflicts of Interest
	References

