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Abstract 
Traditional methods for selecting models in experimental data analysis are 
susceptible to researcher bias, hindering exploration of alternative explana-
tions and potentially leading to overfitting. The Finite Information Quantity 
(FIQ) approach offers a novel solution by acknowledging the inherent limita-
tions in information processing capacity of physical systems. This framework 
facilitates the development of objective criteria for model selection (compara-
tive uncertainty) and paves the way for a more comprehensive understanding 
of phenomena through exploring diverse explanations. This work presents a 
detailed comparison of the FIQ approach with ten established model selection 
methods, highlighting the advantages and limitations of each. We demon-
strate the potential of FIQ to enhance the objectivity and robustness of scien-
tific inquiry through three practical examples: selecting appropriate models 
for measuring fundamental constants, sound velocity, and underwater elec-
trical discharges. Further research is warranted to explore the full applicabili-
ty of FIQ across various scientific disciplines.  
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1. Introduction 

Accurate measurements of physical processes are fundamental to scientific re-
search and technological progress. These processes cover a wide range of phe-
nomena: from the behavior of particles at the quantum level to the dynamics of 
celestial bodies in space. The accuracy and reliability of these measurements are 
essential to improving our understanding of the universe and promoting inno-
vation in various fields. 
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In addition to its theoretical importance, accurate measurements of physical 
processes play a crucial role in practical applications. They provide the basis for 
the development and optimization of technologies that shape our daily lives, 
from medical devices to renewable energy systems. The reliability of these mea-
surements directly impacts the efficiency and effectiveness of these technologies, 
impacting everything from healthcare outcomes to environmental sustainability. 

Ensuring measurement accuracy requires not only precise technical equip-
ment, but also the selection of appropriate mathematical models. Models serve 
as tools for interpreting experimental data and predicting the behavior of physi-
cal systems. Choosing the right model is important to minimize errors and un-
certainties and ensure that the data accurately reflects the underlying phenome-
na. 

However, selecting the best model can be challenging due to the complexities 
inherent in real-world phenomena. Physical processes often exhibit nonlinear 
behavior, unpredictable interactions, and emergent properties that defy easy ex-
planation. As a result, researchers must carefully evaluate different modeling 
approaches and their suitability to capture the nuances of the phenomena being 
studied. 

Moreover, traditionally, model selection—the process of selecting the most 
appropriate mathematical structure to represent observed phenomena—has re-
lied heavily on the knowledge, intuition, and experience of the researcher. While 
these factors are valuable, they may lead to certain limitations: 

1) Subjectivity. Individual experiences and biases of researchers can influence 
their choice of model, potentially leading to inconsistencies and preventing the 
search for truly objective solutions. 

2) Limited scope. Often the focus is on identifying one “best” model based on 
specific criteria, ignoring the potential value of exploring alternative explana-
tions and understanding the entire landscape of possibilities surrounding a 
phenomenon. 

3) Risk of overtraining. Complex models, although offering a seemingly close 
fit to existing data, can be prone to overfitting, which affects their generalizabili-
ty and accuracy in predicting new observations. 

These limitations highlight the need for innovative approaches to model se-
lection that minimize subjective bias, enhance our understanding of physical 
phenomena, and reduce the risk of overfitting. 

We will look at various methods for selecting the best model when measuring 
physical processes, their advantages and disadvantages, considering their appli-
cability to different types of data and scientific purposes. By gaining a better un-
derstanding of model selection techniques, researchers and engineers can im-
prove the accuracy and reliability of their measurements, advancing both scien-
tific knowledge and technological innovation. 

This paper introduces the Finite Information Quantity (FIQ) approach, a new 
methodology emerging from physics that addresses these problems by incorpo-
rating the fundamental principle of finite information processing into physical 
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systems. 
The proposed approach involves analyzing the amount of information con-

tained within a model, which is constructed based on the observer’s knowledge 
and experience. The study argues that this information can play a critical role in 
assessing the attainable accuracy of representing a modeled phenomenon. The 
method also addresses the concept of comparative uncertainty, which is a fun-
damental aspect for evaluating the accuracy limit of a model [1].  

The main idea of the FIQ approach is that information, unlike classical phys-
ics where it is considered infinitely divisible, is a finite and limited resource in 
any physical system. This limitation may be due to the fundamental laws of 
thermodynamics or quantum mechanics. Recognizing these limitations, the FIQ 
approach seeks to establish objective criteria (comparative uncertainty) for 
model selection based on the information processing capabilities of the system 
being modeled. 

This article will detail the details of the FIQ approach, exploring its theoretical 
underpinnings and potential benefits in overcoming the limitations of tradition-
al model selection methods. We compare the FIQ approach with existing me-
thodologies, highlighting its unique contribution to achieving greater objectivity 
and reliability in our understanding of physical phenomena. 

In addition, the discussion will explore possible applications of the FIQ ap-
proach in various fields of physics, exploring its potential for discovering new 
ideas and revolutionizing the way we interpret experimental data and formulate 
accurate physical models. 

2. Short Review of the Applied Methods to Verify the Most  
Accurate Model 

The field of scientific inquiry relies on a rich toolbox of methods for processing 
experimental data and formulating models of physical phenomena. These me-
thods are particularly valuable when they excel at modeling uncertainty and 
enabling probabilistic inferences. This paper introduces ten prominent methods 
that have gained widespread application in this domain. 

2.1. List Squares Method 

This method minimizes the sum of squared differences between observed and 
predicted values. It is widely used when fitting linear models to experimental 
data, helping identify the coefficients that best describe the relationship. It is a 
venerable and widely employed statistical technique that serves as a linchpin in 
the realms of regression analysis and parameter estimation. It has found ubi-
quitous application across various scientific disciplines, owing to its simplicity 
and versatility. In this detailed exploration, we will meticulously examine the 
advantages and disadvantages of the LSM, elucidating its strengths and limita-
tions in the context of precision and reliability. The LSM’s longevity and wide-
spread adoption underscore its status as a well-established tool in statistical 
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modeling. Originating in the early 19th century, it has evolved to become a cor-
nerstone in data analysis. Its enduring popularity is attributed to its simplicity, 
ease of implementation, and effectiveness in various applications. Researchers 
and practitioners appreciate the method’s familiarity and reliability, making it a 
default choice in situations where a quick, robust solution is required. 

Advantages: 
1) Simplicity: LSM is straightforward and easy to implement. Its simplicity 

makes it accessible to a wide range of users, especially in cases where a quick and 
simple model is sufficient. 

2) Analytical Solutions: For linear models, there are analytical solutions avail-
able for finding the optimal coefficients. This allows for a direct calculation of 
the best-fit line, providing insights into the relationship between variables. 

3) Interpretability: The coefficients obtained from the regression analysis have 
clear interpretations. In a linear model, each coefficient represents the change in 
the dependent variable for a one-unit change in the corresponding independent 
variable, facilitating the interpretation of results [2]. 

4) Widespread Applicability: LSM is widely used in various fields, including 
physics, economics, biology, and engineering. Its versatility makes it a go-to 
method for initial exploratory data analysis [3]. 

5) Efficient with Large Datasets: When dealing with large datasets, the com-
putational efficiency of the LSM is advantageous. It can handle a considerable 
amount of data without significant computational burden. In [4] the authors 
highlight recent advancements in efficient optimization algorithms for Least 
Squares Regression with massive datasets. 

Disadvantages: 
1) Sensitive to outliers: despite its robustness to noise, the Least Squares Me-

thod is sensitive to outliers, which are data points significantly deviating from 
the general trend. Outliers can unduly influence the regression coefficients, 
leading to biased estimates. The method’s reliance on minimizing squared dif-
ferences amplifies the impact of extreme values, potentially distorting the overall 
fit of the model. Careful consideration and outlier detection techniques are ne-
cessary to mitigate the influence of outliers on the results. Outliers can signifi-
cantly impact the results of least squares regression. Since the method minimizes 
the sum of squared errors, a single outlier can disproportionately influence the 
estimated coefficients and distort the model. This sensitivity is highlighted by 
Shi et al. in their review of robust regression techniques, emphasizing the need 
for outlier detection and mitigation strategies [5]. 

2) Assumes a linear relationship between variables: a fundamental assumption 
of the Least Squares Method is the linearity of the relationship between variables. 
While this assumption holds in many practical scenarios, it imposes a limitation 
on the types of relationships the method can effectively model. Nonlinear rela-
tionships may go undetected, leading to inaccurate predictions. In cases where 
the true relationship is nonlinear, alternative modeling techniques, such as po-
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lynomial regression or nonlinear least squares, may be more appropriate. If the 
underlying relationship is nonlinear, as suggested by Rolnick et al. in their work 
on deep learning for climate data, LSR can lead to inaccurate predictions com-
pared to more flexible approaches [6]. 

3) Does not account for uncertainties in independent variables: another nota-
ble limitation of the LSM is its failure to account for uncertainties in the inde-
pendent variables. The method assumes that the predictor variables are meas-
ured precisely, neglecting any potential errors associated with their measure-
ments. In situations where the independent variables have inherent uncertain-
ties, this assumption can lead to underestimated standard errors and, conse-
quently, inaccurate confidence intervals for the regression coefficients. Re-
searchers must exercise caution when applying the method in situations where 
uncertainty in predictor variables is a critical consideration. 

4) Assumption of homoscedasticity: least squares regression assumes that the 
variance of the errors is constant across all levels of the independent variable. 
The authors of [7] propose non-parametric approaches for cases where heteros-
cedasticity violates Least Squares Regression assumptions, offering alternatives 
like conformal prediction for more reliable uncertainty estimation.  

5) Multicollinearity issues: highly correlated independent variables (multicol-
linearity), as discussed by Sirimongkolkasem et al. (2019) in their work on sparse 
regularization, can lead to unstable coefficient estimates [8]. Identifying the in-
dividual contribution of each variable becomes challenging, and the precision of 
the estimates may be compromised. 

6) Doesn’t handle missing data well: the LSM relies on complete datasets. If 
there are missing values in the data, traditional least squares regression may not 
be applicable, and imputation or other methods would be needed. Missing data 
presents a challenge for Least Squares Regression, requiring imputation tech-
niques like those reviewed by Liu et al. with deep learning approaches, or alter-
native model structures that can accommodate missingness [9]. 

It must be mentioned that LSM is not suitable for modeling complex nonli-
near relationships. In such cases, alternative methods like nonlinear regression 
or machine learning algorithms may be more appropriate. While LSM offers 
simplicity, interpretability, and efficiency, its effectiveness is contingent on 
meeting certain assumptions. Care should be taken to assess the linearity of rela-
tionships, handle outliers, and consider alternative methods when faced with 
nonlinearities or other violations of assumptions. 

In conclusion, the LSM stands as a venerable and widely used tool in statistical 
modeling, appreciated for its simplicity and effectiveness. Its advantages, in-
cluding its robustness to noise and straightforward interpretation of results, 
make it a valuable asset in various scientific and engineering applications. How-
ever, its sensitivity to outliers, assumption of linearity, and neglect of uncertain-
ties in independent variables highlight the importance of careful consideration 
when applying the method. Researchers should be aware of these limitations 
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and, when necessary, explore alternative modeling approaches to better capture 
the complexities of real-world data. 

2.2. Maximum Likelihood Estimation 

Maximum Likelihood Estimation (MLE) is a potent statistical method employed 
for parameter estimation, widely recognized for its versatility and applicability 
across diverse fields, including but not limited to finance, biology, and engi-
neering. This comprehensive exploration aims to provide a detailed under-
standing of MLE, delving into its advantages, disadvantages, and the intricacies 
that shape its use in scientific research and data analysis. 

Conceptual Framework: 
At its core, Maximum Likelihood Estimation is a method for finding the pa-

rameter values of a statistical model that maximize the likelihood function, 
which represents the probability of observing the given data under the specified 
model. In other words, MLE seeks the parameter values that make the observed 
data most probable under the assumed model. 

Advantages of the MLE: 
1) Asymptotic Consistency: Under certain regularity conditions, MLEs are 

asymptotically consistent, meaning they converge to the true parameter value as 
the sample size grows towards infinity. This robustness means even if the distri-
bution of data is not perfectly known, MLEs tend to get closer to the true value 
with more data [10]. 

2) Large-Sample Normality: Under specific conditions, MLEs become asymp-
totically normal, allowing for the construction of confidence intervals and hy-
pothesis tests. This allows for rigorous statistical inference despite potential dev-
iations from normality in the data [11]. 

3) Efficient Estimator under Certain Conditions: when specific regularity 
conditions are met, MLEs achieve the Cramer-Rao lower bound, meaning they 
have the smallest possible variance among all unbiased estimators. This trans-
lates to efficient estimates that extract the most information from the available 
data [12]. 

4) Asymptotic Efficiency: As the sample size increases, MLEs become asymp-
totically efficient compared to other estimators, meaning they approach the 
minimum achievable variance. This makes them particularly attractive for large 
datasets [10]. 

5) Allows for the incorporation of prior knowledge through likelihood func-
tions: MLE can be integrated within the Bayesian framework by using prior in-
formation to construct the likelihood function. This allows for incorporating 
expert knowledge or domain-specific constraints, potentially leading to more 
accurate estimates [13]. 

6) Flexible Likelihood Design: The likelihood function can be customized to 
incorporate specific knowledge about the data-generating process or the nature 
of the parameters, leading to more informative estimates [14]. 
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It’s important to remember that MLE has limitations. Here’s a closer look at 
its disadvantages: 

1) Requires knowledge of the distribution of errors: 
Assumption Dependence: MLE relies on the assumption that the errors follow 

a specific probability distribution (e.g., normal, Poisson). If this assumption is 
incorrect, the estimates can be biased and unreliable [15]. 

2) Complex computation, especially for nonlinear models: 
Optimization Challenges: Finding the maximum likelihood estimate often in-

volves optimization algorithms, which can be computationally expensive and 
prone to finding local maxima instead of the true global maximum [16]. Intrac-
tability with Non-linearity: for complex, non-linear models, analytical solutions 
might not be available, making optimization even more challenging and requir-
ing specialized algorithms [17]. 

3) Sensitivity to model misspecification: Assumption Dependence: MLE as-
sumes a specific model for the relationship between variables. If this model is 
incorrect, the estimates can be biased and misleading, even if the error distribu-
tion is correctly specified [18]. 

4) Outlier Impact: MLE can be sensitive to outliers, which can significantly in-
fluence the estimates and distort the results [19]. 

While these are notable disadvantages, MLE remains a widely used and versa-
tile method. Understanding its limitations is crucial for interpreting results and 
selecting appropriate estimation techniques. MLE stands as a cornerstone in sta-
tistical modeling, offering a principled and versatile approach to parameter es-
timation. Its advantages, including statistical robustness, efficiency under certain 
conditions, and flexibility in incorporating prior knowledge, make it a go-to 
method in various scientific disciplines. However, the method is not without 
challenges, with dependencies on correct distributional assumptions, computa-
tional complexity, and sensitivity to model misspecification. 

The real-world application of MLE involves thoughtful model specification, 
the transformation of likelihood functions, optimization procedures, and subse-
quent inference. Through examples like modeling exam scores with a normal 
distribution, the practicality of MLE becomes evident. However, researchers 
must remain vigilant about potential pitfalls, conduct thorough model diagnos-
tics, and be mindful of the assumptions underpinning the chosen statistical 
model. 

As statistical techniques continue to evolve, Maximum Likelihood Estimation 
retains its significance, providing a robust and widely applicable framework for 
extracting meaningful insights from data. Its continued integration into diverse 
fields underscores its enduring impact on scientific research and data-driven de-
cision-making. 

2.3. Nonlinear Regression 

Nonlinear regression stands as a powerful tool in unveiling the intricacies of ex-
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perimental data and crafting accurate models of physical processes. Unlike its 
linear counterpart, it delves beyond straight-line relationships, venturing into 
the realm of complex, curvilinear dynamics that govern diverse phenomena. 
Understanding both the advantages and limitations of this technique is crucial 
for researchers navigating the intricate pathways of data analysis and model 
building. 

Advantages: Capturing the Nuances of Reality 
1) Flexibility for Complicated Relationships: One of the most compelling ad-

vantages of nonlinear regression lies in its inherent flexibility. Unlike linear 
models, it doesn’t impose a restrictive, straight-line relationship between va-
riables. Instead, it can accommodate a wide range of functional forms, such as 
exponential, logarithmic, sigmoidal, and power functions, allowing it to capture 
the nuances of intricate relationships often observed in real-world data. This 
flexibility is particularly valuable when dealing with phenomena like population 
growth, enzyme kinetics, or chemical reactions, where linear models would 
prove inadequate [20]. 

2) Improved Model Accuracy: By venturing beyond the limitations of lineari-
ty, nonlinear regression often leads to more accurate models that better fit the 
observed data. This enhanced accuracy translates to more reliable predictions 
and a deeper understanding of the underlying processes at play. For instance, in 
studies of biological systems, where feedback loops and complex interactions are 
commonplace, nonlinear models can provide superior insights compared to li-
near approaches [21]. 

3) Insights into Underlying Mechanisms: The functional forms employed in 
nonlinear regression models can sometimes offer valuable insights into the me-
chanisms driving the observed phenomenon. By analyzing the parameters esti-
mated by the model, researchers can gain clues about the nature of the interac-
tions between variables, potentially leading to a more comprehensive under-
standing of the system under study [22]. 

Disadvantages: Navigating the Challenges 
1) Increased Complexity: The very flexibility that makes nonlinear regression 

powerful also presents a challenge. With a wider array of possible functional 
forms comes the burden of choosing the most appropriate model for the given 
data. This selection process can be complex, requiring careful consideration of 
theoretical knowledge, data characteristics, and statistical criteria [23]. 

2) Overfitting and Interpretability: Overfitting, where the model closely fits 
the training data but fails to generalize to unseen data, is a significant concern in 
nonlinear regression. The abundance of parameters in complex models can 
make them susceptible to overfitting, leading to unreliable predictions. There-
fore, careful evaluation and techniques like regularization are crucial to ensure 
model generalizability [24]. 

3) Sensitivity to Data Quality and Outliers: Nonlinear regression models can 
be more sensitive to noise and outliers in the data compared to linear models. 
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The presence of outliers can significantly impact parameter estimates and model 
fit, necessitating careful data cleaning and outlier analysis before proceeding 
with the analysis [25]. 

4) Computational Demands: Finding the optimal parameters for nonlinear 
models often requires iterative optimization algorithms, which can be computa-
tionally expensive, especially for large datasets. This can limit the applicability of 
nonlinear regression in certain scenarios where computational resources are 
constrained [26]. 

Nonlinear regression offers a powerful tool for researchers analyzing complex 
data and building accurate models of physical processes. By understanding its 
advantages, such as flexibility, improved accuracy, and potential mechanistic in-
sights, and being aware of its limitations, including increased complexity, over-
fitting, and sensitivity to data quality, researchers can leverage this technique ef-
fectively to extract valuable knowledge from their data. The ever-evolving field 
of nonlinear regression, with its advancements and resources, promises to con-
tinue empowering researchers in their pursuit of understanding the intricate re-
lationships that govern the world around us. 

2.4. Bayesian Inference 

Bayesian methods are powerful for incorporating prior knowledge and uncer-
tainty into statistical models, making them highly valuable for scientific research. 
They allow researchers to update their beliefs about parameters or hypotheses 
based on observed data, providing a principled framework for making probabil-
istic inferences. This statistical method updates the probability for a hypothesis 
as more evidence or data becomes available. It is useful when dealing with un-
certainty and incorporating prior knowledge into the model. 

Bayesian methods are versatile and can be applied to a wide range of scientific 
endeavors, including the measurement of physical processiess. While the appli-
cation of Bayesian methods to physical processiess might not be as common as 
in some other fields, there are instances where these methods can provide valua-
ble insights. 

Detailed explanations of the advantages and disadvantages of Bayesian Infe-
rence, along with links to relevant resources: 

Advantages: 
1) Incorporation of prior knowledge: Bayesian methods allow researchers to 

incorporate prior knowledge or beliefs about parameters into their statistical 
models. This prior information can help constrain parameter estimates and im-
prove the accuracy of inference [27]. 

2) Flexible handling of Uncertainty: Bayesian inference provides a flexible 
framework for quantifying and handling uncertainty. By representing uncer-
tainty using probability distributions. 

3) Bayesian models can capture complex sources of uncertainty and provide 
probabilistic estimates of model parameters [28]. 

https://doi.org/10.4236/jamp.2024.125115


B. Menin 
 

 

DOI: 10.4236/jamp.2024.125115 1857 Journal of Applied Mathematics and Physics 
 

4) Sequential updating of beliefs: Bayesian inference allows for sequential up-
dating of beliefs as new data becomes available. This sequential updating 
process, known as Bayesian updating, enables researchers to iteratively refine 
their estimates and incorporate new evidence into their models [29]. 

5) Model comparison and selection: Bayesian methods facilitate model com-
parison and selection by quantifying the evidence in favor of different models. 
Techniques such as Bayes Factors and Deviance Information Criterion allow re-
searchers to compare the fit of competing models and identify the most plausible 
model given the data [30]. 

Disadvantages: 
1) Computational complexity: Bayesian inference can be computationally de-

manding, particularly for complex models or large datasets. Markov Chain 
Monte Carlo (MCMC) methods, commonly used for Bayesian inference, may 
require extensive computational resources and time [31]. 

2) Subjectivity in prior specification: The choice of prior distributions in 
Bayesian analysis can influence the resulting posterior estimates. Subjective or 
poorly specified priors may lead to biased inference or misleading results, hig-
hlighting the importance of careful prior elicitation [32]. 

3) Interpretability of results: Bayesian models can sometimes be more com-
plex and challenging to interpret compared to frequentist models. The interpre-
tation of Bayesian posterior distributions and uncertainty intervals may require 
specialized knowledge and expertise [33]. 

4) Sensitivity to model assumptions: Like any statistical method, Bayesian in-
ference relies on certain assumptions about the underlying data-generating 
process. Violations of these assumptions or misspecification of the model can 
lead to biased or unreliable inference [34]. 

Bayesian inference remains a powerful and versatile tool for statistical model-
ing and inference, offering unique advantages in handling uncertainty and in-
corporating prior knowledge. However, researchers should be aware of the 
computational challenges, subjective nature of priors, and potential pitfalls asso-
ciated with Bayesian analysis. 

2.5. Monte Carlo Simulation 

Monte Carlo methods involve generating random samples from probability dis-
tributions to estimate unknown quantities or simulate complex systems. They 
are particularly useful for modeling uncertainty and conducting sensitivity ana-
lyses in scientific research. Involves generating random samples to simulate var-
ious outcomes of a model. This method is particularly useful when dealing with 
systems with inherent randomness or when uncertainty in parameters needs to 
be considered. 

Detailed explanations of the advantages and disadvantages of Monte Carlo 
Simulation, along with links to relevant resources: 

Advantages: 
1) Flexibility in model complexity: Monte Carlo simulation allows for the 
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modeling of complex systems with multiple interacting components and non-linear 
relationships. It can handle models with arbitrary complexity, making it suitable 
for a wide range of scientific applications [35]. 

2) Incorporation of Uncertainty: Monte Carlo simulation is well-suited for 
incorporating uncertainty into models by sampling from probability distribu-
tions of uncertain parameters. This allows researchers to quantify and propagate 
uncertainty through the model, providing probabilistic estimates of model out-
puts [36]. 

3) Sensitivity Analysis: Monte Carlo simulation enables sensitivity analysis by 
systematically varying input parameters and observing the resulting changes in 
model outputs. This helps identify critical parameters that have the greatest im-
pact on model predictions and assess the robustness of the model [37]. 

4) Estimation of Rare Events: Monte Carlo simulation can accurately estimate 
the probabilities of rare or extreme events by generating a large number of sam-
ples from the distribution of interest. This makes it valuable for risk assessment 
and reliability analysis in engineering, finance, and other fields [38]. 

Disadvantages: 
1) Computational intensity: Monte Carlo simulation can be computationally 

intensive, particularly for models with a large number of parameters or complex 
simulation algorithms. Generating a sufficient number of samples to achieve re-
liable results may require significant computational resources and time [39]. 

2) Sampling Errors: Monte Carlo simulation results are subject to sampling 
errors, especially when using a finite number of samples to estimate model out-
puts. As a result, the accuracy of Monte Carlo estimates depends on the number 
of samples generated and the convergence properties of the simulation algo-
rithm [40]. 

3) Difficulties in Convergence: Convergence can be a challenge in Monte 
Carlo simulation, particularly for models with complex or high-dimensional pa-
rameter spaces. Assessing convergence and determining when to stop the simu-
lation may require careful monitoring and diagnostics [41]. 

4) Difficulty in Model Specification: Monte Carlo simulation requires speci-
fying a probabilistic model for the system of interest, including probability dis-
tributions for uncertain parameters and relationships between variables. Model 
specification errors or misspecification can lead to biased or unreliable simula-
tion results [42]. 

Monte Carlo simulation remains a powerful and versatile tool for modeling 
uncertainty and conducting sensitivity analyses in scientific research. However, 
researchers should be aware of the computational challenges, sampling errors, 
convergence issues, and difficulties in model specification associated with Monte 
Carlo simulation. 

2.6. Optimization Techniques  

Optimization methods such as gradient descent, genetic algorithms, and simu-
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lated annealing are essential for finding optimal model parameters and mini-
mizing errors when fitting models to experimental data. They are widely used in 
parameter estimation and model calibration tasks. 

Detailed explanations of the advantages and disadvantages of Optimization 
Techniques, along with links to relevant resources: 

Advantages: 
1) Efficient parameter estimation: optimization techniques allow for efficient 

estimation of model parameters by searching for the values that minimize or 
maximize a given objective function. This enables researchers to find optimal 
model fits to experimental data and improve the accuracy of their models [43]. 

2) Global search capability: certain optimization methods, such as genetic al-
gorithms, are capable of performing global search across a large parameter 
space. This helps avoid local optima and ensures that the optimization process 
converges to a globally optimal solution [44]. 

3) Robustness to noise: Optimization techniques are often robust to noise in 
the objective function or parameter estimates. They can handle noisy or imper-
fect data and still converge to reasonable solutions, making them suitable for 
real-world applications where data quality may be less than ideal [45]. 

4) Versatility and adaptability: Optimization methods can be adapted to a 
wide range of optimization problems and objective functions. They are versatile 
tools that can handle various types of constraints and optimization objectives, 
making them suitable for diverse applications [46]. 

Disadvantages: 
1) Sensitivity to initial conditions: some optimization techniques, such as gra-

dient descent, are sensitive to the choice of initial conditions. Poor initial guesses 
may lead to convergence to suboptimal solutions or even divergence from the 
optimal solution [47]. 

2) Computational complexity: certain optimization methods, especially those 
that involve evaluating the objective function multiple times, can be computa-
tionally intensive. This may pose challenges when dealing with large-scale opti-
mization problems or when real-time performance is required [48]. 

3) Local optima traps: optimization techniques that rely on local search, such 
as gradient descent, may get trapped in local optima and fail to find the global 
optimum. This can limit the effectiveness of the optimization process, particu-
larly for non-convex and multimodal objective functions [49]. 

4) Difficulty in tuning parameters: some optimization methods require careful 
tuning of hyperparameters or algorithmic parameters to achieve optimal per-
formance. Selecting appropriate parameter values may require expertise and ex-
perimentation, adding complexity to the optimization process [50]. 

Optimization techniques remain indispensable tools for parameter estimation 
and model calibration tasks in scientific research. However, researchers should 
be mindful of their sensitivity to initial conditions, computational complexity, 
susceptibility to local optima traps, and the challenges associated with tuning 
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algorithmic parameters. 

2.7. Machine Learning Algorithms 

Machine learning techniques like neural networks, support vector machines, and 
decision trees are increasingly used for data modeling and analysis. They offer 
powerful tools for capturing complex patterns in experimental data and making 
predictions based on probabilistic reasoning. Techniques like neural networks, 
support vector machines, or decision trees can be applied for complex data pat-
terns. Machine learning is valuable when the relationship between variables is 
intricate and not easily captured by traditional methods. 

By combining these mathematical methods judiciously, researchers can effec-
tively analyze experimental data, extract meaningful insights, and formulate ac-
curate models of physical processes. The choice of method depends on the na-
ture of the data and the characteristics of the underlying physical phenomenon. 

Detailed explanations of the advantages and disadvantages of Machine Learn-
ing Algorithms, along with links to relevant resources: 

Advantages: 
1) Ability to capture complex patterns: machine learning algorithms excel at 

capturing complex patterns in experimental data, including nonlinear relation-
ships and interactions between variables. Techniques like neural networks, sup-
port vector machines, and decision trees can learn intricate patterns from data, 
making them valuable for modeling complex phenomena [51]. 

2) Flexibility and adaptability: machine learning algorithms are highly flexible 
and adaptable to various types of data and modeling tasks. They can handle di-
verse data formats, including structured and unstructured data, and are suitable 
for regression, classification, and clustering tasks [52]. 

3) Scalability to large datasets: many machine learning algorithms are scalable 
to large datasets, allowing researchers to analyze massive amounts of experi-
mental data efficiently. Techniques such as deep learning, in particular, have 
been shown to perform well on large-scale data analysis tasks [53]. 

4) Automated feature engineering: machine learning algorithms can automat-
ically extract relevant features from raw data, eliminating the need for manual 
feature engineering. This can save time and effort in the modeling process and 
may lead to more robust models [54]. 

Disadvantages: 
1) Black-box nature: many machine learning algorithms, particularly deep 

learning models, are often viewed as black boxes due to their complex internal 
workings. This lack of interpretability can make it challenging to understand 
how predictions are made and may hinder the adoption of machine learning 
models in some domains [55]. 

2) Data requirements: machine learning algorithms typically require large 
amounts of labeled data for training, which may be costly or time-consuming to 
collect. Insufficient or biased training data can lead to poor model performance 
and generalization errors [56]. 
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3) Overfitting: overfitting occurs when a machine learning model learns to 
capture noise or irrelevant patterns in the training data, leading to poor genera-
lization to new, unseen data. Regularization techniques and careful model selec-
tion are needed to mitigate the risk of overfitting [57]. 

4) Hyperparameter tuning: machine learning algorithms often require tuning 
of hyperparameters to achieve optimal performance. Selecting the right combi-
nation of hyperparameters can be challenging and may require extensive expe-
rimentation [58]. 

Machine learning algorithms offer powerful tools for analyzing experimental 
data and formulating models of physical processes. However, researchers should 
be aware of the challenges associated with their black-box nature, data require-
ments, risk of overfitting, and the need for hyperparameter tuning. 

2.8. Principal Component Analysis (PCA) 

PCA is a dimensionality reduction technique that identifies the most important 
features or patterns in high-dimensional data. It is valuable for simplifying com-
plex datasets and identifying underlying trends or relationships in experimental 
data. PCA reduces the dimensionality of the data by identifying the principal 
components that capture the maximum variance. This technique is beneficial for 
simplifying complex datasets and focusing on essential information. 

Detailed explanations of the advantages and disadvantages of Principal Com-
ponent Analysis (PCA), along with links to relevant resources: 

Advantages: 
1) Dimensionality reduction: PCA effectively reduces the dimensionality of 

high-dimensional data by identifying a smaller number of principal components 
that capture the most variance in the dataset. This simplification makes it easier 
to visualize and interpret the data while retaining most of the important infor-
mation [59]. 

2) Feature extraction: PCA extracts meaningful features or patterns from the 
original data, allowing researchers to focus on the most relevant information. By 
representing data in terms of principal components, PCA can reveal underlying 
trends, relationships, or clusters in the data that may not be apparent in the 
original high-dimensional space [60]. 

3) Noise reduction: PCA can help mitigate the effects of noise in the data by 
filtering out components with low variance. By focusing on the principal com-
ponents that capture the most variance, PCA enhances signal-to-noise ratio and 
improves the quality of data analysis and interpretation [61]. 

4) Visualization: PCA facilitates data visualization by projecting high-dimensional 
data onto a lower-dimensional subspace spanned by the principal components. 
This allows researchers to visualize the structure of the data in a more interpret-
able and insightful manner, aiding in data exploration and understanding [62]. 

Disadvantages: 
1) Linearity assumption: PCA assumes that the underlying relationships in the 
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data are linear, which may not always hold true for complex datasets with non-
linear relationships. In such cases, PCA may not effectively capture the underly-
ing structure of the data [63]. 

2) Loss of interpretability: While PCA simplifies the data by reducing dimen-
sionality, the resulting principal components may not always be directly inter-
pretable in terms of the original features. This loss of interpretability can make it 
challenging to relate the principal components back to the original variables 
[64]. 

3) Variance bias: PCA prioritizes components that capture the most variance 
in the data, which may not always align with the most meaningful or informative 
features. This variance bias can lead to suboptimal representation of the data and 
may overlook important but low-variance features [65]. 

4) Data scaling sensitivity: PCA is sensitive to the scale of the original va-
riables, and features with larger scales may dominate the principal components. 
Proper scaling of the data is necessary to ensure that PCA captures the true un-
derlying structure of the data [66]. 

Principal Component Analysis (PCA) offers valuable insights into high-di- 
mensional data by reducing dimensionality and extracting meaningful features. 
However, researchers should be mindful of its assumptions, loss of interpretabil-
ity, variance bias, and sensitivity to data scaling. 

2.9. Gaussian Processes  

Gaussian processes are a Bayesian non-parametric approach for modeling com-
plex data distributions. They are particularly useful for modeling uncertainty in 
regression tasks and making probabilistic predictions with uncertainty estimates.  

Detailed explanations of the advantages and disadvantages of Gaussian Pro- 
cesses (GPs), along with links to relevant resources: 

Advantages: 
1) Flexibility: Gaussian Processes offer flexibility in modeling complex data 

distributions without assuming a specific parametric form. They can capture in-
tricate patterns and nonlinear relationships in data, making them suitable for a 
wide range of regression and classification tasks [67]. 

2) Uncertainty estimation: GPs provide probabilistic predictions with uncer-
tainty estimates, allowing researchers to quantify the uncertainty associated with 
predictions. This is particularly valuable in decision-making scenarios where 
understanding prediction uncertainty is crucial [68]. 

3) Robustness to noise: Gaussian Processes are robust to noise in the data and 
can effectively model noisy observations. By capturing the underlying trends in 
the data, GPs can filter out noise and provide more accurate predictions com-
pared to deterministic models [69]. 

4) Adaptability to small datasets: GPs perform well even with small datasets, 
making them suitable for scenarios where data availability is limited. They can 
provide reliable predictions and uncertainty estimates even when trained on a 
limited amount of data [70]. 
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Disadvantages: 
1) Computational Complexity: Gaussian Processes can be computationally 

expensive, especially for large datasets or high-dimensional input spaces. Infe-
rence and prediction with GPs involve matrix computations that scale cubically 
with the number of data points, limiting their scalability [71]. 

2) Limited scalability: GPs may struggle to scale to large datasets due to their 
computational complexity. Approximation techniques such as sparse GPs or 
stochastic variational inference can help mitigate this limitation but may sacri-
fice some accuracy [72]. 

3) Choice of kernel function: The performance of Gaussian Processes is highly 
dependent on the choice of kernel function, which determines the characteristics 
of the covariance structure. Selecting an appropriate kernel function requires 
domain knowledge and experimentation [73]. 

4) Interpretability: Gaussian Processes are often viewed as black-box models, 
making them less interpretable compared to simpler regression techniques. Un-
derstanding the relationship between input variables and predictions may be 
challenging, especially for complex kernel functions [74]. 

Gaussian Processes offer powerful capabilities for modeling uncertainty and 
making probabilistic predictions, but researchers should be mindful of their 
computational complexity, scalability limitations, kernel function selection, and 
interpretability challenges. 

2.10. Information Criteria (AIC, BIC) 

Information criteria, such as the Akaike Information Criterion (AIC) is statistic-
al measures used for model selection and comparison. It provides a quantitative 
framework for evaluating the trade-off between model complexity and goodness 
of fit to the data. 

AIC is based on information theory and is derived from the Kullback-Leibler 
divergence, which measures the discrepancy between the true underlying model 
and the model being evaluated. 

AIC balances the goodness of fit of the model (how well it explains the ob-
served data) with the complexity of the model (the number of parameters). It 
penalizes complex models more heavily to prevent overfitting. A lower AIC val-
ue indicates a better balance between model fit and complexity, so models with 
lower AIC values are preferred. AIC provides quantitative measures for com-
paring models by considering their fit to the data and their complexity. It helps 
researchers select the most appropriate model that explains the data well while 
avoiding overly complex models that may overfit the data. 

Detailed explanations of the advantages and disadvantages of the AIC Infor-
mation Criterion, as well as links to related resources:  

Advantages: 
1) Model selection: Information criteria, such as AIC and BIC, provide a sys-

tematic and quantitative approach to model selection. They help researchers 
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compare competing models and select the one that strikes the best balance be-
tween goodness of fit and model complexity [75]. 

2) Balancing complexity and fit: AIC and BIC penalize models for complexity, 
encouraging the selection of simpler models that explain the data well. This 
helps prevent overfitting and ensures that the selected model is not overly com-
plex given the available data [76]. 

3) General applicability: Information criteria are applicable across various sta-
tistical models and techniques, making them widely applicable in different do-
mains of research. They can be used for model selection in regression, time se-
ries analysis, machine learning, and other fields [77]. 

4) Incorporation of uncertainty: AIC and BIC implicitly account for uncer-
tainty in model selection by considering both the goodness of fit and the number 
of parameters. This allows researchers to make informed decisions while ac-
knowledging the inherent uncertainty in modeling [78]. 

Disadvantages: 
1) Assumption of large sample sizes: AIC and BIC are derived under the as-

sumption of large sample sizes, which may not always hold true in practice. For 
small sample sizes, the performance of information criteria may be suboptimal, 
leading to unreliable model selection [79]. 

2) Sensitivity to model misspecification: Information criteria are sensitive to 
model misspecification, and their performance may degrade if the underlying 
assumptions of the models are violated. Researchers should carefully assess 
model adequacy before relying solely on information criteria for model selection 
[80]. 

3) Inability to capture complexity beyond parameters: AIC and BIC penalize 
models based solely on the number of parameters, which may not fully capture 
the complexity of the model. Models with complex structures or interactions 
may be penalized less than warranted by their true complexity [81]. 

4) Subjectivity in penalty functions: the penalty functions used in AIC and 
BIC are subjective and may not always reflect the true trade-off between model 
complexity and goodness of fit. Different penalty functions may lead to different 
model selection outcomes [82]. 

Information criteria, such as AIC, offers valuable tools for model selection and 
comparison by balancing model complexity and goodness of fit. However, re-
searchers should be aware of its limitations, including sensitivity to sample size, 
model misspecification, inability to capture complexity beyond parameters, and 
subjectivity in penalty functions. 

2.11. Limitations of Existing Model Selection Methods 

Current methodologies for selecting models of physical phenomena and analyz-
ing experimental data face several key limitations. These limitations stem from 
their reliance on researcher subjectivity: 

1) Inherent subjectivity: Traditional methods depend heavily on researchers’ 
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knowledge, intuition, and experience. This can introduce biases and inconsis-
tencies in model selection, hindering the pursuit of truly objective solutions. 

2) Limited scope: Many existing approaches prioritize identifying the “best” 
model based on specific criteria. However, a broader understanding of the model 
landscape is crucial. This includes exploring alternative explanations and poten-
tial shortcomings inherent in any chosen model. 

3) Furthermore, these methods often focus on minimizing overfitting. Over-
fitting occurs when complex models closely mimic training data but fail to gene-
ralize accurately to new data. Techniques like regularization and cross-validation 
help address this limitation. 

These limitations are intrinsic to current model selection methods and can in-
fluence the chosen model’s reliability and validity. Careful consideration of these 
limitations and implementation of appropriate mitigation strategies are crucial 
for robust scientific inference. 

Modern scientific literature generally overlooks an additional, fundamental 
limitation of existing methods. These methods analyze experimental data using 
models designed to minimize known uncertainties. However, they neglect a crit-
ical source of uncertainty: the model itself. This uncertainty arises from the qua-
litative and quantitative set of variables chosen to construct the model. Existing 
methods fail to account for this inherent and primary uncertainty, which ulti-
mately influences the choice of the most suitable model for a specific phenome-
non. 

Subsequent chapters introduce a novel method based on the concept of “finite 
information quantity.” This approach allows us to define a “comparative uncer-
tainty” criterion, facilitating the selection of the optimal model for studying a 
given physical phenomenon or technological process. 

3. Finite Information Quantity (FIQ) Approach 

We need to take a closer look at what it means to formulate a mathematical 
model of the physical or technological process being studied. 

The model does not exist in empty space. Its components (variables) are se-
lected by scientists and engineers from any system of units, for example, the In-
ternational System called SI, the Gaussian System, etc. Any system of units is a 
finite Abelian group (group theory) [83], the number of elements of which can 
be calculated. 

It can be assumed that there must be some objective criteria by which it is 
possible to judge the preferred system of units and decide which one to choose. 
However, it can be shown that the subsequent results presented are realized for 
any known system of units [84]. 

The “finite information quantity approach” (FIQ approach) is a relatively new 
approach in physics that explores the link between information and physical 
systems. While the concept can be applied in various contexts, its core idea re-
volves around two key points: 
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1) Information is not infinite: Unlike classical physics where information is 
treated as an infinitely divisible quantity, the FIQ approach acknowledges limi-
tations on the information that can be stored or processed within a physical sys-
tem. This limitation might arise from fundamental aspects of nature like the laws 
of thermodynamics or quantum mechanics. 

2) This finiteness has physical implications: By imposing a limit on the availa-
ble information, the FIQ approach seeks to understand how this constraint af-
fects various physical phenomena. For example, it can be used to:  

a) Estimate the maximum information storage capacity of black holes. This 
challenges the traditional Bekenstein bound, suggesting that black holes might 
have a finite information limit even though they can seemingly store infinite en-
tropy. 

b) Predict intrinsic uncertainties in physical measurements: by considering 
the finite information available during measurement, the FIQ approach can pre-
dict an inherent uncertainty associated with the measured value, independent of 
statistical errors. 

Traditional model selection methods often rely on criteria like goodness-of-fit, 
which might not fully capture the limitations of information processing in the 
physical world. The FIQ approach proposes alternative criteria based on the fi-
nite information available to the model. 

While the Finite Information Quantity (FIQ) approach remains under devel-
opment, its potential is actively explored by leading physicists. Pioneered by Del 
Santo and Gisin [85]. Prof. Wojciech H. Zurek has explored the limitations of 
complex systems theory in the face of finite information [86], while Prof. Rafael 
Sorkin has investigated the information loss paradox in black holes from the FIQ 
perspective [87]. Dr. Donald Marolf has proposed a novel information-theoretic 
approach to black hole entropy informed by FIQ [88].  

FIQ’s broader implications for the nature of reality are being investigated by 
Prof. Max Tegmark, who explores the possibility of a “computational universe” 
with finite information [89]. Similarly, Dr. Antony Valentini has proposed in-
terpretations of quantum mechanics that incorporate finite information [90]. Dr. 
Fay Dowker has delved into the connection between information and the geo-
metry of spacetime using insights from FIQ [91]. 

Despite being under development, FIQ offers a groundbreaking perspective by 
bridging information theory and physical laws, potentially leading to 
groundbreaking discoveries across various physics subfields. 

3.1. Initial Uncertainties in Model Building  

This chapter addresses the concept of initial uncertainties in model building, a 
topic lacking sufficient exploration in current scientific literature. Traditionally, 
validation and verification methods focus on uncertainties arising from chosen 
variables, model structure, testing procedures, and data scatter. However, the 
crucial role of the initial qualitative and quantitative set of variables and the un-
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derlying system of units in introducing inherent uncertainties remains largely 
unacknowledged. 

This work highlights the finite information quantity (FIQ) method ([92]), 
which posits that uncertainty of perception is inherent to the observer’s mind, 
leading to a “blurring” of the object being modeled. This philosophical stance, 
often overlooked in the scientific community, contrasts with established uncer-
tainties stemming from limitations in: 
- Measurement accuracy; 
- Observability of the object; 
- Measurement-induced perturbations; 
- Quantum mechanical interpretations. 

The author proposes the inclusion of perceptual uncertainty as a fifth funda-
mental uncertainty in model building. The FIQ method rests upon five key 
axioms [92]: 

1) Choice of system of units: the observer selects from standardized systems 
like SI, CGS, or Planck units, influencing the model’s group of phenomena 
(GoP). GoP defines the specific physical processes described by the model’s va-
riables and characterizes relevant features of the material object. For instance, an 
electric arc model typically utilizes variables with dimensions involving length, 
mass, time, current, and temperature, belonging to the GoPSI = LMTI class. 

2) Observer bias and variable selection: each observer, informed by their 
unique perspective, selects a set of qualitative and quantitative variables to 
represent the observed phenomenon. This selection process aims to minimize 
distortions and subjective biases inherent in their individual viewpoint. 

3) Finite information quantities (FIQ): FIQs are variables within the FIQ 
framework which include time, universal constants, one-dimensional compo-
nents of position or momentum, and dimensionless numbers. Their values are 
drawn from the set of real numbers, R [85]. 

4) Finiteness of information: the model contains a finite amount of informa-
tion due to the limited number of variables and the inherent information limita-
tion within each variable [85] [93]. 

5) Equiprobable variable selection: given a chosen system of units, if no prior 
information about the phenomenon exists, all variables possess an equal proba-
bility of inclusion in the model. Any variable is chosen by a conscious observer 
based on their background knowledge and research goals. This selection process 
inherently introduces a level of subjectivity. If a system of units is chosen with-
out prior knowledge of the phenomenon under study, we can estimate the 
probability of including a relevant variable in the model to be equiprobable 
(equal for all possibilities). This essentially means that, in the absence of any 
guiding information, any variable within the chosen system of units has an equal 
chance of being included in the model. To illustrate this, consider the well-known 
case of an electron. Depending on the experimental setup, an electron can exhi-
bit wave-like or particle-like behavior. If we don’t know beforehand whether 
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we’re studying the wave nature or the particle nature of the electron, selecting 
variables like wavelength or momentum becomes a matter of educated guess-
work within the chosen unit system. Therefore, both versions have a right to ex-
ist before further experiments reveal the dominant characteristic. 

The first three axioms align with common scientific practices. The fourth 
axiom resonates with the growing application of information theory across var-
ious disciplines. However, the fifth axiom, concerning equiprobable variable se-
lection, is likely to spark discussion. As an illustration, the historical debate sur-
rounding the wave-particle duality of the electron exemplifies how researchers, 
guided by intuition and existing knowledge, can propose radically different 
models for the same phenomenon, both potentially valid and experimentally 
supported. 

3.2. Model as an Information Channel 

The thesis that a model serves as a channel of information between the object or 
phenomenon being studied and the observer represents a deep and insightful 
view of the nature of models and their role in scientific research. 

In [84] [94] [95] [96] the nature of models and their relationship to the objects 
or phenomena they represent is explored. Models are not simply passive repre-
sentations of reality, but rather active tools that shape and mediate our under-
standing of the world. Models are not just descriptive but also generative be-
cause they allow us to make predictions, test hypotheses, and explore the conse-
quences of different scenarios. In other words, models are not simply tools for 
representing or manipulating data, but also for communicating and translating 
information between the world and the mind. 

One way to think about this is in terms of the concept of “mediation.” Ac-
cording to this view, models serve as intermediaries between the object or phe-
nomenon being studied and the observer, facilitating the flow of information 
and understanding in both directions. On the one hand, models help the ob-
server understand the world by providing a structured and simplified represen-
tation of complex phenomena. On the other hand, models also allow the observ-
er to communicate his ideas and conclusions to the world by providing a com-
mon language and framework for describing and explaining his observations. 

Another way to understand this thesis is to use the concept of “abstraction.” 
According to this view, models are abstract representations of reality that cap-
ture the essential features of a phenomenon while leaving out unnecessary de-
tails. By abstracting away the complexity and noise of the world, models allow us 
to focus on the underlying patterns and structures that govern a particular do-
main. In this sense, models serve as a kind of “filter” or “lens” that allows us to 
see the world in a new and more honest way. 

Regardless of how one interprets this thesis, it is clear that it has important 
implications for the way we think about models and their role in scientific re-
search. By emphasizing the active and generative nature of models, this ap-
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proach encourages us to think of models not simply as passive representations of 
reality, but as active tools for shaping and mediating our understanding of the 
world. Whether we are studying natural phenomena, social systems, or technol-
ogical artifacts, the ideas and perspectives offered can help us develop more po-
werful, more efficient, and more insightful models that can deepen our under-
standing and improve our ability to predict and explain. And control the world 
around us. 

The unique aspect here is that any system of units, like the International Sys-
tem of Units (SI), relies on variables. These variables can include scalar parame-
ters like time, universal constants, one-dimensional components of position or 
momentum, dimensionless numbers. These variables take values from the set of 
real numbers [85]. Each variable (q) carries a finite amount of information, and 
this information has an upper bound [85] [93]. Consequently, these variables are 
termed “finite information quantities” (FIQs) [85]. The number of dimension-
less FIQs based on the SI can be calculated as μSI = 38,265 [95]. The subsequent 
reasoning and formulas hold true for models incorporating any FIQs, dimen-
sional or dimensionless. These formulas are independent of the specific system 
of units employed in the model [94] [95] [96] [97]. 

When constructing a model, the observer must make a deliberate decision to 
select only a few quantities, thereby defining one or more groups of phenomena 
(GoPs) for the model. GoP is a set of physical phenomena and processes that can 
be described by a finite number of basic quantities and derived variables from 
any system of units, for example, SI. These characteristics help determine the 
characteristics of a material object, both qualitatively and quantitatively [98]. 

For example, when modeling an electric arc, variables commonly used include 
the basic SI quantities of length (L), mass (M), time (T), current (I), and ther-
modynamic temperature (Θ). This means that the model falls into the category 
of phenomena GoPSI ≡ LMTΘI. At this stage (GoP selection), the number of 
variables is significantly reduced compared to µSI. However, due to practical 
constraints such as limited time, financial resources and computational capabili-
ties, the researcher ends up selecting only a very small number of variables for 
the final model compared to μSI. 

In this context, we consider two separate sets of random variables with equal 
probability: X ∈ {x1, …, xj} represents the total number of FIQs in the observed 
physical system, excluding any hidden variables. Y ∈ {y1, …, yp} represents the 
number of output FIQs reflected in the model, chosen by the observer. Set Y is 
essentially a “noisy” version of set X, where the observed phenomenon is com-
pressed. This means the number of variables is significantly reduced, but with-
out any energy expenditure. The observer simply focuses on the model without 
disturbing the actual process. 

Given that μSI is constant, each FIQ has a limited information content, and the 
number of FIQs in a model is always finite, we can infer that the total amount of 
information contained within both the SI and the model is inherently limited. 
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The key idea of the principle of choosing the best model to describe the phe-
nomenon under study is that when constructing a model of a physical pheno-
menon, we (observers) determine a set of variables. These include Ψ - dimen-
sional quantities: they represent measurable properties with units of measure-
ment (for example, length, time); ξ base quantities: these are fundamental units 
included in one or another system of units from which others are formed (for 
example, meter, second). 

The modeler/thinker/observer then selects a specific dimensionless quantity of 
interest (u) whose values fall within a certain range (S). Importantly, the model-
ing approach is non-invasive and introduces no perturbations to the system un-
der study. In addition, the researcher indicates the type of phenomenon being 
modeled, characterized by the total number of FIQs in the selected GoP (z'), β' is 
the number of base quantities in the selected GoP, z" is the number of FIQs rec-
orded in a model, and β” is the number of independent base quantities recorded 
in a model. In other words, the absolute uncertainty (ΔΣ) when measuring a se-
lected quantity can be determined using the following Equation (1) [94] [99] 
[100] [101] [102] [103]: 

 ( ) ( ) ( )' ' '' '' ' 'SIS z z zβ µ β βΣ∆ = ⋅ − + − −    (1) 

In the Equation (1), ΔΣ represents the a priori total model uncertainty, which 
arises from the selection of the GoP and the number of recorded FIQs. At its 
heart, ΔΣ represents an inherent, fundamental uncertainty in any physi-
cal-mathematical model. This uncertainty exists before any measurements are 
made and is independent of the measurement process itself. It arises solely from 
the number of variables chosen and the selected GoP. Consequently, the total 
uncertainty of the model, which includes additional uncertainties from the mod-
el’s structure and computerization, will be significantly larger than Δpmm. In 
essence, Equation (1) can be seen as the uncertainty principle for model devel-
opment. It implies that any change in the level of detail used to describe the ob-
served object (z" − β"; z' − β') will cause a shift in both Δpmm and the accuracy 
of the key variables representing the object’s internal properties.  

The term ε is the comparative uncertainty of the model, defined as ε = ΔΣ/S. 
Despite its significance in information theory [104], the value of ε has often been 
overlooked by researchers. 

Table 1 summarizes the optimal values of εopt for different GoPs and recom-
mends the corresponding number of FIQs required to achieve them including 
the optimal number of FIQs inherent in a model, γmod = z" − β". 

The concept of “amount of information” as a physical quantity introduces a 
unique perspective on model uncertainty. This perspective reveals an inherent 
uncertainty arising from the researcher’s worldview, which cannot be captured 
by traditional statistical methods, weighting factors, or consistency criteria. 
These tools are limited because they operate on the results of experiments and 
simulations for existing models. This distinction highlights the difference be-
tween treating information as a physical entity and the well-established theory of 
measurements [94]. 
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Table 1. Comparison of measurement uncertainties and optimal dimensionless parame-
ters. 

GoPSI 
Comparative 
uncertainty, 

εopt 

Number of FIQs 
inherent in GoPSI, 

γGoP = z' − β' 

Optimal number of FIQs 
inherent in a model, 

γmod = z" − β" 

LMТ 0.0048 91 ≈0.2 < 1 

LMТF 0.0146 279 ≈2 

LMТI 0.0245 468 ≈6 

LMТθ 0.0442 846 ≈19 

LMТIF 0.0738 1412 ≌52 

LMТθF 0.1331 2546 ≈169 

LMТθI 0.2220 4247 ≈471 

LMТθFI 0.6665 12 751 ≈4249 

 
While, traditionally, models with more variables are favored, our approach 

prioritizes informativeness. Here, models with an FIQ count closer to γGoP are 
considered more informative. This information-centric approach allows us to 
identify the most suitable model for the object under study, and consequently, 
the optimal method for calculating its relevant researched variable. 

4. FIQs for Model Selection: A New Approach to  
Understanding Uncertainty 

The FIQ-based approach recommends analyzing scientific research results by 
comparing the achieved model uncertainty (εmod) with the theoretically optimal 
uncertainty (εopt) as shown in Table 1. The ratio εmod/εopt serves as an objective 
criterion for assessing a model’s acceptability, measurement method effective-
ness, and accuracy when comparing models for a specific physical phenomenon 
or technological process. A ratio close to 1 (1 > εmod/εopt ≈ 1) indicates the mod-
el’s suitability for describing the studied process. Conversely, a large difference 
suggests the model’s limitations. It’s important to note that reaching the theo-
retical limit (εopt) might not be achievable (εmod is always less than εopt) due to in-
herent constraints. The following analysis will explore the challenges that need 
to be addressed to optimize model development. 

4.1. Measuring Physical Constants with Improved Uncertainty  
Analysis 

This chapter explores the challenges associated with achieving optimal accuracy 
in measuring fundamental physical constants. The recent adoption of the Inter-
national System of Units (SI) by CODATA (Committee on Data for Science and 
Technology) signifies significant progress in this domain [105]. However, limi-
tations remain in the current methodology for analyzing measurement uncer-
tainties. 
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Limitations of CODATA Methodology: the established CODATA methodol-
ogy relies on Bayesian Linear Regression with least squares adjustments (LSA) to 
harmonize data from various research centers [106]. This approach, while en-
suring consistency, can introduce subjective bias, particularly when reconciling 
conflicting results. Additionally, concerns exist regarding the potential influence 
of personal opinions on statistical analysis [107]. 

This chapter proposes the FIQ-based method as an alternative for uncertainty 
analysis. This method avoids subjectivity by focusing on the concept of “optimal 
uncertainty” (εopt) and “experimental comparative uncertainty” (εexp) [108]. εopt 
defines the inherent limitations of a measurement model, considering the cho-
sen variables and phenomena. εexp, on the other hand, reflects the actual uncer-
tainty achieved in a specific experiment. 

The FIQ-based method offers several advantages. Firstly, it avoids subjective 
adjustments inherent in the CODATA approach. Secondly, it focuses on εopt, a 
fundamental limit on measurement accuracy. Finally, it emphasizes the impor-
tance of including a sufficient number of variables in the measurement model to 
minimize εexp. 

In [109] a detailed analysis of various physical constant measurements 
through the FIQ-based method is presented. The analysis, based on data from 
2000-2019, revealed a clear trend: models incorporating a larger number of base 
quantities (LMTθ, LMTI, etc.) and FIQs (γmod) generally achieved lower εexp/εopt 
ratios (Table 2). This suggests that considering a broader range of variables leads 
to a more accurate understanding of the underlying phenomenon and reduces 
the discrepancy between the optimal and achieved uncertainty. 
 
Table 2. Summary of εM/εopt values. 

Ratio 
εexp/εopt 

Physical Constant Measurement method GoP 

2.3 Boltzmann constant DCGT1 LMTθI 

3.6 Planck constant AGT2 LMTθF 

4.1 Hubble constant CMB3 LMTθ 

7.9 Gravitational constant Electro-mechanical methods LMTI 

15.9 Planck constant KB4 LMTI 

32.6 Planck constant XRCD5 LMTθF 

100 Gravitational constant Mechanical methods LMT 

104 Hubble constant BAO6 LMT 

710 Boltzmann constant BDL7 LMT 

1DCGT—dielectric constant gas thermometer, 2AGT—acoustic gas, thermometer, 
3CMB—cosmic microwave background, 4KB—Kibble balance, 5XRCD—X-ray crystal 
density, 6BAO—baryonic acoustic oscillations, 7BDL—brightness of distance ladder. 
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The analysis also highlights the limitations of certain measurement techniques 
for specific constants (Table 2). For instance, the data suggests that methods like 
BDL (brightness of distance ladder) for the Boltzmann constant, BAO (baryonic 
acoustic oscillations) for the Hubble constant, and mechanical methods for the 
gravitational constant, are less promising in terms of achieving optimal accura-
cy. 

The FIQ-based method offers a valuable framework for analyzing measure-
ment uncertainties with greater objectivity and accuracy. However, further ef-
forts are needed to promote its adoption by the scientific community. This in-
cludes reformulating the concept of “comparative uncertainty” in terms of rela-
tive uncertainty (rexp/rCoP) which is more readily understood by a wider range of 
scientists (Table 3). 

Several key trends emerge from analyzing the data in Table 3. First, the ratio 
of rexp/rCoP increases significantly when using the GoP with a limited number of 
base quantities and a low γmod (complexity factor) like LMTF or LMT. This 
suggests that models incorporating a broader range of variables (higher γmod) 
and fundamental quantities (more than LMT) can potentially achieve lower 
comparative uncertainty (εexp) compared to their optimal uncertainty (εopt). 
Second, all rexp/rCoP values are greater than 1. This supports the core tenet of the 
FIQ-based method [109]: the inherent limit on accuracy for any model (εopt, or 
rCoP) is theoretically unattainable in practice. Third, comparing the DBT and JNT 
methods for measuring the Boltzmann constant, the JNT method offers poten-
tial for improved accuracy. This can be achieved by refining the experimental 
setup and incorporating additional relevant variables. Fourth, the data suggests 
that electro-mechanical methods for measuring the gravitational constant hold 
promise for achieving higher accuracy with greater confidence. Finally, within  
 
Table 3. Comparison of achieved vs. optimal relative uncertainty. 

Ratio 
rexp/rCoP 

Physical constant Measurement method GoP 

1.1 Boltzmann constant DBT1 LMTθF 

1.9 Boltzmann constant JNT2 LMTθI 

1.9 Gravitational constant Electro-mechanical methods LMTI 

2.4 Hubble constant CMB LMTθ 

2.6 Planck constant AGT LMTθF 

2.9 Planck constant KB LMTI 

9.1 Planck constant XRCD LMTF 

12.7 Gravitational constant Mechanical methods LMT 

44 Boltzmann constant BDL LMT 

56 Hubble constant BAO LMT 

1DBT—Doppler broadening thermometer, 2JNT—Johnson noise thermometer. 
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the FIQ-based framework, the AGT method appears most promising for im-
proving the accuracy of Planck constant measurements compared to KB and 
XRCD methods. 

The FIQ-based method presents a promising alternative for uncertainty anal-
ysis in measuring fundamental physical constants. By emphasizing εopt and the 
importance of a comprehensive measurement model, this methodology has the 
potential to enhance the accuracy and objectivity of scientific inquiry in this 
critical domain. 

4.2. Unveiling Accuracy in Underwater Electrical Discharges  

This chapter critically analyzes research on underwater electrical discharge 
(UED) published between 2011 and 2021. A comprehensive search across vari-
ous databases (IEEE Xplore, ScienceDirect, etc.) yielded 800 articles [110]. To 
ensure rigor, four selection criteria were applied: 

1) Solid Theoretical Foundation: Articles required a well-defined mathemati-
cal model with theoretical UED calculations, providing a strong theoretical 
framework. 

2) Experimental Validation: Inclusion of experiments and their results was 
essential for validating theoretical models with empirical data. 

3) Theory-Experiment Comparison: Articles explicitly comparing theoretical 
calculations with experimental findings were prioritized to assess model accura-
cy. 

4) Uncertainty Quantification: Studies calculating the total absolute or relative 
uncertainty in experiments were preferred. Ideally, the uncertainty (EU) should 
be lower than the discrepancy between theory (TD) and experiment (ED) to va-
lidate the model’s practical applicability. 

These criteria aimed to identify high-quality studies encompassing theoretical 
models, experimental data, theory-experiment comparisons, and uncertainty 
considerations. 

The review identified valuable insights. Authors presented diverse experi-
mental setups and emphasized the scientific significance of their findings. How-
ever, some concerning trends emerged:  

1) Limited Theoretical-Experimental Comparison: While many acknowledged 
the importance of comparing results with other studies, some lacked theoretical 
data for comparison with their own experiments. 

2) Incomplete Uncertainty Analysis: Although some highlighted the relevance 
of uncertainty for optimizing designs, most studies didn’t thoroughly explain the 
calculation of relative uncertainty in their experiments. Notably, even the study 
by W. Yao et al. (2019) that addressed uncertainty did not detail the individual 
contributions of uncertainty sources. 

These shortcomings suggest a potential gap in UED research. Many studies 
focus on theoretical models, experimental data, and achieving good agreement 
between them, overlooking the need for rigorous testing through comprehensive 
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theory-experiment comparisons and detailed uncertainty analysis. Minor dis-
crepancies are sometimes acknowledged, but their importance is often underap-
preciated. 

This critical review highlights the need for a more balanced approach in UED 
research, emphasizing the importance of rigorous comparisons between theory 
and experiment alongside detailed uncertainty quantification. Such a shift could 
lead to more robust and reliable UED models with greater practical applicability. 

Despite the wealth of available publications, a strategic selection process was 
necessary. Following the spirit of the proverb “make do with what you have,” six 
key articles were meticulously chosen for in-depth analysis [111]-[116]. Results 
are introduced in Table 4. 

Several key trends emerge from analyzing the data in Table 4. First, the ratios 
of εi/εopti (achieved vs. optimal uncertainty) suggest a potential bias towards 
models with fewer variables (GoP with low γmodi and base quantities). Examples 
include ε1/εopt1 (9.67), ε2/εopt2 (1.37), and ε3/εopt3 (1.2) all exceeding 1 in studies 
[113] [114]. This contradicts the core principle of the information method [109]: 
the inherent accuracy limit (εi) of any model should be lower than the optimal 
limit (εopti). As a result, these models [113] [114] [115] [116] may require signif-
icant reformulation to achieve optimal accuracy. 

Conversely, the ratios ε5/εopt5 and ε6/εopt6 support the models proposed in [111] 
[112]. These models appear more promising in representing underwater elec-
trical discharges with a higher degree of accuracy. 

Remarkable achievement in UDM [112]: the research presented in [112] 
stands out for its exceptional results, comparable to the achievements of NASA 
engineers [117]. This work utilized the GoPSI framework (LMTθF), which in-
corporates variables expressed as combinations of five fundamental quantities  
 

Table 4. Prioritization of UED models based on uncertainty and interpretability. 

Variable/ 
Reference 

Chosen 
GoPSI of 

the model 

Number of 
FIQs inherent 

in GoPSI, 
γGoP = z' − β' 

Optimal number of 
dimensionless FIQs 
inherent in a model, 

γmodi = z" − β", 
i = 1, 2, 3 

Number of 
dimensionless FIQs 

inherent in a formulated 
model*, γexpi = z" − β", 

i = 1, 2, 3 

The achieved 
experimental 
comparative 

uncertainty of 
the model**, εi 

The comparative 
uncertainty of the 

model, theoretically 
justified for the 

selected GoP, εopti 

Ratio 
of 

εi/εopti 

[113] LMT 91 γmod1 ≈ 0.2 < 1 γexp1 ≈ 4 ε1 = 0.0464 εopt1 = 0.0048 ≈9.67 

[114] LMTI 468 γmod2 ≈ 6 γexp2 ≈ 10 ε2 = 0.0336 εopt2 = 0.0245 ≈1.37 

[115] LMTI 468 γmod3 ≈ 6 γexp3 ≈ 8 ε3 = 0.0293 εopt3 = 0.0245 ≈1.20 

[116] LMTIθ 4247 γmod4 ≈ 471 γexp4 ≈ 19 ε4 = 0.0484 εopt4 = 0.2220 ≈0.22 

[111] LMTI 468 γmod5 ≈ 6 γexp5 ≈ 3 ε5 = 0.0186 εopt5 = 0.0245 ≈0.76 

[112] LMTI 468 γmod6 ≈ 6 γexp6 ≈ 5 ε6 = 0.0229 εopt6 = 0.0245 ≈0.93 

* While crucial for calculating comparative uncertainty (2), explicitly stating the number of variables considered in a model is not 
standard scientific practice. Additionally, some researchers neglect to define the variables used within their formulas. This neces-
sitates independent calculation of the number of variables in the reviewed articles, potentially introducing inaccuracies in 
representing this critical aspect of the model. ** εi is calculated according to Equation (2). 
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(length, mass, time, temperature, and force) at varying degrees [98]. Notably, the 
model in [112] employs a significant number of variables (130) and achieves a 
εmod/εopt ratio close to 0.9, demonstrating a close alignment between achieved and 
optimal uncertainty. This success highlights the importance of considering a 
broader range of variables, even if the researchers were unaware of the specific 
information method. The numerous successful Mars rover landings by NASA 
[117] provide a compelling real-world validation of such a comprehensive mod-
eling approach. 

Building on the progress made in prior studies [111]-[117], the information 
method emphasizes the critical role of incorporating a specific, well-defined 
number of variables in models. In the context of underwater electrical dis-
charges, the model proposed in [112] appears most promising due to its inclu-
sion of a variable count closer to the optimal values suggested by the information 
method. This approach encourages researchers to move beyond models with li-
mited variables and strive for a more comprehensive representation of the phe-
nomenon by incorporating a wider range of relevant factors. 

4.3. Optimizing Speed of Sound Measurements with the FIQ-Based  
Approach 

While numerous studies have explored sound speed measurement, this analysis 
focuses on three specific works investigating sound propagation in hydrogen 
chloride [118], various solids [119], and N2-H2 mixtures [120]. The sound speed 
data generated (Table 5) is evaluated using the FIQ-based information method 
[84]. 

Quantifying measurement quality through relative uncertainty (r) poses limi-
tations in directly comparing the presented models’ accuracy. This is because the 
studies assume reliable measurements based on agreement between model cal-
culations, experimental data, and achieved relative uncertainty (EU). However, a  
 
Table 5. Comparison of research results. 

Variable/Reference [116] [118] [117] 

Chosen GoPSI of the model LMTθ LMTθ LMTIF 

FIQs amount contained in a given 
GoPSI, γGoP = z' − β' 

846 846 1412 

Amount of FIQs recommended for the 
model, γmod = z" − β", γmodi = z" − β", 

i = 1, 2, 3 
γmod1 ≈ 19 γmod2 ≈ 19 γmod3 ≈ 52 

Achieved experimental comparative 
uncertainty of the model, εi 

ε1 = 0.0233 ε2 = 0.0305 ε3 = 0.0596 

Comparative uncertainty of the model, 
theoretically justified for the selected 

CoP, εopti 
εopt1 = 0.0442 εopt2 = 0.0442 εopt3 = 0.0738 

Ratio of εi/εopti ≈ 0.53 ≈ 0.69 ≈ 0.8 
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crucial comparison is often missing contrasting the achieved EU with the dis-
crepancy between theoretical calculations (TC) and experimental results (ER) 
[121] [122]. When |TC - ER| falls within the margin of EU, the model’s validity 
and applicability become questionable [123]. 

To address these limitations and guide model selection, we employ the con-
cept of optimal uncertainty (ε) as outlined in Axiom 5 [92]. This approach as-
sumes equiprobable consideration of model variables. However, researchers of-
ten rely on intuition and experience to select variables, potentially neglecting 
important factors influencing sound propagation. 

The findings in [119] highlight the importance of considering a broader range 
of variables in the model. This approach not only deepens our understanding of 
the true sound speed value but also opens doors for further exploration of see-
mingly well-understood phenomena. 

Analysis [124] reveals that the model in [119] exhibits the closest agreement 
between achieved uncertainty (ε) and optimal uncertainty (εopt) compared to the 
other two models [118] [120]: ε1/εopt1 = 0.53 < ε2/εopt2 = 0.69 < ε3/εopt3 = 0.8. This 
preference is further supported by the ratio of model complexity factors (γ) to 
their optimal values (γmod). The model in [119] incorporates a higher number of 
variables (γ3 = 18) closer to the optimal value (γmod3 = 52) compared to the mod-
els in [118] (γ1 = 1, γmod1 = 19) and [120] (γ2 = 4, γmod2 = 19). 

5. Discussion 

The burgeoning scientific literature, fueled by escalating research and develop-
ment costs and a growing number of researchers, has raised concerns about the 
quality and reliability of published findings. Replication problems, fraudulent 
practices, and a lack of expertise in measurement theory and uncertainty analysis 
threaten the very foundation of scientific progress. 

Our findings unveil a fundamental challenge in the realm of experimental da-
ta processing: the information-theoretic bottleneck imposed by model complex-
ity. Traditional methods often lack the sophistication to capture the intricate de-
tails encoded within a model during its construction. This limitation stems from 
the absence of tools to quantify and address model complexity itself. 

Complexity, a well-established concept rooted in both physics and mathemat-
ics, reflects the inherent difficulty associated with a task [125]. In the context of 
modeling an observed object with high accuracy, complexity demonstrably re-
lates to the chosen “frame” - the system of units and variables selected by the re-
searcher. The intricacy and information content of this frame directly influence 
the reconstruction difficulty. Existing data processing methods typically over-
look the impact of frame selection on model complexity. 

To address these concerns, a universally applicable criterion for assessing 
model-phenomena discrepancies is urgently needed. This criterion, termed 
“comparative certainty,” aims to evaluate these mismatches and provide a theo-
retically robust framework applicable across scientific disciplines adhering to the 
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International System of Units (SI). By establishing this criterion, scientific inves-
tigations can achieve greater reproducibility and reliability, bolstering confi-
dence in published results. 

Our work highlights the Frame of Finite Information Quantity (FIQ) method 
as a potential solution. Unlike traditional approaches, FIQ empowers researchers 
to select the most plausible model for the object under study by explicitly consi-
dering the information content within the chosen system of units. This system 
acts as a metaphorical “shell” encapsulating the essence of the investigated phys-
ical phenomenon.  

The prevailing paradigm suggests that a model’s accuracy hinges solely on the 
quality of the experimental data processing method. However, our findings ne-
cessitate a paradigm shift. The accuracy of a model constructed using the FIQ 
method is demonstrably proportional to the information content embedded 
within the chosen system of units. This challenges the long-held belief within the 
scientific community.  

The informational approach offers a fresh perspective on quantifying model 
uncertainty. Traditionally, statistical methods dominated this field. However, the 
informational approach focuses on the information transmission, accumulation, 
and transformation processes inherent in model construction. It captures the ir-
reducible uncertainty associated with the model’s qualitative and quantitative 
variables, providing a holistic measure of overall uncertainty. 

The significance of the SI in scientific research cannot be overstated. By pro-
viding a standardized framework for measurements, the SI ensures consistency, 
traceability, and comparability, enabling accurate and replicable experiments. 
This promotes interdisciplinary collaboration, quality control, and error analy-
sis. Using SI units fosters global communication, enhances research impact, and 
upholds scientific integrity. 

The selection of a specific unit system, such as the SI, plays a crucial role in 
model formulation. This system comprises a finite set of physical dimensional 
variables that characterize the world’s physical properties. It serves as the foun-
dation for all scientific knowledge and establishes a framework for modeling 
phenomena. By conceptualizing a model as an information channel bridging the 
phenomenon and the observer, information theory’s concepts and mathematical 
tools can be applied to assess the model’s accuracy and determine its permissible 
discrepancy. 

The comparative certainty criterion has wide-ranging implications for diverse 
experimental data. It provides a universal metric (ε) for quantifying the model’s 
proximity to the studied object. This metric transcends statistical methods and 
offers insights into the fundamental nature of reality. By analyzing experimental 
data using relative uncertainty and considering the conditions and requirements 
of the informational approach, researchers can detect subtle deviations from es-
tablished principles in modeling physical phenomena, potentially revealing new 
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discoveries. 
However, applying comparative uncertainty analysis to diverse experimental 

data presents challenges and considerations. The informational approach neces-
sitates careful consideration of the unit system, variable selection, and potential 
information distortion during the model-building process. Researchers need to 
account for various uncertainty sources and potential limitations to enhance the 
accuracy and reliability of their predictions. 

The comparative uncertainty criterion, grounded in the informational ap-
proach, holds significant promise for advancing scientific rigor and addressing 
concerns about research reliability and credibility. By quantifying model-phe- 
nomena mismatches and providing a theoretically sound framework, this crite-
rion can enhance reproducibility and instill greater confidence in published 
findings. Nevertheless, challenges in applying this approach to diverse experi-
mental data necessitate careful consideration and further research. Overall, es-
tablishing the comparative certainty criterion represents a substantial step to-
wards ensuring the robustness and credibility of scientific research across all dis-
ciplines. 

6. Conclusions 

The paper aims to enhance the understanding of the modeling process, mea-
surement accuracy, and the role of information in representing physical pheno-
mena. It emphasizes the need to consider the philosophical perspectives and 
subjective judgments of researchers in constructing accurate models. 

The paper provides valuable insights into the complex process of modeling 
physical phenomena, incorporating information theory principles to evaluate 
and enhance the accuracy of scientific models. 

Traditional data processing methods struggle to capture the intricate details 
within complex models due to limitations in addressing model complexity itself. 

The frame of finite information quantity (FIQ) offers a novel approach by ex-
plicitly considering the information content within the chosen system of units 
during model selection. This methodological shift acknowledges the critical role 
of frame selection in influencing model complexity and accuracy. 

Our findings challenge the prevailing paradigm that solely focuses on data 
processing methods for achieving model accuracy. The FIQ method highlights 
that the information content embedded within the chosen units themselves de-
monstrably impacts model accuracy. 

The FIQ method goes beyond traditional approaches by providing a frame-
work to address the inherent uncertainty associated with models. By enabling 
the selection of optimal variables, FIQ demonstrably reduces this uncertainty 
within the constructed model. 

The FIQ method presents a promising avenue for future scientific exploration. 
While its potential is vast, further research is necessary to: 

1) Explore applicability across disciplines: investigate the effectiveness of the 
FIQ method in various scientific fields beyond the domain in which it was in-
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itially developed. 
2) Address potential limitations: identify and address potential limitations of 

the FIQ method, such as computational complexity or challenges arising in spe-
cific experimental scenarios. 

By emphasizing the importance of information content within the modeling 
frame, our work paves the way for overcoming the information-theoretic bot-
tleneck associated with model complexity. The FIQ method offers researchers a 
powerful tool to construct more accurate and reliable models from experimental 
data, ultimately leading to a deeper understanding of the scientific phenomena 
under investigation. The integration of the FIQ method holds the potential to 
transform various scientific disciplines by facilitating the development of more 
robust and informative models. 
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