
Journal of Software Engineering and Applications, 2024, 17, 396-420
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.175022 May 31, 2024 396 Journal of Software Engineering and Applications

A Framework for Cybersecurity Alert
Distribution and Response Network (ADRIAN)

Akarshita Shankar, Vijay Madisetti

School of Cybersecurity and Privacy, Georgia Institute of Technology, Atlanta, USA

Abstract
Security Information and Event Management (SIEM) platforms are critical
for organizations to monitor and manage their security operations centers.
However, organizations using SIEM platforms have several challenges such as
inefficiency of alert management and integration with real-time communica-
tion tools. These challenges cause delays and cost penalties for organizations
in their efforts to resolve the alerts and potential security breaches. This paper
introduces a cybersecurity Alert Distribution and Response Network (Adrian)
system. Adrian introduces a novel enhancement to SIEM platforms by inte-
grating SIEM functionalities with real-time collaboration platforms. Adrian
leverages the uniquity of mobile applications of collaboration platforms to
provide real-time alerts, enabling a two-way communication channel that fa-
cilitates immediate response to security incidents and efficient SIEM platform
management. To demonstrate Adrian’s capabilities, we have introduced a
case-study that integrates Wazuh, a SIEM platform, to Slack, a collaboration
platform. The case study demonstrates all the functionalities of Adrian in-
cluding the real-time alert distribution, alert customization, alert categoriza-
tion, and enablement of management activities, thereby increasing the res-
ponsiveness and efficiency of Adrian’s capabilities. The study concludes with
a discussion on the potential expansion of Adrian’s capabilities including the
incorporation of artificial intelligence (AI) for enhanced alert prioritization
and response automation.

Keywords
SIEM Platforms, Alert Distribution, Incident Response Automation, SIEM
Management, Collaboration Platform

1. Introduction

Security Information and Event Management (SIEM) platforms assist organiza-

How to cite this paper: Shankar, A. and
Madisetti, V. (2024) A Framework for
Cybersecurity Alert Distribution and Re-
sponse Network (ADRIAN). Journal of
Software Engineering and Applications, 17,
396-420.
https://doi.org/10.4236/jsea.2024.175022

Received: April 13, 2024
Accepted: May 28, 2024
Published: May 31, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.175022
https://www.scirp.org/
https://doi.org/10.4236/jsea.2024.175022
http://creativecommons.org/licenses/by/4.0/

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 397 Journal of Software Engineering and Applications

tions in data collection, policies, notifications on events, and data consolidation
and correlation. These platforms help in providing real-time visibility of the or-
ganization’s security systems, maintaining event logs from various sources, cor-
relating the logs from the sources using predefined rules, etc. However, despite
their critical importance, SIEM platforms face several challenges that limit their
effectiveness and operational efficiency [1].

Some of the problems that hinder their efficacy include:
• There are alerts that are generated for any suspicious log activity performed

in the host machine. These alerts that are managed and visualized through
the dashboards configured in the SIEM platform, requiring the DevSecOps
team members to manually log in and review the generated alerts. This
process is time-consuming and not efficient especially because most of the
open-source SIEM platforms do not have a mobile application and are hosted
on servers.

• Another issue with these platforms is that the alerts that are generated are not
sent to any collaborating platform such as Microsoft Teams, Slack, or Cat-
chUp. Due to this, DevSecOps team not only miss out on real-time updates
on the alerts, but it also leads to a delay in the alert response.

• There is usually an overwhelming volume of alerts generated for every activ-
ity performed in the system including deletion of a file or installing a new ve-
rified software, leading to an increase in the number of low-quality alerts
generated. The cluttering of the low-quality alerts causes the team to miss out
on important, high-quality alerts that would require immediate action.

• Lastly, to perform any action in the SIEM platforms, the DevSecOps team
members are required to login to the server-based platform and perform ac-
tions. The actions include checking the alerts generated by their system, au-
diting the roles and the accesses for each user, inspecting the rules and poli-
cies, etc.

To tackle this problem, we propose ADRN (Alert Distribution and Response
Network) or Adrian. Adrian can integrate any SIEM platform used by the or-
ganization with their collaboration platform, thereby addressing the identified
issues by enhancing functionality and leveraging the presence of mobile applica-
tions of collaboration platforms. Examples of SIEM platforms include Wazuh,
OpenCTI, and MISP, while collaboration platforms include Slack, Microsoft
Teams, CatchUp, or Google Meet.

The primary goal of Adrian is to improve the SIEM platforms by enhancing
its various functionalities. The advantage of Adrian is that it eliminates the need
for users to always be available by their server-based system. Most of the open-
source SIEM platforms do not have a mobile application, but all the collabora-
tion platforms do have, which Adrian uses to its advantage.

The objectives of Adrian are as follows:
• Establishing a 2-way communication between SIEM platforms and collabora-

tion tools.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 398 Journal of Software Engineering and Applications

• Sending alerts from SIEM to the collaboration platform.
• Analyzing the quantity of alerts generated, visually represent the data, and

send the visual representation to the collaboration platform.
• Enabling SIEM platform management related activities through the collabo-

ration platform.
Figure 1 represents the various functionalities of Adrian.

Benefits of Adrian for DevSecOps Team

The advantages of Adrian for the DevSecOps teams are as follows:
• Real-time notifications on the security incidents through their organization’s

collaboration platform. SIEM platforms are not available as a mobile app, but
their collaboration platform would be. This means that the DevSecOps team
need not be checking their SIEM platform for notifications all the time.

• Alerts generated and sent to their collaboration platform contain the severity,
type, and other relevant information on the incident. The alert messages are
customized to include only the details that the team would like to view. This
customized notification would be hard for them to miss.

• The alerts are segregated based on the alert level. This segregation would help
the team focus on the high priority incidents. This targeted communication
with alert categorization would help in resolving the incident faster.

• Collaboration platforms are shared by team members. This provides a shared
medium where the entire team is aware of any incident and can easily colla-
borate.

• The necessity to login to the SIEM platform would be eliminated as the inte-
raction from their collaboration platform would be helpful for managing ac-
tivities in their SIEM platforms.

• Alert statistics would be generated and would be visually represented and
sent to a separate channel or task in their collaboration platform, which
would be publicly available for anyone in the organization. Using the statis-
tics, the team could decide if there is a requirement to login. If anyone from
the higher management team would like to view the statistics, they could
subscribe to this public channel. The separation of the alerts from the alert
statistics would prevent the teams from higher management from receiving
unnecessary and irrelevant information on the alerts.

Figure 1. Overview of Adrian’s functionalities.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 399 Journal of Software Engineering and Applications

Adrian’s design principles and implementation details are demonstrated
through a case study. For the case study, we have chosen Wazuh, which is a well-
known open-source SIEM platform and Slack, a popular collaboration platform
used by several organizations, for the DevSecOps team. This case study not only
demonstrates Adrian’s practical application, but also highlights its potential of
helping organizations to better manage and respond to security alerts.

2. Literature Review & Related Work

It is imperative to effectively manage SIEM platforms in order to safeguard or-
ganizational information from cyber threats. Recent research highlights the evo-
lution and challenges faced in these platforms, there by emphasizing on ad-
vancements like Adrian. This literature review summarizes the most essential
points from various papers, establishing the groundwork for Adrian’s contribu-
tion to the field.

1) Security Information and Event Management (SIEM): Analysis,
Trends, and Usage in Critical Infrastructures

This comprehensive review [1], discussed in this paper dives into the presence
and usage of SIEM systems across various critical infrastructures and emphasiz-
ing the need for more robust cybersecurity defenses. In this paper, the authors
have analyzed the evolution of SIEM technologies, starting from their origin to
their contemporary tools. Using their analysis, the authors have derived a signif-
icant trend would require SIEM technologies to address the need for real-time,
scalable, and adaptable security alert systems. This enhancement aligns with the
development of Adrian. Adrian’s innovative and scalable approach focuses on
the real-time alert updates. Adrian’s two-way communication channel symbo-
lizes a more responsive, interactive, and user-friendly security operations
framework.

2) Challenges and Directions in Security Information and Event Man-
agement (SIEM)

In this paper [2], the authors articulate the operational and technical chal-
lenges faced by organizations when implementing and managing SIEM solu-
tions. Some of the challenges that the authors discuss in the paper include the
volume of low alerts and false positives generated, the lack of relevant informa-
tion on alerts, the delay in receiving and resolving a SIEM alert, etc. Adrian’s de-
sign directly addresses these hurdles through its simplified alert management
and response processes. The introduction of the middleware in Adrian’s solution
not only provides real-time alert updates, but also enhances reliability through
its queueing mechanism, ensuring that the alerts are processed efficiently even
during communication interruptions. Moreover, Adrian’s approach on alert
customization and categorization reduces the cognitive load on the security ana-
lysts and the DevSecOps team, allowing teams to focus on genuine threats more
effectively.

3) Critical Capabilities for Security Information and Event Management

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 400 Journal of Software Engineering and Applications

The study discussed in [3], provides an exhaustive evaluation of leading
open-source SIEM systems in terms of their performance metrics, functionali-
ties, and adaptability to the current cybersecurity requirements. The findings
from the authors’ analysis are the highlight on the importance of flexibility in
SIEM platforms. They emphasize the need for alert customization and integra-
tion with other tools which would in turn improve the organization’s response
and security requirements. Adrian’s architecture is designed to improve the ca-
pabilities of traditional SIEM platform through its novel integration with exter-
nal platforms. It also has the capability of alert customization which addresses
the shortcomings discussed in the paper.

The reviewed literature provides insights to evolution of SIEM technologies
and the need for real-time alert and user-centric option. Adrian emerges as a
response to these challenges by leveraging advancements in communication
technology and middleware solutions.

SIEM platforms play a pivotal role in enabling organizations to detect, ana-
lyze, and respond to cybersecurity threats. Despite their critical importance, or-
ganizations face several challenges as seen in the previous section. Recent ana-
lyses, such as the Forrester report [4], on the Total Economic Impact of IBM
Security QRadar SIEM identifies multiple benefits experienced by IBM’s cus-
tomers through the usage of SEIM tools. The benefits underscored by the report
are in alignment to Adrian. The benefits are as follows:
• Enhanced Visibility and Productivity: The Ferrester report includes reports

of IBM customers stating the improved visibility into their security environ-
ments and increased productivity among security teams. Similarly, Adrian
aims to enhance SIEM platforms through the integrations with collaboration
platforms like Microsoft Teams, Slack, etc., that would enhance the visibility
and operational efficiency. The real-time alert distribution and customization
features of Adrian specifically address these aspects, potentially providing
similar benefits for visibility and productivity.

• Reduce False Positives and Improved Prioritization: The Ferrester report
talks about IBM QRadar customers experiencing reduced false positives and
were able to prioritize threats more effectively. Adrian’s approach to alert
customization and alert categorization directly aligns this benefit. Adrian
helps in reducing the clutter of low-priority alerts by categorizing the alerts
based on the alert severity level. This feature allows the security teams to fo-
cus on high priority alerts, thereby potentially reducing false positives and
improving threat prioritization.

• Improved Compliance and Risk Management: As per the Ferrester’s report,
IBM users mentioned that the tools were found to improve the compliance
and risk management. Adrian’s enhanced management capabilities, includ-
ing the bidirectional communication feature allow for direct integration with
the SIEM platform through collaboration tools. This feature ensures timely
responses to compliance-related alerts and facilitating easier audit trails.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 401 Journal of Software Engineering and Applications

• Scability and Flexibility: One of the benefits of IBM’s SIEM tools highlights
involves the scalability and flexibility to meet the evolving security needs of
organizations. Adrian’s design principles focus on flexibility and scalability.

Based on the information provided in the Ferrester report [4], the benefits
align with the design principles of Adrian that are discussed above.

3. Adrian’s Approach and Design
3.1. Introduction to Adrian’s Approach

As discussed previously, some of the common challenges in SIEM platforms is
the platform management, real-time communication, alert customization, etc.
To address these challenges, Adrian provides solutions for SIEM platform man-
agement, real-time communication on alerts, alert customization, etc. Apart
from resolving the challenges discussed, Adrian also has new features that in-
troduces a paradigm shift in how security alerts are managed and responded to
across platforms. This innovative approach adds more values to SIEM platforms
and to the overall cybersecurity field.

The design of Adrian is based on the principles of reliability, customization,
categorization, and bidirectional communication. Before delving into the design
principles of Adrian, it is important to introduce the architecture of Adrian. The
architecture of Adrian revolves around a seamless integration between existing
SIEM platforms and wisely used collaboration tools. The integration is enabled
through a middleware. The middleware layer ensures that the data transmission
is reliable between the two platforms even during downtimes or high-traffic
scenarios.

The middleware is a robust message broker that would handle the communi-
cation between the SIEM platform and the collaboration tool. Not only does this
framework preserve the confidentiality and integrity of the message, but also
ensure that the alerts are categorized and prioritized before being sent to the
collaboration tool. These mechanisms assist in focusing on high-priority alerts,
which require immediate attention.

Adrian’s innovative bidirectional communication design is one of its core
features that sets it apart from traditional alert management systems. Apart from
just alert distribution, Adrian integrates the platforms to enable SIEM manage-
ment activities through the collaboration tool.

3.2. Design Principles

• Reliability—Adrian prevents data loss in scenarios where the collaboration
platform is down. This reliability is possible because of the introduction of
middleware queueing mechanism. If the collaboration platform is down, then
Adrian’s queue would have all the alerts stored and then send it to the colla-
boration platform when it is functioning. This makes Adrian a reliable solu-
tion.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 402 Journal of Software Engineering and Applications

• Customization—Adrian’s solution resolves the issue of alert customization
by including only the relevant fields and modifying it to a more readable
format. The cleaned data is then sent to the collaboration platform. This alert
customization mechanism would help the DevSecOps teams to interpret the
alerts.

• Categorization—Apart from alert customization, Adrian has the capability
for alert categorization also. Based on the severity level of the alert, it catego-
rizes the alerts into 3 categories—low, medium, and high alerts. This would
be helpful for organization as the DevSecOps team can primarily focus on the
high priority alerts.

• Alert Statistics—Another advantage of Adrian is the generation and com-
munication of the alert statistics. Adrian not only calculates the alert statis-
tics, but also provides a visual representation of the generated statistics and
sends to a separate channel in the organization’s collaboration platform.
Adrian also ensures that this communication is performed in a separate
channel so that the statistics is not confused with the alerts. These statistics
enable security teams to identify trends, allocate resources efficiently and
improve overall security posture.

• Bidirectional Communication—The most important feature of Adrian is its
two-way communication channel. Adrian would not only provide commu-
nication from the SIEM platform to the collaboration platform, but also pro-
vide SIEM platform management activities through a channel in the collabo-
ration platform. Adrian’s bidirectional channel allows a more dynamic inte-
raction between the two platforms, thereby significantly shortening response
times and enhancing operational agility.

The above advantages help in making Adrian a robust, reliable, and scalable
solution. These design principles not only significantly reduce the response time
to incidents, but also enables a more dynamic and interactive approach to secu-
rity management. Adrian was primarily built to bridge the gaps and provide a
more comprehensive solution.

3.3. Technical Architecture

The proposed solution, Adrian, is divided into two phases. The first phase in-
volves alert distribution from the SIEM platform to the collaboration platform.
The second phase involves response network from the collaboration platform to
the SIEM platform.

Unlike the traditional approach of integrating two systems using APIs, Adrian
uses a more reliable and scalable approach. It uses a middleware queueing me-
chanism that would not only connect SIEM platform with the collaboration
platform but also regularize the traffic flow between the two platforms. Figure 2
provides a high-level architecture of Adrian through middleware where the
message broker would be the queueing mechanism that would connect the SIEM
platform to the collaboration platform.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 403 Journal of Software Engineering and Applications

Figure 2. High-level architecture for Alert Distribution.

The message broker such as RabbitMQ or ActiveMQ helps in the asynchron-
ous communication between the two platforms. Without waiting for the ac-
knowledgement from the collaboration platform, the message broker would
send an acknowledgement to the SIEM platform so that the SIEM platform can
continue with the other allocated tasks.

The message broker would also help in prioritizing the alerts through Adrian’s
alert customization and alert categorization features. This queueing mechanism
would ensure efficient processing and delivery to the appropriate channels in the
collaboration platform, thereby making Adrian a more reliable and scalable so-
lution.

For Phase 2 of Adrian i.e., the communication from the collaboration plat-
form to the SIEM platform can be completed through a flexible, modular inter-
face. This communication is novel and has not been developed previously. The
developed application would be the interface that connects the collaboration
platform to the organization’s SIEM platform. Figure 3 is the high-level archi-
tecture of the response network.

The modular interface, as described in Figure 3, could be an application that
would adapt to different communication platforms and SIEM systems. The ap-
plication could consist of webhooks, APIs or custom plugins based on the re-
quirement of the organization.

The above technical architecture of Adrian shows that the solution is modular,
scalable, and designed to meet the evolving needs of cybersecurity operations.
The solution consists of relevant and useful features such as alert customization
and alert categorization. It also consists of new features such as generating and
visualizing alert statistics and enabling a bidirectional communication.

4. Implementation of Adrian: Case Study

To demonstrate the usefulness and effectiveness of the Adrian approach, we
present a case-study that focuses on integrating Wazuh, an open-source SIEM
platform, with Slack, a widely used communication platform. This case study
serves not only as a demonstration of Adrian’s capabilities, but also as an illu-
stration of its potential to enhance the alert management systems in cybersecur-
ity operations.

4.1. Overview of Design Choices

In Adrian’s design principles, we emphasized on reliability, efficiency, and

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 404 Journal of Software Engineering and Applications

Figure 3. High-level architecture for response network.

scalability, which persuaded our choices of communication models and the spe-
cific use of Rest APIs. We decided that our model should perform asynchronous
communication which would be facilitated by RabbitMQ, a message broker that
is used for a publish/subscribe scenario. Using this approach, the SIEM platform
continue its alert processing and generation without waiting for acknowledge-
ments from the collaboration platform. This non-blocking feature of asyn-
chronous communication is vital during high alert volume periods. By incorpo-
rating this feature, the model ensures that alert management is not hindered by
network latency or downtimes of the collaboration platform. Moreover, the
producer-consumer (a.k.a. publisher-subscriber) mechanism implemented is ef-
fective in scenarios where alerts need to be distributed across various channels.
This model also supports decoupling of alerts produced from consumers, there-
by enhancing the system’s modularity and scalability.

For integrating the SIEM platform (Wazuh) with the collaboration platform
(Slack), we chose Rest APIs due to their ubiquity and ease of use. The APIs eased
a straightforward communication that can be easily managed and scaled. The
stateless feature of Rest APIs supports scalable environments by simplifying
server design and facilitating easier adjustments. The stateless feature is where
each request contains all the necessary data to be understood independently.

These design choices were crucial for ensuring that Adrian remains robust
and efficient. It should be capable of handling real-time data and adapt to the
various organizational environments.

4.2. Objectives of the Case Study

The primary objectives of this case study include the following:
• To demonstrate the capabilities of Adrian by implanting its core principles.

The demonstration would include middleware usage for reliability, alert cus-
tomization, alert categorization, and bidirectional communication for inter-
active alert management.

• To reiterate the practical benefits of integrating SIEM platforms with colla-
boration platforms for improved alert response times, enhanced team colla-
boration and increased operational efficiency.

• To showcase the adaptability of Adrian across various tools and platforms,
thereby emphasizing its potential for broader application in the cybersecurity
field.

Adrian was implemented in two phases. The first phase was a communication

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 405 Journal of Software Engineering and Applications

channel from Wazuh to Slack and the second phase was a communication
channel from Slack to Wazuh.

4.3. Programming Language; Platform Selection

For completing both the phases of Adrian, Python was the programming lan-
guage we used. The reason for choosing Python was because of the several libra-
ries that it consists of that helped in connecting various interfaces. The following
are the libraries used:
• pika—used for connecting any interface with RabbitMQ.
• slacksdk—used for connecting any interface with Slack.
• matplotlib.pyplot—used for generating the alert statistics bar graph.

These libraries help in a seamless integration between Wazuh and Slack and
also provide a bidirectional communication.

For connecting Wazuh to Slack to send the alerts and alert statistics, this case
study of Adrian uses RabbitMQ as its message broker.

RabbitMQ is a proven reliable broker queue that is used by organizations such
as Netflix and Salesforce. It decouples the processes (in this case, Slack and Wa-
zuh), increases the reliability and scability of the solution [5]. RabbitMQ pro-
vides reliability by providing an asynchronous communication. In addition to its
basic functionalities, it also has an acknowledgement feature where it would
send an acknowledgement to the appropriate platform after a message has been
put in its queue or when a message is being sent from its queue. It provides var-
ious routing mechanisms through its concept of Exchange. Adrian uses Direct
Exchange which helps in separating alerts and alerts statistics.

For this project, we have chosen Wazuh and Slack. The reason for choosing
Wazuh was because it is a popular open-source threat prevention, detection, and
response platform [6]. It is primarily used for data collection, indexing, aggrega-
tion, and data analysis from various sources including intrusion detection, sus-
picious behaviors, and threat detection. Some of the core functionalities of Wa-
zuh include log data analysis, intrusion detection, incident response, etc.

We used Slack because of the channel feature that is available in the platform.
The Slack channels have been made public intentionally so that anyone, with the
required permissions, can subscribe to the alert channels or the alert statistics
channel to view the information. However, the solution can be expanded to in-
clude other platforms such as Teams or CatchUp.

For developing the Slack application that would connect to Wazuh through an
interactive channel, we used Flask and ngrok [7].

Flask is a microweb framework coded in Python that does not require any
specific libraries or tools. It supports use cases for form validation, upload han-
dling, and several common framework related tools. It is lightweight, modular,
scalable, flexible making it an optimal solution for creating web applications and
hosting web services.

Ngrok is a cross-platform application that creates a security tunnel for data

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 406 Journal of Software Engineering and Applications

from the internet to the local server on our local machines. It permits exposure
of web server to the internet without much effort making it particularly useful
for web development, allowing developers to share their local sites without the
need to deploy those sites to a public server, testing applications, etc [7].

4.4. Implementation Details

Phase 1: Wazuh to Slack Communication
The queueing mechanism chosen for Adrian is RabbitMQ [5]. RabbitMQ is

an open-source message broker that is proven to be useful in a produc-
er-consumer scenario. Using the RabbitMQ solution and decoupling Wazuh and
Slack, Adrian would provide an asynchronous communication. The detailed di-
agram of Phase 1 of Adrian is shown in Figure 4.

For categorization of the alerts based on its alerts level, Adrian categorizes the
alerts based on its severity level and inserting them into low-alerts-queue, me-
dium-alerts-queue, and high-alerts-queue respectively in RabbitMQ. Alerts with
severity level < 5 are put into the low-alert-queue. Alerts with severity level ≥ 5
and level < 7 are put into the medium-alerts-queue. Alerts with severity level ≥ 7
are put into high-alerts-queue [8].

The segregation is performed using Exchanges in RabbitMQ. Exchanges (aka
Topics in other broker queues) assist in connecting the producer to different
queues using a routing key [9]. Routing Key is specified by the producer while
transmitting the message to RabbitMQ. There are different types of Exchanges;
Adrian uses Direct Exchange [10]. After receiving the message and the routing
key the direct exchange, based on the configured routing key, inserts the mes-
sage in the appropriate queue [11]. The detailed diagram is depicted in Figure 5.

Alert categorization is performed on the consumer side as well. To avoid clut-
tering of a single Slack channel, Adrian segregates the messages into three dif-
ferent slack channels for the alerts [11]. The messages from the low-alerts-queue
are published to the low-alerts-slack-channel. A similar concept is followed for
the medium and high alerts. Apart from the three channels in Slack, Adrian uses
a fourth channel to publish the alert statistics [12] [13]. This helps in separating

Figure 4. Phase 1 of Adrian—Alert distribution.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 407 Journal of Software Engineering and Applications

the technical specifics and the statistical information of the alerts [14]. The de-
tailed diagram is depicted in Figure 6.

Figure 7 shows the queues that are configured in RabbitMQ. The queues are
wazuh-alerts-high, wazuh-alerts-medium, and wazuh-alerts-low [15].

Figure 8 shows the binding of the routing keys and the queues through ex-
change. Adrian uses Direct Exchange. The routing key for wazuh-alerts-high
queue is wazuh-alerts-high. The routing key for wazuh-alerts-low queue is wa-
zuh-alerts-low. The routing key for wazuh-alerts-medium queue is wazuh-alerts-
medium.

Phase 2: Slack to Wazuh Communication
For phase 2 of Adrian i.e., connecting Slack with Wazuh. The Slack applica-

tion provides an interactive Slack channel that would provide various manage-
ment related activities to be performed on Wazuh. Each button corresponds to
an activity that can be obtained from Wazuh [14]. Figure 9 is the block diagram
provides a detailed visual representation of the response network architecture
[16].

Figure 5. Detailed diagram of Alert distribution.

Figure 6. Screenshot of the direct exchange used by Adrian.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 408 Journal of Software Engineering and Applications

Figure 7. Detailed diagram of alert categorization.

Figure 8. Screenshot of the RabbitMQ queues.

Figure 9. Phase 2 of Adrian—Response network.

An important aspect of Adrian’s innovative approach is its alignment with the
FCAPS model [16], a network management framework that was developed by
International Organization for Standardization (ISO). By categorizing network
management tasks into five domains, FCAPS provides a comprehensive blue-
print for network operations. This model is adeptly used by Adrian to enhance
SIEM functionality and team responsiveness. The full form and the details of the
FCAPS model is:
• Fault Management—helps in identifying and correcting any malfunctions.
• Configuration Management—helps in monitoring the system configura-

tions.
• Accounting Management—helps in managing the users, roles, etc.
• Performance Management—helps in monitoring system performance.
• Security Management—helps in protecting the system by checking the se-

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 409 Journal of Software Engineering and Applications

curity rules.
For each of the components of the FCAPS model [16], we have chosen two

APIs. The APIs chosen are as follows. This is a comprehensive list and can be
expanded to include more API functionalities for each category.

1) Fault Management
• Fault Status—returns the faults that the agent has been allocated. It includes

the source, details, and status of the fault. It also provides the first detected
timestamp and the last updated timestamp of the fault.

• Agent Upgrade Status—returns the status of an upgraded agent, if any. If any
agent was upgraded, it provides the status of the upgrade and details on
which component of the agent was upgraded.

2) Configuration Management
• List rules—returns the top 10 rules that Wazuh uses for identifying malicious

activities. There are over 6500 rules that are configured. Hence, I chose the
top 10. This number is configurable and can be modified based on the re-
quirements.

• List decoders—returns the top 10 decoder rules and configurations that Wa-
zuh uses for parsing and decoding the data that it receives from various
sources. There are approximately 500 decoder rules, I have chosen the top 10.
This field is configurable and can be modified based on the requirements.

3) Accounting Management
• List users—returns the users present in the system, along with their roles and

username.
• List roles—returns the different roles configured in the system along with the

name of the role and the policies that have been applied to it.
4) Performance Management

• SCA scan results—returns the SCA scan results of Wazuh. SCA stands for
Security Configuration Assessment. It runs the scan for CIS benchmark for
Ubuntu and provides the number of checks that passed, failed and were
invalid. It also provides the start time and end time of the scan.

• Manager logs—returns the Wazuh manager logs that include a description,
level, and timestamp of the logs.

5) Security Management
• Security policies—list the top 10 security policies of Wazuh. It lists the name

and details of the policy, the resources, and users where the policy is imple-
mented. There are over 5000 security policies. I have chosen the top 10 poli-
cies.

• MITRE References—lists the top 10 references that are used for identifying
MITRE ATT&CK by Wazuh. The results include the MITRE ID, source, de-
scription, and the reference link for each attack pattern. There are approx-
imately 650 references. I have chosen the top 10 policies. This field is confi-
gurable and can be modified based on the requirements.

The API and the formatting of the API responses is included in the Flask app.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 410 Journal of Software Engineering and Applications

The Flask app creates an interactive Slack channel that initially gives the user
five options to choose from [17]. The options include the high-level configura-
tions of FCAPS. After the user selects one of the five options, the Flask app pro-
vides two more options in the submenu. The options in the submenu include the
APIs that were previously mentioned. After obtaining a choice, the app connects
to Wazuh and fetches its response [18]. The response is formatted to include
only the relevant details and in a more organized format and then published to
the Slack channel [19]. The Flask app flowchart is depicted in Figure 10. Figure
11 includes all the details of the APIs used in the FCAPS model of Adrian [20].

Figure 10. Overview of the activities executed by the Flask application.

Figure 11. APIs used for the FCAPS model.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 411 Journal of Software Engineering and Applications

5. Results and Discussion of the Case Study

This section provides screenshots of the implementation of Adrian’s integration
of Wazuh with Slack. The outcomes of the implementation resulted in several
enhancements to the traditional alerts management and response mechanisms of
SIEM platforms. The key improvements are as follows:
• Real-Time Alert Distribution: Adrian provided real-time notifications on se-

curity incidents directly through the Slack channels. This significant im-
provement would ensure that the DevSecOps teams would promptly be in-
formed of incidents without the requirements of constantly monitoring the
SIEM platform.

• Alert Customization and Categorization: The introduction of the Rab-
bitMQ allowed customization and categorization of the alerts based on its
severity levels. This feature significantly reduced the clutter in the notifica-
tion channels and enabled the teams to focus on high Enhanced Response
Capabilities: The bidirectional communication enables the DevSecOps
teams to perform management-related activities directly through the Slack
channel. This streamlined the response process.

The above improvements are implemented and screenshots with relevant ex-
planations have been included in the next section.

5.1. Phase 1: Wazuh to Slack Communication

Phase 1 of Adrian covered the communication from Wazuh to Slack. While
Figure 12 is the screenshot of the original alert that was before Adrian cleaned
up the alert, Figure 13 shows the alert that Adrian customized to only include
the relevant fields and categorized it as a low alert based on the severity level.

Figure 14 and Figure 15 present examples of medium and high alert gener-
ated in Wazuh and sent through Adrian to the corresponding Slack channels.
These screenshots illustrate Adrian’s capability for alert prioritization and cate-
gorization.

Figure 16 and Figure 17 is an illustration of Adrian sending the alert statistics

Figure 12. Alert before Adrian’s modification.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 412 Journal of Software Engineering and Applications

Figure 13. Alert after Adrian’s modification.

Figure 14. Medium alert notification in slack.

Figure 15. High alert notification in slack.

to the teams in a timespan of 24 hours. Figure 16 was sent on 3rd March and
Figure 17 was sent on 4th March. The figures indicate that there was a dip in the
number of low alerts from 50 to 30. There is a marginal dip in the medium alerts
as well. However, the number of high alerts has increased which could be a cause
of concern for the team. In such instances, the team would have to login to in-
vestigate the issue further.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 413 Journal of Software Engineering and Applications

Figure 16. Exemplary visualization.

Figure 17. Exemplary visualization.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 414 Journal of Software Engineering and Applications

5.2. Phase 2: Slack to Wazuh Communication

Figure 18 shows the initial message of the Flask app in the slack channel. As per
the FCAPS model, it displays the high-level menu for the user to select the op-
tion.

The submenu for each option is shown in Figure 19. The flowchart represents
all the submenu options that the user can choose from based on the chosen
model. The images in the flowchart represent the options displayed to the user
from the submenu.

Figure 20 represents the Fault Status and Agent Upgrade Status. Figure 20
(top image) provides the details of the fault that the agent has been allocated.
Figure 20 (bottom image) represents the agents that were upgraded. In cases
where there is no agent to be upgraded, it displays the message depicted in the
diagram.

Figure 18. Initial user menu in the slack channel.

Figure 19. Screenshot of individual messages for each category of FCAPS.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 415 Journal of Software Engineering and Applications

Figure 20. Fault Management submenu options.

Figure 21 represents the Rules and Decoders. The figure show only one rule
and one decoder, but Wazuh consists of over 6500 rules and approximately 600
decoders. Figure 21 (top image) shows the required details on each rule includ-
ing the name and directory of the rule. Figure 21 (bottom image) shows the de-
tails of the decoder including the name and the pattern that is used by Wazuh
for parsing and decoding data.

Figure 22 represents the Users and Roles. Figure 22 (top image) provides all
the users and the roles they are mapped to. Figure 22 (bottom image) provides
all the roles and the policies that each role is mapped to. Together, users can
map the users to their policies.

Figure 23 represents the SCA Scan Results and Manager Logs. Figure 23 (top
image) provides the total number of checks that have passed, failed, and consi-
dered invalid. Since the host machine is an Ubuntu machine, SCA scan was per-
formed for CIS Benchmarks for Ubuntu. Figure 23 (bottom image) provides the
latest Wazuh manager logs.

Figure 24 represents the Security Policies and MITRE References. Figure 24
(top image) provides all the details on the security policies that are configured in
Wazuh. Figure 24 (bottom image) represents one of the MITRE references that
Wazuh uses for identifying MITRE ATT&CK in the host machine. The image
represents a limited set of security policies and MITRE references, but there are
250+ security policies and 100+ MITRE references that are configured in Wa-
zuh.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 416 Journal of Software Engineering and Applications

Figure 21. Configuration management submenu options.

Figure 22. Accounting management submenu options.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 417 Journal of Software Engineering and Applications

Figure 23. Performance Management submenu options.

5.3. Discussion

This case study of Adrian clearly demonstrates the system’s innovative approach
to improving SIEM platforms’ alert management and response mechanisms. By
streamlining the flow of information between Wazuh and Slack, Adrian not only
enhances the real-time alert distribution but also introduces a higher level of
alert customization, alert categorization, and operational responsiveness.

6. Conclusion and Future Work

The results of our initial implementation of Adrian pave ways for several ave-
nues for future research and development:
• Platform Expansion: The presented case study of Adrian is primarily fo-

cused on integrating Wazuh with Slack. However, it can be expanded to in-
clude other software such as Microsoft Teams, Lark, Google Meet, etc. Simi-
larly, it can also incorporate OpenCTI, MISP, etc. This expansion would be
useful in exploring Adrian’s adaptation.

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 418 Journal of Software Engineering and Applications

Figure 24. Security Management submenu options.

• Advanced Features: Incorporating artificial intelligence and machine learn-
ing techniques to enhance Adrian’s alert prioritization and response automa-
tion capabilities could further improve the operational efficiency. The re-
search in this path could lead to the development of intelligent modules
within Adrian that would learn from the past incidents and optimize alert
handling and response strategies.

• Usability and User Experience: User studies could be conducted to gather
feedback on Adrian’s interface and functionalities. The recommendation
would be to collect feedback from the DevSecOps team members who could
provide insights into usability improvements.

In conclusion, Adrian represents a significant advancement in streamlining
security alert management and enhancing the response network for SIEM plat-
forms. This integration ensures that the critical alerts are not only promptly de-
livered to the teams, but also the ability to respond and mitigate security inci-

https://doi.org/10.4236/jsea.2024.175022

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 419 Journal of Software Engineering and Applications

dents. The separation of alerts from alert statistics enables the teams to take fast
decisions and actions.

Furthermore, Adrian offers a scalable and a flexible solution to the security
incident monitoring and response challenges. We are optimistic about Adrian’s
potential to contribute to a more security and efficient operational environment.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Cinque, M., Cotroneo, D. and Pecchia, A. (2018) Challenges and Directions in Se-

curity Information and Event Management (SIEM). IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), Memphis, 15-18 Octo-
ber 2018, 95-99. https://doi.org/10.1109/ISSREW.2018.00-24

[2] González-Granadillo, G., González-Zarzosa, S., Diaz, R. (2021) Security Informa-
tion and Event Management (SIEM): Analysis, Trends, and Usage in Critical Infra-
structures. Sensors, 21, 4759. https://doi.org/10.3390/s21144759

[3] Sadowski, G., Kavanagh, K. and Bussa, T. (2020) Critical Capabilities for Security
Information and Event Management. Gartner, 10-30.
https://www.exclusivenetworks.com/se/wp-content

[4] Forrester Total Economic Impact (2023) The Total Economic Impact of IBM Secu-
rity QRadar SIEM.

[5] RabbitMQ (2024) Installing RabbitMQ on Debian and Ubuntu.
https://www.rabbitmq.com/docs/install-debian

[6] Wazuh (2024) Official Documentation.
https://documentation.wazuh.com/current/user-manual/api/configuration.html

[7] Ngrok (2024) Slack + Ngrok. https://ngrok.com/partners/slack

[8] Grant Pennington (2020) RabbitMQ Tutorial and Python Demo.
https://www.youtube.com/watch?v=wDv1iCMjypg

[9] CloudAMQP (2021) RabbitMQ Explained-Exchanges.
https://www.youtube.com/watch?v=o8eU5WiO8fw

[10] Ram N Java (2023) RabbitMQ Direct Exchange Explained.
https://www.youtube.com/watch?v=YDqlwRrno0w

[11] Soumil Shah (2020) Starting with RabbitMQ Using Python.
https://www.youtube.com/watch?v=eSN0otKzYOE&list=PLL2hlSFBmWwy8lhnj11
FVJldKsZm66oq1

[12] Geeksforgeeks (2023) Data Visualization with Python.
https://www.geeksforgeeks.org/data-visual/

[13] Ian Webster (2019) How to Send Dynamic Charts with Slack Bot.
https://quickchart.io/documentation/send-charts-with-slack-bot/

[14] Wazuh (2024) Integration with Third-Party APIs.
https://documentation.wazuh.com/current/user-manual/manager/manual-integrati
on.html

[15] Real Python (2020) Getting Started with the Slack API Using Python and Flask.
https://realpython.com/getting-started-with-the-slack-api-using-python-and-flask/

https://doi.org/10.4236/jsea.2024.175022
https://doi.org/10.1109/ISSREW.2018.00-24
https://doi.org/10.3390/s21144759
https://www.exclusive-networks.com/se/wp-content/uploads/sites/
https://www.rabbitmq.com/docs/install-debian
https://documentation.wazuh.com/current/user-manual/api/configuration.html
https://ngrok.com/partners/slack
https://www.youtube.com/watch?v=wDv1iCMjypg
https://www.youtube.com/watch?v=o8eU5WiO8fw
https://www.youtube.com/watch?v=YDqlwRrno0w
https://www.youtube.com/watch?v=eSN0otKzYOE&list=PLL2hlSFBmWwy8lhnj11FVJldKsZm66oq1
https://www.youtube.com/watch?v=eSN0otKzYOE&list=PLL2hlSFBmWwy8lhnj11FVJldKsZm66oq1
https://www.geeksforgeeks.org/data-visualization-with-python/
https://quickchart.io/documentation/send-charts-with-slack-bot/
https://documentation.wazuh.com/current/user-manual/manager/manual-integration.html
https://documentation.wazuh.com/current/user-manual/manager/manual-integration.html
https://realpython.com/getting-started-with-the-slack-api-using-python-and-flask/

A. Shankar, V. Madisetti

DOI: 10.4236/jsea.2024.175022 420 Journal of Software Engineering and Applications

[16] Splunk (2023) Common Information Model Add-on Manual.
https://docs.splunk.com/Documentation/CIM/5.3.1 /User/Alerts

[17] Fireship (2020) How to Build a Slack App.
https://www.youtube.com/watch?v=25ArxpK48tU

[18] Rohan Singh (2023) How to Run Python Flask App Online Using Ngrok?
https://www.tutorialspoint.com/how-to-run-python-flask-app-online-using-ngrok

[19] Slack API (2024) Building an App with Bolt for Python.
https://api.slack.com/start/building/bolt-python

[20] Peter Baumgartner (2016) Creating Slack Command with Python and Flask.
https://pmbaumgartner.github.io/blog/slack-commands-with-python-and-flask/

https://doi.org/10.4236/jsea.2024.175022
https://docs.splunk.com/Documentation/CIM/5.3.1%20/User/Alerts
https://www.youtube.com/watch?v=25ArxpK48tU
https://www.tutorialspoint.com/how-to-run-python-flask-app-online-using-ngrok
https://api.slack.com/start/building/bolt-python
https://pmbaumgartner.github.io/blog/slack-commands-with-python-and-flask/

	A Framework for Cybersecurity Alert Distribution and Response Network (ADRIAN)
	Abstract
	Keywords
	1. Introduction
	Benefits of Adrian for DevSecOps Team

	2. Literature Review & Related Work
	3. Adrian’s Approach and Design
	3.1. Introduction to Adrian’s Approach
	3.2. Design Principles
	3.3. Technical Architecture

	4. Implementation of Adrian: Case Study
	4.1. Overview of Design Choices
	4.2. Objectives of the Case Study
	4.3. Programming Language; Platform Selection
	4.4. Implementation Details

	5. Results and Discussion of the Case Study
	5.1. Phase 1: Wazuh to Slack Communication
	5.2. Phase 2: Slack to Wazuh Communication
	5.3. Discussion

	6. Conclusion and Future Work
	Conflicts of Interest
	References

