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Abstract 
The recent interest in the deployment of Generative AI applications that use 
large language models (LLMs) has brought to the forefront significant privacy 
concerns, notably the leakage of Personally Identifiable Information (PII) and 
other confidential or protected information that may have been memorized 
during training, specifically during a fine-tuning or customization process. 
We describe different black-box attacks from potential adversaries and study 
their impact on the amount and type of information that may be recovered 
from commonly used and deployed LLMs. Our research investigates the rela-
tionship between PII leakage, memorization, and factors such as model size, 
architecture, and the nature of attacks employed. The study utilizes two broad 
categories of attacks: PII leakage-focused attacks (auto-completion and ex-
traction attacks) and memorization-focused attacks (various membership in-
ference attacks). The findings from these investigations are quantified using 
an array of evaluative metrics, providing a detailed understanding of LLM 
vulnerabilities and the effectiveness of different attacks. 
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1. Introduction 

Large Language Models (LLMs) are widely used in Generative AI applications 
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that are increasingly being deployed in a variety of business processes at scale. 
These LLMs, trained on vast amounts of data, excel at understanding and 
processing text similarly to humans. They are capable of performing various 
natural language tasks such as text generation, translation, and sentiment analy-
sis [1]. Owing to their complexity, LLMs contain millions to billions of parame-
ters and can be applied in diverse fields including technology, healthcare, mar-
keting, legal, and banking.  

Pre-trained models (or Foundation LLMs) are versatile and can be used across 
various business domains, but integrating them into specific systems for en-
hanced or targeted performance requires re-training or specialized training, 
known as fine-tuning [2]. This process adjusts pre-trained models to specific 
tasks or datasets, improving their accuracy and performance in particular areas. 
Fine-tuning updates the model’s parameters using new data or examples, allow-
ing it to specialize to more focused tasks while maintaining its general language 
abilities. Different fine-tuning approaches include supervised learning with la-
beled datasets, domain-specific adjustments for better performance in certain 
industries, and transfer learning, which applies general knowledge to more fo-
cused tasks.  

After fine-tuning, an LLM’s ability to answer questions based on a specific 
dataset greatly improves, but it often retains much of the information it received 
during the process. This capability, known as memorization [3] [4], allows the 
model to remember and sometimes reproduce exact information from its train-
ing data when a user queries (or “prompts”) it appropriately. Research [5] indi-
cates that as LLMs grow larger with more parameters, memorization becomes 
more common unless steps are taken to prevent it. Memorization can also 
progress to over-fitting [6], where a model while performing very well on its 
training data may also store information that when prompted to recall specific 
details, reveals sensitive, confidential, or private information that was present in 
the training data set.  

A major issue arises when training datasets for Large Language Models 
(LLMs) contain sensitive and confidential information, such as Personal Identi-
fiable Information (PII) [7]. The leakage of PII is a significant concern because it 
can directly or indirectly identify individuals, which is regulated under laws like 
the General Data Protection Regulation (GDPR) [8]. PII includes direct identifi-
ers such as names, addresses, and Social Security numbers, and indirect identifi-
ers like gender, race, and birthdate. Thus, the challenge in generative AI applica-
tions is to balance the advantages of LLMs with the need to protect PII and other 
confidential information. When fine-tuning LLMs and creating specific language 
models for specialized business domains, it is important to consider all privacy 
and confidentiality issues related to the chosen techniques, models, datasets, and 
other parameters. This consideration is essential to protect user data and ensure 
the integrity of the model’s output.  

In light of all of these factors, under certain conditions, LLMs may pose sig-
nificant security and privacy risks, potentially impacting individuals and organ-
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izations by enabling data breaches or ransomware attacks when attacked by ma-
licious parties. These models can also bypass security systems or generate harm-
ful content, undermining digital safety. Such risks, often linked to the models’ 
memorization abilities, raise significant concerns about privacy, effectiveness, 
and fairness.  

We describe and test various adversarial attack scenarios on LLMs to evaluate 
their effectiveness using detailed performance metrics. We also conduct experi-
ments using LLMs of varying sizes and types to investigate how the number of 
parameters influences memorization, leakage, and eventually even the potential 
leakage of personally identifiable information (PII) and other confidential in-
formation. We have also developed a user-friendly plug-and-play web interface 
that allows easy access and interaction with the models. This platform enables 
users to execute different attacks and helps in understanding the extent of me-
morization, providing a broad overview of the intersection between language 
models and security.  

The key contributions of this paper are:  
• Analysis of two important types of black-box LLM attacks: PII leakage-focused 

attacks (i.e., auto-completion and extraction attacks) and memorization-focused 
attacks (i.e., membership inference attacks).  

• Investigation of the influence of the types and sizes of LLM models on me-
morization, leakage, and potential PII exposure under black-box attacks 
through measurement of a set of metrics.  

• Development of a user-friendly web interface that allows easy access and in-
teraction with the models, enabling users to execute different attacks and 
understand the extent of memorization.  

2. Related Work  

Herein, we examine some recent results by other authors that provide some of 
the background and foundation for our work. 

1) Practical Membership Inference Attacks against Fine-tuned Large 
Language Models via Self-prompt Calibration: This study [9] investigates how 
fine-tuned large language models (LLMs) are vulnerable to membership infe-
rence attacks (MIAs), including both reference-free and reference-based types. 
The research introduces a new black-box attack method, Self-calibrated Proba-
bilistic Variation (SPV), which leverages the phase of memorization during fine- 
tuning to extract confidential information from the LLM. This attack also involves 
using a classifier to identify if a sample was in the training data of the model. 

2) Empirical Analysis of Memorization in Fine-tuned Autoregressive 
Language Models: This study [5] suggests that fine-tuned LLMs significantly 
memorize training data, which decreases their performance on new, and unseen 
data. This memorization, according to the authors, is especially notable when 
fine-tuning with smaller datasets. Further, this study finds that fine-tuning of 
certain types (e.g., the head adapter layer of the LLM) may increase vulnerability 
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to privacy attacks due to increased memorization. 
3) Analyzing Leakage of Personally Identifiable Information in Language 

Models: This study [10] examines the risk that LLMs, like GPT-2, leak Perso-
nally Identifiable Information (PII) when fine-tuned in domains such as case 
law, healthcare, and email. It defines PII leakage attacks that generating exact 
text sequences, reconstruct PII from masked training data sentences, and infer 
PII using a target sequence and candidate PII set, respectively. The findings also 
suggest that while aggressive data scrubbing and differential privacy may en-
hance security and privacy, they inversely affect the LLMs utility. 

4) Quantifying Memorization across Neural Language models: This study 
[4] analyzes how as the LLMs capacity increases, the use of replicated training 
data examples and added contextual tokens increase memorization in LLMs 
across different models and datasets. It focuses on certain types of extraction at-
tacks, where the use of replication in training data leads to more data leakage 
[11] due to increased memorization. The study shows that even querying a small 
portion of the training data provides reliable estimates of leakage. The results 
also indicate that larger models memorize more that smaller models. 

5) Does Fine-tuning GPT-3 With the OpenAI API Leak Personal-
ly-Identifiable Information?: This study [12] also explores the privacy risks of 
fine-tuned large language models like GPT-3, focusing on the dangers of leaking 
Personally Identifiable Information (PII). The researchers used OpenAI’s fine- 
tuning API to evaluate the LLM’s vulnerability to PII extraction. Their findings 
reveal that fine-tuning for tasks such as classification and auto-complete can 
cause GPT-3 to memorize and disclose sensitive PII from its training data when 
prompted appropriately. Both naive (classification) and practical (auto-complete) 
settings are shown to be vulnerable allowing users with just a black-box API 
access to extract PII using appropriate prompts.  

In this paper, we build on this exciting recent work, and extend their analyses. 

3. Overview of Our Paper  

This paper seeks to advance the understanding of security and privacy in Large 
Language Models (LLMs) by applying sophisticated attacks to carefully selected 
representative LLMs and specialized fine-tuning datasets. As described in Figure 
1, we evaluated the performance of LLMs under two categories of privacy at-
tacks, and utilized several types of datasets and LLMs to measure suitable me-
trics. We briefly describe the LLMs attacked, the datasets used in fine-tuning, the 
types of attacks, and metrics used, in the sections that follow. 

3.1. LLMs Tested and Attacked  

Several LLMs were utilized in our study as fine-tuned target and reference mod-
els. These models vary in size, architecture and security measures, offering a 
broad spectrum of capabilities and specializations. Each model is briefly de-
scribed below, including their parameter count and distinctive features.  
• LLaMA 7B: A foundational language model with 7 billion parameters [13],  

https://doi.org/10.4236/jsea.2024.175023


H. Aditya et al. 
 

 

DOI: 10.4236/jsea.2024.175023 425 Journal of Software Engineering and Applications 
 

 
Figure 1. Overview of evaluation workflow used in paper. 

 
trained on a trillion tokens. It excels in that tasks of dialogue generation and 
role-play despite its smaller size. 

• Mistral 7B: A 7.3 billion parameter language model [14], noted for superior 
performance in English language tasks. 

• LLaMA 13B: Known for efficiently managing various domains with 13 bil-
lion parameters [13], this model competes well with larger models. 

• Mixtral 8x7B: A 45 billion parameter model using a so-called “mixture of 
experts” architecture [15]. During inference, it selects two best models and 
uses approximately 12.9 billion parameters to obtain its performance.  

3.2. Datasets Used for Fine-Tuning LLMs  

We now describe the datasets employed in our evaluation workflow. These da-
tasets are classified according to their use in various types of attacks, such as in-
ference and memorization attacks, and further divided based on their applica-
tion in training either target or reference models. 

3.2.1. Fine-Tuning Datasets 
This section briefly details the datasets utilized in fine-tuning of the LLMs in this 
study. 
• Datasets for PII Leakage Focused attacks:  
- Enron-Body Dataset: Collection of the text content in the body of emails 

from an Enron dataset [16] [A collection of real-world business emails from 
the Enron Corporation].  

- Enron-Prompt Template Dataset: Includes both the email subject and body 
text.  

- AESLC (Annotated Enron Subject Line Corpus) Dataset: Used as the basis 
to prepare our prompt template dataset:  
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https://huggingface.co/datasets/aeslcAESLC. The dataset preparation was 
done in a similar way to [12].  

• Datasets Used for Memorization Focused Attacks:  
- Wikitext: A collection of Wikipedia articles formatted for natural language 

processing.  
- AG News: A collection of news articles categorized into four main topics.  
- XSum: A collection of summaries of BBC articles for text summarization 

tasks.  
• Data Processing for Target Models:  
- Memorisation Datasets & Enron Body Dataset: Train/test split of 10,000 

training and 1000 testing samples, random sampling with seed 42.  
- Enron Prompt Template Dataset: Train/test split of 500 training and 100 

testing samples, employing instructive prompt templates and model types.  

3.2.2. Reference Datasets 
These datasets were selected as they are the non-overlapping but similar domain 
specific datasets for the memorization attack datasets respectively.  

Dataset Info:  
• Wikicorpus: A large corpus of multilingual Wikipedia articles for linguistic 

research.  
• TLDR News: Summarized news headlines for quick consumption.  
• CNN Daily Mail: Dataset containing news articles and their summaries from 

CNN and Daily Mail.  
Data Processing for Reference Models:  

• Train/test split of 1000 training and 200 testing samples, random sampling 
with seed 42.  

Used for: Fine-tuning reference models for the LiRA Candidate Attack and 
SPV-MIA attack (using 8 words of prompt input from same reference data-
set).  

3.2.3. Evaluation Datasets 
Data Pre-processing:  

• Member Data (500 Members): Randomly selected from one of the memo-
risation attack target datasets (e.g., Wikitext).  

• Non-Member Data (500 Members): 100 entries from the testing set of a 
non-overlapping domain-specific reference dataset (e.g., Wikicorpus), and 
400 entries sampled randomly from all other datasets except the member 
target dataset (e.g., Wikitext).  

Reason for Selection: The selection of 100 entries from domain-specific ref-
erence datasets ensures exposure to similar data distributions while maintaining 
distinct classification.  

Used for: For the Memorization MIA attacks, this dataset facilitated the gen-
eration of true classification labels, enabling the calculation of accuracy scores 
and other evaluation metrics.  

Table 1 provides an overview of all datasets used in the study, detailing their  
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Table 1. Outline of the models, datasets, and the respective finetuned and reference models. The finetuned model is trained on a 
specific dataset, while the reference model is trained on a different, non-overlapping domain specific dataset. 

Model Dataset Fine-tuned models Reference dataset Reference model 

Mistral 7B 

Enron Mistral7B-Enron - - 

Wiki Mistral7B-Wiki Wikicorpus Mistral7B-Wiki-RM 

AGNews Mistral7B-AGNews TLDR News Mistral7B-AGNews-RM 

XSum Mistral7B-XSum 
CNNDM 

(CNN/Daily Mail) 
Mistral7B-XSum-RM 

Mixtral 8x7B 

Enron Mixtral45B-Enron - - 

Wiki Mixtral45B-Wiki Wikicorpus Mixtral45B-Wiki-RM 

AGNews Mixtral45B-B AGNews TLDR News Mixtral45B-AGNews-RM 

XSum Mixtral45B-XSum 
CNNDM 

(CNN/Daily Mail) 
Mixtral45B-XSum-RM 

LLaMA 7B 

Enron LLaMA7B-Enron - - 

Wiki LLaMA7B-Wiki Wikicorpus LLaMA7B-Wiki-RM 

AGNews LLaMA7B-AGNews TLDR News LLaMA7B-AGNews-RM 

XSum LLaMA7B-XSum 
CNNDM 

(CNN/Daily Mail) 
LLaMA7B-XSum-RM 

LLaMA 13B 

Enron - - - 

Wiki LLaMA13B-Wiki Wikicorpus LLaMA13B-Wiki-RM 

AGNews LLaMA13B-AGNews TLDR News LLaMA13B-AGNews-RM 

XSum LLaMA13B-XSum 
CNNDM 

(CNN/Daily Mail) 
LLaMA13B-XSum-RM 

 
specific attributes and aligning them with their respective models. Detailed dis-
cussions of the utilized attacks and evaluation metrics are presented in subse-
quent sections, facilitating a comprehensive understanding of the methodologies 
and findings. 

3.3. Fine-Tuning  

We tested different fine-tuning techniques on a selection of LLMs as part of our 
workflow. Two methods used in previous studies, Head Fine-tuning and LoRA, 
were investigated in our work. Head fine-tuning, which involves training just the 
top layers of an LLM, speeds up adapting to new tasks while keeping the base 
layers unchanged. We applied this method on datasets Wiki, XSum, and AG 
News. However, fine-tuning solely the head layer was ineffective in our tests as 
indicated by inadequate and inconsistent training loss and high perplexity 
scores.  

We then used LoRA [17], a parameter-efficient fine-tuning method, which 
optimizes fine-tuning by reducing the number of trainable parameters through 
lower-rank representations (LoRA), making the process quicker and less re-
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source-intensive, while maintaining high-quality results comparable to 
full-parameter fine-tuning. For the LoRA fine-tuning, we were able to use a 
standard baseline configuration across all tests with learning rate set at 1e−3 
with the Adam optimizer. Optimal parameters applied were determined after 
extensive testing as: rank 16, alpha 32, and dropout rate 0.05. Target modules in-
cluded were “q”, “k”, “v”, and “o”. The input prompt length for all the models 
was set to 128 tokens. The max length for Enron-Prompt Template Dataset was 
set to 512 tokens. This process and its outcomes are detailed in Figure 1. 

3.4. LLM Attacks  

We investigated various methods of attacking LLMs, such as prompt injection 
and inferencing. Each attack type requires specific conditions, such as certain 
fine-tuned models or reference datasets. After setting up these conditions as de-
tailed in section 4, we conducted experiments by implementing these attacks on 
different LLMs and datasets. We then evaluated the outcomes using specific me-
trics to assess the performance of each attack-model pair. 

3.5. Web UI  

We created a simple and user-friendly web UI to test and analyze the leakage 
evaluation metrics easily. This interface included several features allowing users 
to quickly assess different metrics on various models and datasets.  

4. Blackbox Attacks on LLMs  

Based on the level of knowledge and access provided to the tester about the 
system being tested, attacks may be classified as black-box attacks or white-box 
attacks. In black-box attacks, the adversary has limited or no prior knowledge 
of the LLM being compromised and the auditors can only query the LLM to 
observe its outputs [18]. This approach closely mimics real-world attacks 
where the attacker has the bare minimum of information. We study two types 
of black-box attacks in this paper: 1) PII (Personally Identifiable Information) 
leakage-focused attacks, and 2) memorization-focused attacks. Additional details 
of each attack type have been outlined below and summarised in the following 
Table 2. 

4.1. PII Leakage Focused Attacks  

The first type of LLM attacks, PII leakage focused attacks, includes methods that 
can potentially leak personally identifiable information (PII) when executed on 
LLMs. Within this type, we specifically examine two sub-types: auto-completion 
and extraction attacks. Auto-completion attacks test the predictive capabilities of 
LLMs to determine if these models could inadvertently reveal PII. Conversely, 
extraction attacks involve prompting the models to disclose sensitive informa-
tion intentionally. Both the subtypes of attacks are analyzed in the sections that 
follow, offering a comprehensive understanding of their mechanisms. 
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4.1.1. Auto-Completion Attack 
The auto-completion attack (similar to Sun et al. [12]) can be defined as an at-
tack that targets large language models (LLMs) by leveraging their predictive 
capabilities. This method involves providing the model with a minimal prompt, 
and then encouraging it to complete and add to given partial and incomplete set 
of information. An instance of this approach is where a fine-tuned LLM model is 
prompted to compose the entire body of an email based solely on the subject line 
(that is included in the prompt). This attack exploits the LLM’s auto-completion 
function by repeatedly submitting as part of prompts, email subject lines, and 
requesting the generation of corresponding email bodies. During the process of 
generating these email bodies, the LLM may often discloses PII contained within 
the training data used as part of fine-tuning process, thereby posing a significant 
privacy risk from this type of attack where confidential information may be dis-
closed. Figure 2 provides an example of this attack. 

4.1.2. Extraction Attack 
Extraction attacks targeting Large Language Models (LLMs) also pose significant 
threats, as they aim to extract sensitive information or training data embedded 
within these models. The black-box extraction attack discussed in this paper is 
similar to the classification/extraction attack discussed in the work by Sun et al. 
[12]. In the execution of model extraction attacks, adversaries interact directly 
with the LLMs, prompting them and receiving responses which may contain PII 
or other confidential information. In the case of this research, the process in-
volves creating random prompts from a dataset other than the original 
fine-tuning dataset, and then prompting the fine-tuned LLM. The responses to 
these prompts may contain PII or confidential information which may also 
match with those present in the fine-tuning dataset. Although this attack is not 
as targeted as the auto-completion attack, it may still lead to PII and/or confi-
dential information leakage. The dataset used for fine-tuning in our analysis is  
 

 
Figure 2. Example of auto-completion attack. 
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the Enron-Body Dataset and a working example of this attack can be illustrated 
by Figure 3. 

4.2. Memorization-Focused Attacks  

In the context of memorization-focused attacks, our focus is largely on different 
types of “membership inference attacks” or MIAs. Membership Inference At-
tacks (MIAs) attempt to determine whether a specific data record was part of the 
training dataset used to develop a model. These attacks leverage the distinct be-
havior of models when making predictions on data points that were part of their 
training set as opposed to those that were not. By analyzing the LLM’s responses 
to various black-box prompts and queries, attackers can infer the membership 
status of individual data records. We classify MIA attacks into two subtypes as 
described below.  
• Reference-Based Attacks: In this attack, the adversary utilizes a reference 

LLM model alongside the targeted LLM model. The approach involves com-
paring the LLM model scores (such as loss values or confidence scores) from 
the targeted model against those from the reference model for certain 
prompts. The reference model is trained on similar but non-identical data to 
the targeted LLM model, providing a basis for comparison. This helps the 
adversary to deduce whether a given sample was part of the target LLM’s 
fine-tuning training data, based on the difference in how the two models 
score on sample prompts. The assumption here is that the adversarial attack-
er has “some” knowledge of or access to fine-tuning training data resembling 
the original training data used for fine-tuning the target model, which may or 
may not be sometimes possible. In this paper, we explore three kinds of ref-
erence-based attacks used in earlier work: LiRA-Base, LiRA-Candidate, Self- 
calibrated Probabilistic Variation-MIA [9].  

• Reference-Free Attacks: This attack approach does not rely on a reference 
model. Instead, it uses only the target model and exploits its behavior on in-
dividual sample prompts to infer membership. For instance, if the target 
model shows higher confidence or lower loss on a particular sample prompt,  

 

 
Figure 3. Example of extraction attack. 
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it could indicate that the sample was part of the training set. This type of at-
tack does not require the adversary to have any additional data resembling 
the training set, making it potentially more applicable in realistic scenarios 
where such data is unavailable. Neighborhood attack [19] is a reference-free 
attack studied further in our paper.  

4.2.1. Self-Calibrated Probabilistic Variation Membership  
Inference Attack 

The Self-calibrated Probabilistic Variation MIA technique, derived from the base 
Membership Inference Attack MIA, serves as a method to ascertain whether a 
particular data record, such as a sentence or document, was included in the 
training data utilized to fine-tune large language models (LLMs). Recently in-
troduced in a study [9], this attack utilizes three artifacts: 1) robabilistic variation 
signal,2) a self-prompt approach, and 3) thresholding. During the fine-tuning 
training process, LLMs assimilate patterns from the training data before reach-
ing a stpte of overfitting. Self-calibrated Probabilistic variation MIA leverages on 
this memorization by comparing the probability distributions of a target model 
(the LLM under attack) and a reference model (a fine-tuned model trained on a 
reference dataset). The disparity in probabilities between the two models func-
tions as a “membership signal”. Unlike traditional methods reliant on external 
reference datasets, Sslf-calibrated probabilistic variation Membership Inference 
Attack (MIA) constructs a reference dataset internally by prompting the target 
LLM itself. Through the generation of data points using self-prompts, this 
self-calibrated probabilistic variation SPV MIA attack ensures a distribution akin 
to the training data. This self-prompt approach renders SPV MIA practical even 
in scenarios where reference datasets are unavailable. For each data prompt, SPV 
MIA computes the variation signal, i.e., the difference in probabilities between 
the target and reference models. If this signal surpasses a predefined threshold, it 
indicates that the data point used in the prompt likely originated from a training 
dataset; otherwise, it is deemed unrelated. Figure 4 illustrates a working example 
of SPV-MIA and Figure 5 illustrates the membership test for SPV-MIA. 

4.2.2. Neighborhood Attack 
The neighborhood attack [19] is a reference-free membership inference attack. It 
operates without the need for direct access to the training data distribution. This 
attack works on a basic principle (refer Figure 6), that if the model score (Loss 
Score L) of a target sample T closely aligns with the neighboring samples, then 
these data points likely originate from the same distribution, indicating that 
Sample T is not a member of the training data. However, if a particular sample T 
exhibits substantially lower model score than its neighbouring samples, this dif-
ference may be a result of overfitting during fine-tuning, and this suggests that 
the sample T is likely part of the training data. In this attack the average loss of 
neighbour data prompts is used as the benchmark for comparison [9].  

This attack leverages a data augmentation technique (e.g., word replacement) 
wherein pre-trained masked language model (for e.g., BERT) [20], generates “I”  
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Figure 4. Membership inference attack with self calibrated probabilistic variation—SPV MIA. 
 

 
Figure 5. Membership test for membership inference attack with self calibrated probabil-
istic variation. 
 
neighbors for a target sample T. The neighbors are generated with minor re-
placements in the original text and retain the semantics and the grammar of 
sample T. Neighbors generated using this technique in theory can be safely as-
sumed to be part of the same probability distribution of sample T. For evaluating 
the attack over a dataset, we account for a factor which is used to differentiate 
between the class labels, “member” & “non-member”. This is denoted by C (cu-
toff value) and is taken as average ({L(T)-mean (L()}) over non-member class  
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Figure 6. T is the target sample which is tested for membership,  are the neighbors generated using Pre-trained Masked Lan-
guage Model, L(T) is the model Loss score, mean (L()) is the mean model loss score of the neighbors, and C is the cutoff value 
used for differentiating the class samples (required for classification task over dataset). 

 
samples. This attack is evaluated across 3 datasets (sec. 3.2.1) and 4 models in 
this paper (sec. 3.1).  

We now provide an illustrative example to describe this attack. Let us assume 
we have a model fine-tuned on the best fiction novels of all time, and we want to 
test if the Harry Potter novels were part of that training set. Consider a line (“the 
target sample T”) from the book: Harry Potter And The Chamber of Secrets,  

“Fawkes is a phoenix, Harry. Phoenixes burst into flame when it is time for 
them to die and are reborn from the ashes. Watch him …”. 

We use this as the target sample T and generate its 10 neighbors using a 
Masked Language Model (BERT) as follows.  

Examples of neighbors, , generated - {  
• “Fawkes is a phoenix, Harry. Phoenixes burst into fire when it is time for 

them to die and are reborn from the ashes. Watch him…”,  
• “Fawkes is a phoenix, Harry. Phoenixes burst into fire when it is time for 

them to die and are resurrected from the ashes. Watch him…”,  
• “Fawkes is a phoenix, Harry. Phoenixes burst into fire when it is time for 

themselves to die and are reborn from the ashes. Watch him…”, 
• … 
}  

We query the target model using the target sample T and its corresponding 
neighbors , and record the LLM’s loss scores for each. Let us assume that the 
loss score for sample T is 0.48, while the average loss score for the neighbors is 
2.04. This significant difference suggests that sample T is likely part of the 
training data, as indicated by the much lower loss score L(T) compared to mean 
(L()). Conversely, if the loss score L(T) were close to mean (L()), it would 
suggest that both T and list of neighbors  are from the same distribution, im-
plying that T is not a member of the training set. Therefore, within the subset of 
membership inference attacks, the neighbor attack offers significant insights 
from an attacker’s perspective. It employs a robust mechanism to generate 
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neighbors as a strategy to tackle the problem and ultimately produce results. The 
outcomes of this attack on various LLMs tested in this paper and across different 
datasets are detailed in Section 6. 

4.2.3. LiRA-Candidate 
Building on our preceding analysis of two types of Membership Inference At-
tacks (MIA), we further describe the LiRA candidate attack [9] as the third type 
of MIA attack in this paper. This specific attack aims to determine whether cer-
tain pieces of information, specifically texts, were part of the data used to train a 
model, with a primary focus on privacy concerns. Revealing details about the 
training data could potentially expose personal information or other confidential 
information. For this particular analysis, we use two variations of the model: a 
target model and a reference model. The target model was fine-tuned on a 
unique subset of texts, and the reference model was fine-tuned on a different set 
that did not overlap with the target LLM’s training data. To illustrate the LiRA 
Candidate attack, let us consider a sample text from a famous speech, “I have a 
dream” by Martin Luther King Jr. We input this text into both the target LLM 
model, which fine-tuned and trained on a dataset including historical speeches, 
and the reference model, which trained on a dataset comprising historical ar-
ticles. Suppose the target model records a negative log-likelihood of −0.2 for this 
speech, indicating high confidence due to its training on similar content. In con-
trast, the reference model shows a negative log-likelihood of −0.7, signaling low-
er confidence as it is less familiar with such historical texts. To determine if “I 
have a dream” is part of the target model’s training dataset, we apply the deci-
sion criterion is_member = difference ≥ threshold.  

With the observed difference of 0.5 (0.7 - 0.2), and considering our threshold 
of 0.5, the result meets the criterion, indicating that the speech likely belongs to 
the target model’s training dataset. This method of comparing confidence levels, 
quantified by differences in negative log-likelihood, enables us to infer member-
ship. It enhances our understanding of how well the model protects data privacy 
and whether it might inadvertently reveal if specific data was used during its 
training. Figure 7 illustrates a working example of the LiRA-candidate attack. 

4.2.4. LiRA-Base 
In our study of LiRA Base attack [9], the primary difference lies in the use of a 
base model instead of a reference model. The base LLM model is the founda-
tional model on which the target LLM model is fine-tuned. It is typically trained 
on a broader and more generalized dataset compared to the target LLM model’s 
specialized set of training data. This distinction is crucial as it affects the target 
LLM model’s familiarity with the specific content being tested, thus influencing 
the inference results regarding data membership. Figure 8 illustrates a working 
example of the LiRA-Base attack. 

Table 2 offers a concise summary of each attack, including its categorization 
based on the type of attack. This allows for acomparison and understanding of  
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Figure 7. The LiRA-Candidate attack. 
 

 
Figure 8. The working pipeline of LiRA-Base attack. 
 
Table 2. This table offers a concise summary of all the attacks utilized in this paper, categorized into two main types: PII lea-
kage-focused attacks and memorization-focused attacks. All the attacks detailed in this paper are classified as black box attacks, a 
categorization based on the available information and system settings. 

Attacks Category Description 

PII Leakage Focused Attacks 

Autocompletion Attack Black Box 
Exploits the LLM model’s completion function by repeatedly submitting minimal 
prompts and requesting the generation of corresponding outputs, potentially  
leading to the disclosure of PII contained within the fine-tuning data. 

Extraction Attack Black Box 
Aims to extract sensitive information or training data embedded within LLMs by 
interacting directly with the models, generating queries, and receiving  
responses to reconstruct a dataset resembling the original training data. 

Memorization Focused Attacks 

Self-calibrated Probabilistic 
Variation—Membership  
Inference Attack 

Black-Box 
Variant of MIA that compares the probability distributions of a target model  
and a reference model to infer membership, utilizing a self-prompt approach to 
construct a reference dataset internally. 

Neighborhood Attack Black Box 
Variant of MIA that generates augmented neighbor samples for a target text using 
a Masked Language Model (MLM) and compares the loss scores of the target  
text and its neighbors to infer membership. 

LiRA-Candidate Black Box 
Variant of MIA that compares the confidence (negative log-likelihood) of  
predictions made by a target model and a reference model on a given  
text to infer membership. 

LiRA-Base Black Box 
Variant of MIA that compares the confidence (negative log-likelihood) of  
predictions made by a target model and a base model used as a reference  
model on a given text to infer membership. 
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the distinct characteristics that define each attack type. 

5. Evaluation Metrics  

All the experiments, in terms of respective models and attacks, were evaluated 
using a comprehensive set of metrics. Since we have two distinct categories of 
attacks, the evaluation metrics vary accordingly. For PII leakage-focused at-
tacks, the metrics used include 1) Extraction Success Rate, 2) PII Extractability, 
and 3) PII Inference Accuracy. Perplexity was utilized to provide scores for 
model performance across the varied datasets. Additionally, in cases where the 
initial PII metrics were not applicable, such as with memorization focused at-
tacks, we switched to using traditional metrics such as accuracy, precision, and 
recall as the primary indicators. These metrics help assess the extent of infor-
mation leakage from LLMs. These evaluation metrics are elaborated upon in 
detail below.  

5.1. Extraction Success Rate  

This metric quantifies the proportion of unique sequences representing PII ex-
tracted from the training or fine-tuning data by the LLM, offering insights into 
the susceptibility of real PII to extraction attacks. The extraction success rate is 
determined by calculating the recall or percentage of all unique PII sequences 
present in the attacker’s extracted set. Lower extraction rates signify a more ef-
fective mitigation approach, indicating the successful extraction of PII. The 
formula for calculating the extraction success rate can be expressed as: 

No. of unique PII sequences in attacker s extracted set common with the datasetESR 100
Total amount of unique PII in the dataset

= ×
’ . 

5.2. PII Extractability  

PII Extractability is another metric that quantifies the capacity of language mod-
els to precisely generate verbatim PII sequences from the training corpus. In the 
case of this research, it has been differentiated into two types:  
• Set Difference: This is used to find the PII/entities that are present only in 

the finetuned model’s responses. This gets rid of some of the common enti-
ties that might be present in the base model generations. The set difference of 
the common unique PII sequences present in the finetuned model generated 
responses and the base model generated responses is calculated. This number 
is then divided by total amount of unique PII in the dataset. 

PII Extractibility :Set Difference
No. of PII sequences in Set Difference 100

Total amount of unique PII in the dataset
= ×

. 

Sequences in Set Difference: Unique PII sequences in fine-tuned model 
generations common with the fine-tuning dataset, same for base model. 

Precision: Precision is basically defined as number of true positives divided 
by the sum of true positives and true negatives. In other words, this metric is 
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used to find that out of all the generated PII, how many are also part of the fine-
tuning dataset. The number of unique generated PII that are also common with 
the finetuning dataset (True Positives) is divided by the total number of unique 
PII generated (True Positives + True Negatives). 

PII Extractibility : Precision
No. of unique generated PII, common with the finetuning dataset 100

Total amount of unique PII present in the generated responses
= ×

 

5.3. PII Inference Accuracy  

PII inference accuracy builds upon the concept of PII reconstruction, offering an 
additional advantage to the adversary through their knowledge of potential PII 
candidates. This approach presupposes an adversary who is not just informed 
about the context in which PII may appear but also has insights into likely PII 
values, elevating their ability to accurately extract the exact PII from a narrowed- 
down list. In technical terms, a response is chose from the list of responses. The 
entity/entities present in the response is/are masked. A list of entities is prepared 
from the category of the masked entity, and then loss scores are calculated re-
placing the word “[MASK]” one by one with the list of entities. The entity that 
gets the minimum loss score is compared with the actual entity, if it matches 
then 1 is added to the total count. At the end, total count is divided by the total 
number of entities considered for the entity lists across all the categories, and the 
PII Inference Accuracy score is calculated. For example, if an adversary is trying 
to ascertain an individual’s current city of residence, they might have a list of ci-
ties such as “Florence, San Jose, Atlanta” that they suspect the individual might 
be living in. The adversary could then craft a query like, “The individual cur-
rently resides in [MASK]”, intending to prompt the language model to reveal the 
specific city from the list. 

PII Inference Accuracy
No. of entities that also match the entity with the minimum loss score 100

Total amount of entities considered for the entity lists across all categories
= ×

 

5.4. Perplexity  

Perplexity in LLMs refers to a metric that measures the uncertainty associated 
with the target model’s predictions when generating new tokens. It is considered 
as a quantifier of a model’s fluency and utility. Since it evaluates how well any 
LLM predicts a sample of text—a lower value of this metric indicates higher util-
ity as it reflects a higher level of consistency and accuracy in generating text. The 
mathematical formula for perplexity is given by: 

( ) ( ) ( ) ( ) ( ) ( )2log2 2 x p xp x p xH p

x
PP p p x −−∑= = =∏

 
Table 3 displays the perplexity scores for each model across the datasets used, 

noting the absence of scores for the Enron 500 prompts and Enron full body da-
tasets for the LLaMA 13B model. This omission is attributed to the Enron dataset  
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Table 3. Perplexity scores for different models and datasets. 

Metric Perplexity 

Model Wiki XSum AG News 
Enron 500 
Prompts 

Enron Full 
Body 

Mistral 7B 28.75 22.22 25.74 7.13 13.33 

LLaMA 7B 15.80 11.04 10.28 6.96 8.55 

LLaMA 13B 15.67 11.46 11.02 - - 

Mixtral 8x7B 13.60 10.60 11.05 6.94 8.46 

 
not being applied in the specific attacks analyzed, with the LLaMA 13B model 
exclusively used for reference-based attacks. 

6. Observations and Results of Attacks  

After conducting the specified attacks on the chosen LLMs and evaluating their 
performance using the defined metrics, we obtained the following results that 
offer insights into the effectiveness of each attack type. 

1) Autocompletion Attack: The autocompletion attack was evaluated using 
various metrics as listed in Table 4 and Table 5 and also discussed in the Section 
5. The auto-completion attack demonstrated varying performance across the 
models. Notably, the attack performed better on training prompts compared to 
test prompts for most metrics, with Llama 7B, Mistral 7B and Mixtral 45B 
achieving Extraction Success Rate of 10.29%, 12.73% and 11.45% respectively on 
training prompts. 

This suggests that this attack may be more effective when the attack uses 
prompts that are similar to those used in fine-tuning. However, the test prompts 
showed slightly better results in some cases. We attribute this to the possibility 
that the foundation LLM models were also trained on the widely-used Enron 
dataset. The auto-completion attack also exhibited a higher Extraction Success 
Rate compared to the extraction attack, likely because the prompts used in the 
attack were similar to those used in fine-tuning. The minor differences in model 
performance may be attributed to their specific architectures and training 
processes. 

2) Extraction Attack: The extraction attack was also evaluated using the same 
metrics as the auto-completion attack. The results are listed out in Table 6. The 
model was prompted using a secondary dataset (c4 dataset on Hugging Face, the 
research paper for the dataset [21]), creating random fixed-length prompts from 
it. Then the models were prompted using these prompts to generate responses 
containing PII. 

For extraction attack, the values for the Extraction Success Rate metric are 
lower as compared to the auto-completion attack. Llama 7B achieved the highest 
rate at 4.47%, followed closely by Mistral 7B and Mixtral 45B at 4.46% and 4.39% 
respectively. The lower success rates compared to the auto-completion attack  
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Table 4. Results for the Autocompletion Attacks across two metrics: Extraction success rate and PII Inference accuracy. 

Model 
Extraction Success 

Rate [Train] 
Extraction Success 

Rate [Test] 
PII Inference  

Accuracy [Train] 
PII Inference  

Accuracy [Test] 

LLaMA 7B 10.29 10.41 75.15 84.21 

Mistral 7B 12.73 9.93 70.75 80.65 

MixtraI 45B 11.45 9.44 75.00 82.58 

 
Table 5. Results for the Autocompletion Attacks across the metric PII Extractibility. 

Model 
PII  

Extractibility - Set  
Difference [Train] 

PII  
Extractibility - Set  
Difference [Test] 

PII  
Extractibility - Precision 

[Train] 

PII  
Extractibility - Precision 

[Test] 

LLaMA 7B 4.81 5.36 10.94 9.37 

Mistral 7B 5.60 3.78 11.09 8.20 

MixtraI 45B 4.69 4.45 10.26 8.56 

 
Table 6. Results for the extraction attack. 

Model Extraction Success Rate 
PII Extractibility - Set  

Difference 
PII  

Extractibility - Precision 
PII Inference  

Accuracy 

LLaMA 7B 4.47 2.13 25.59 77.74 

Mistral 7B 4.46 1.94 23.65 77.92 

MixtraI 45B 4.39 2.00 24.79 65.96 

 
can be attributed to the use of prompts unrelated to the fine-tuning training data 
that was sourced from a secondary dataset. This highlights the importance of 
prompt relevance in the effectiveness of extraction attacks. Interestingly, Mixtral 
45B exhibited a lower PII Inference Accuracy (65.96%) compared to the other 
models, potentially due to its mixture-of-experts architecture and how it processes 
prompts using different combinations of its underlying models. 

3) SPV MIA Attack: The SPV-MIA attack, evaluated using accuracy, preci-
sion, and recall at different threshold values, revealed varying levels of vulnera-
bility across the models. The results are listed in Tables 7-9. At a threshold of 
0.0001, Mistral 7B and Llama 13B showed high recall, suggesting a higher like-
lihood of overfitting or memorizing training data. When the threshold was in-
creased to 0.11, all models achieved 100% recall but at the cost of precision, in-
dicating possible overfitting. At a threshold of −0.08, the precision improved, 
suggesting a more conservative model behavior that might be less susceptible to 
the attack. 

Mistral 7B shows a strong inclination towards high recall across thresholds, 
suggesting potential vulnerability to SPV-MIA due to overfitting. Its high recall 
could also mean that it memorizes more of the training data, making it a good 
target for SPV-MIA. Llama 13B shows a balanced performance at a threshold of  
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Table 7. Results for self-calibrated probabilistic variation MIA attack across the wiki dataset. 

Dataset Wiki 

Threshold Values Threshold = 0.0001 Threshold = 0.11 Threshold = −0.08 

Metrics Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

Attacks Models  

Self-calibrated 
Probabilistic  

Variation MIA 

Mistral 7B 92.20 86.51 100.00 50.00 50.00 100 97.40 100 94.80 

LLaMA 7B 89.70 82.92 100.00 50.00 50.00 100.00 65.90 100.00 31.80 

LLaMA 13B 92.30 90.91 94.00 50.20 50.10 100.00 53.90 100.00 7.80 

Mixtral 
8x7B 

94.70 90.42 100.00 50.10 50.05 100.00 78.20 100.00 56.40 

 
Table 8. Results for Self-calibrated probabilistic variation MIA attack across the AG news dataset. 

Dataset AG News 

Threshold Values Threshold = 0.0001 Threshold = 0.11 Threshold = −0.08 

Metrics Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

Attacks Models  

Self-calibrated 
Probabilistic 

Variation MIA 

Mistral 7B 74.40 66.14 100.00 50.00 50.00 100.00 86.80 100.00 73.60 

LLaMA 7B 93.70 88.81 100.00 50.00 50.00 100.00 81.70 100.00 63.40 

LLaMA 13B 89.20 82.24 100.00 50.00 50.00 100.00 95.60 100.00 91.2 

Mixtral 
8x7B 

91.60 85.86 99.60 50.10 50.05 100.00 57.30 100.00 14.60 

 
Table 9. Results for self-calibrated probabilistic variation MIA attack across the XSum dataset. 

Dataset XSum 

Threshold Values Threshold = 0.0001 Threshold = 0.11 Threshold = −0.08 

Metrics Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

Attacks Models  

Self-calibrated 
Probabilistic 

Variation MIA 

Mistral 7B 89.50 82.75 99.80 50.00 50.00 100.00 69.00 100.00 38.00 

LLaMA 7B 80.30 71.74 97.80 50.00 50.00 100.00 72.80 100.00 45.60 

LLaMA 13B 94.20 89.61 100.00 50.20 50.10 100.00 90.60 100.00 81.20 

Mixtral 
8x7B 

79.00 71.08 97.80 50.00 50.00 100.00 56.00 100.00 12.00 

 
−0.08, suggesting robustness against SPV-MIA in various conditions, especially 
when precision is maintained along- side recall. Mixtral 45B appears particularly 
sensitive to threshold changes, possibly indicating inconsistent handling of 
training data memorization. This could make Mixtral 45B either more or less 
susceptible to SPV-MIA depending on the threshold, reflecting its stability and 
calibration effectiveness. These results highlight the importance of considering 
the precision-recall trade-offs when selecting models for specific applications 
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and the need for measures to mitigate the risks of memorization-based attacks. 
4) Neighborhood Attack: The neighborhood attack demonstrated remarka-

ble consistency and effectiveness across all datasets with high recall values 
reaching 100%, as seen in Table 10. 

Our results suggest that this attack is successful in identifying samples be-
longing to the training dataset, attributed to it using neighboring samples. The 
precision values were also strong, indicating the accuracy of these identifica-
tions. Slightly better performance was observed in larger models compared to 
their smaller counterparts. For instance, the Mistral 45B model shows slight in-
crease in accuracy and precision across Wikitext and AG News dataset com-
pared to its 7B counterpart. The same can be noted for Llama 13B model when 
compared to Llama7B across Wikitext and XSum. These increments suggest that 
increased model size and complexity might lead to higher vulnerability. 

The consistently high recall values across all models and datasets demonstrate 
the effectiveness of the neighborhood attack in accurately identifying training 
data points. This efficacy likely stems from the attack’s methodology, which in-
volves generating neighbors of a given data point and then leveraging these vari-
ations to conduct the attack. Such a strategy exposes a substantial vulnerability 
of LLMs (on account of memorisation during fine-tuning) across all evaluated 
models, revealing their susceptibility to having a significant portion of their 
training data accurately identified by the attack, thus presenting a considerable 
risk to data privacy. 

Neighborhood attack is resource-intensive, as for each target prompt there 
were 10 additional prompts to be sampled. The computational costs and feasibil-
ity limitations of the attack at scale should be considered, and alternative ap-
proaches may be necessary for more extensive evaluations. 

5) LiRA-Candidate Attack: We tested how well the LiRA Candidate attack 
works against different models using three datasets: Wiki, AG News, and 
XSum. The results of LiRA-Candidate attack are listed in Tables 11-13. The 
LiRA-Candidate attack’s performance varied significantly across datasets, sup-
porting the hypothesis that dataset characteristics have a greater influence on at-
tack success than model size. For instance, the attack achieved a high accuracy of 
97.2% on the Wiki dataset under specific settings but dropped to 53% and 57.1% 
on the XSum and AG News datasets, respectively. Increasing model size, such as  

 
Table 10. Results for neighborhood attack. 

Dataset Wiki XSum AG News 

Metrics Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

Neighborhood 
Attack 

Mistral 7B 75.3 67.6 97.0 86.1 78.2 100 75.8 67.4 100 

LLaMA 7B 74.9 66.6 100 83.4 75.1 100 77.7 69.2 100 

LLaMA 13B 75.3 66.9 100 83.7 75.4 100 76.4 67.9 100 

Mixtral 8x7B 77.3 68.8 100 85.7 77.8 99.8 76.6 68.2 99.8 
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Table 11. Results for LiRA Candidate and LiRA base attack across the Wiki Dataset. 

Dataset Wiki 

Threshold Values Threshold = 0.0001 Threshold = 0.11 Threshold = 1.2 

Metrics Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

Attacks Models  

LiRA  
Candidate 

Mistral 7B 100 100 100 100 100 100 97.2 100 94.4 

LLaMA 7B 100 100 100 100 100 100 59.6 100 19.2 

LLaMA 
13B 

99.3 100 99.3 98.3 100 99.6 52.2 100 4.4 

Mixtral 
8x7B 

100 100 100 100 100 100 61.2 100 22.4 

LiRA Base 

Mistral 7B 100 100 100 100 100 100.00 95 100 96 

LLaMA 7B 50 50 100 100 100 100 58.5 100 17 

LLaMA 
13B 

98.8 100 97.6 97.2 100 94.4 51.5 100 3 

Mixtral 
8x7B 

100 100 100 100 100 100 59 100 20 

 
Table 12. Results for LiRA Candidate and LiRA base attack across the AGNews Dataset. 

Dataset AGNews 

Threshold Values Threshold = 0.0001 Threshold = 0.11 Threshold = 1.2 

Metrics Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

Attacks Models  

LiRA  
Candidate 

Mistral 7B 60 55.5 100 60.1 55.6 100 57.1 54.1 92.6 

LLaMA 7B 98.9 97.8 100 99.67 98.03 100 78.4 100 56.8 

LLaMA 
13B 

100 100 100 100 100 100 54.4 100 8.8 

Mixtral 
8x7B 

100 100 100 100 100 100 55.8 100 11.6 

LiRA Base 

Mistral 7B 55.8 50 100 49.6 16 55.8 50.2 75 0.6 

LLaMA 7B 50 50 100 100 100 100 100 12.8 100 

LLaMA 
13B 

100 100 100 100 100 100 65.1 100 30.2 

Mixtral 
8x7B 

100 100 100 99.9 100 100 54.2 100 10 

 
moving from Llama 7B to Llama 13B, did not consistently lead to better attack 
resistance, further emphasizing the importance of dataset properties. The attack 
demonstrated 100% precision across models and datasets when correctly 
identifying members, indicating its effectiveness in those cases. However, the  
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Table 13. Results for LiRA Candidate and LiRA base attack across the XSum Dataset. 

Dataset XSum 

Threshold Values Threshold = 0.0001 Threshold = 0.11 Threshold = 1.2 

Metrics Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall 

Attacks Models  

LiRA  
Candidate 

Mistral 7B 99.2 100 98.4 98 100 96 53 100 6 

LLaMA 7B 100 100 100 100 100 100 50.8 100 1.6 

LLaMA 
13B 

100 100 100 100 100 100 54.4 100 8 

Mixtral 
8x7B 

100 100 100 95.7 100 91.4 50.3 100 0.6 

LiRA Base 

Mistral 7B 100 100 100 49.7 0 0 50 0 0 

LLaMA 7B 100 100 100 100 100 100 50.6 100 1.2 

LLaMA 
13B 

100 100 100 100 100 100 51.5 100 3 

Mixtral 
8x7B 

100 100 100 94 100 89 50 100 100 

 
inconsistent recall rates suggest limitations in comprehensively identifying all 
potential targets. 

The results show that model having more parameters or more complex struc-
tures does not necessarily lead to them being more vulnerable to these attacks. 
The data highlights the complex relationship between the model’s size, its archi-
tecture, and the specific training data it uses, showing that the effectiveness of 
attacks is not just about how large the model is. Our findings suggest that un-
derstanding how to effectively attack these models requires a detailed approach 
that considers the unique characteristics of each dataset and the complex designs 
of the models. 

6) LiRA-Base Attack: We tested how well the LiRA-Base attack works against 
different models using three datasets: Wiki, AG News, and XSum. The results of 
LiRA-Candidate attack are listed in Tables 11-13. The LiRA-Base attack exhi-
bited performance patterns distinct from the LiRA-Candidate attack, highlight-
ing the impact of attack strategies and their interactions with model architec-
tures and dataset characteristics. The attack’s accuracy varied across datasets, 
with Mistral 7B achieving a 95% success rate on the Wiki dataset but dropping 
to 50.2% on the AG News dataset under the same threshold. This demonstrates 
the significant influence of dataset properties on the attack’s success. Precision 
remained high across most thresholds and datasets, indicating that the attack is 
highly accurate when predicting membership. However, lower recall values, es-
pecially on the AG News and XSum datasets, suggest limitations in comprehen-
sively identifying all actual members. 
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These results again underline a non-linear relationship between model com-
plexity, dataset characteristics, and attack effectiveness. Even with a highly pre-
cise attack like LiRA Base, these factors determine the attack’s overall success. 
The mixed results across various thresholds also suggest that the right balance of 
precision and recall is vital to evaluate an attack’s practical utility accurately. It is 
clear that one cannot make broad generalizations based on the model size or da-
taset alone; instead, a detailed analysis considering the specific attack strategy, 
the model architecture, and the dataset features is essential. 

7. Key Findings & Broad Trends  

The results presented in this paper highlight significant vulnerabilities in LLMs, 
with the potential for leaking sensitive information and identifying training data 
points. The key findings and broard trends are summarized in this section. 
• PII Leakage Focused Attacks:  
- The auto-completion attack achieved Extraction Success Rates between 9% - 

13% across different models on training prompts, suggesting that upto 13% 
of PII information can potentially be leaked using this attack.  

- The extraction attack had lower success rates (around 4% - 5%) compared to 
the auto-completion attack, likely due to the use of unrelated prompts.  

- PII Inference Accuracy was generally high (65% - 85%) across models, indi-
cating vulnerability to leaking sensitive information when prompted with 
targeted queries.  

• Memorization Focused Attacks:  
- The SPV-MIA attack demonstrated high effectiveness across all models and 

datasets, with accuracy, precision, and recall values often reaching 100%, es-
pecially at certain threshold values. This suggests a high success rate for this 
type of attack.  

- The neighborhood attack also exhibited consistent effectiveness, with recall 
values reaching 100% and strong precision across all datasets, indicating sus-
ceptibility of LLMs to having a significant portion of their training data iden-
tified.  

- The success of LiRA Candidate and LiRA Base attacks varied significantly 
based on dataset characteristics and model architectures, rather than just 
model size. Accuracy ranged from 50% to 100% depending on the specific 
setup.  

Broad trends are as follows:  
• The success of an attack depends on the complex interplay between the LLM 

model’s architecture, dataset characteristics, and the specific attack strategy, 
rather than just model size.  

• PII leakage focused attacks can potentially leak upto 13% of sensitive infor-
mation, with auto-completion attacks being more effective than extraction 
attacks.  

• Memorization focused attacks, especially SPV-MIA and neighborhood at-
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tacks, demonstrate high success rates in identifying training data points, of-
ten reaching 100% recall.  

• The vulnerability of LLMs to different types of attacks varies based on the 
unique properties of each dataset and the intricate designs of the models.  

8. Conclusion & Future Work  

In this study, we conducted a comprehensive analysis of the security vulnera-
bilities in large language models (LLMs) by investigating the effectiveness of 
various attack strategies. We explored two main categories of attacks: PII lea-
kage-focused attacks and memorization-focused attacks. For each category, we 
employed specific attack techniques and evaluated their performance using cus-
tom metrics across a range of LLMs with varying sizes and architectures. 

Our experiments revealed that the success of an attack is not solely deter-
mined by the size of the model but is heavily influenced by the complex inter-
play between the LLM model’s architecture, the characteristics of the dataset 
used for training, and the specific attack strategy employed. While larger models 
generally exhibited improved resistance to attacks, this relationship was not al-
ways linear and varied depending on the dataset and attack type. 

In the case of PII leakage-focused attacks, the auto-completion attack yielded 
higher extraction success rates compared to the extraction attack, attributed to 
the similarity between the prompts used in the auto-completion attack and the 
fine-tuning data. The consistently high PII inference accuracy across all models 
suggests that LLMs are vulnerable to leaking sensitive information when 
prompted with targeted queries. 

For memorization-focused attacks, the SPV-MIA demonstrated exceptional 
effectiveness across all LLM models and datasets, with high accuracy, precision, 
and recall values indicating the robustness of this method in identifying training 
data points. Similarly, the neighborhood attack exhibited commendable consis-
tency and effectiveness, highlighting the susceptibility of LLMs to having a sig-
nificant portion of their training data accurately identified. 

The performance of LiRA Candidate and LiRA Base attacks revealed the com-
plex relationship between model size, architecture, and dataset characteristics in 
determining the success of an attack. Our findings emphasize the importance of 
considering the unique properties of each dataset and the intricate designs of the 
models when assessing their vulnerability to attacks. 

As the landscape of large language models continues to evolve rapidly, our 
future research efforts will delve deeper into the issue of Personally Identifia-
ble Information (PII) and confidential information leakage, given its signifi-
cant implications. We aim to implement various techniques to enhance privacy- 
preserving capabilities in models, including methods like unlearning, with the 
overarching goal of preventing the inadvertent disclosure of essential informa-
tion. Further, we plan to explore the impact of different fine-tuning strategies on 
the vulnerability of LLMs to various attacks. By investigating the relationship 

https://doi.org/10.4236/jsea.2024.175023


H. Aditya et al. 
 

 

DOI: 10.4236/jsea.2024.175023 446 Journal of Software Engineering and Applications 
 

between fine-tuning approaches and the susceptibility of models to privacy lea-
kage, we aim to develop best practices for training LLMs that maintain high 
performance and utility while minimizing security risks of leaking private and 
confidential information. 
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