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Abstract 
The study focuses on estimating the input power of a power plant from 
available data, using the theoretical inverter efficiency as the key parameter. 
The paper addresses the problem of missing data in power generation sys-
tems and proposes an approach based on the efficiency formula widely do-
cumented in the literature. In the absence of input data, this method makes it 
possible to estimate the plant’s input power using data extracted from the site, 
in particular that provided by the Ministry of the Environment. The impor-
tance of this study lies in the need to accurately determine the input power in 
order to assess the overall performance of the energy system. 
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1. Introduction 

The efficient operation of power plants requires accurate knowledge of their in-
put power, which is crucial for assessing their overall performance. However, in 
many cases [1]-[7], the input data is incomplete or missing, which represents a 
significant challenge for power plant managers. Many missing data techniques 
exist in the literature, such as simple imputations, model-based methods, inter-
polations, K-nearest neighbours (KNN), etc. These different techniques require a 
minimum of existing data. However, given the immense size of our missing data, 
these different techniques seem inefficient. With this in mind, this work investi-
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gates a new approach to estimating the input power of a power plant using in-
verter efficiency as the key parameter. The main objective of this study is to 
overcome the lack of input data by exploiting the relationship between the theo-
retical efficiency of the inverter and the input power, in order to provide a relia-
ble estimate of the latter. This approach offers a practical and effective solution 
for assessing the overall performance of power plants, thereby facilitating their 
operation and optimisation. In this introduction, we will detail the basic prin-
ciples of this method and highlight its importance for the power industry. 

2. Modeling  
2.1. The Study Site 

The installation studied is a grid-connected PV system located at the Ministry of 
the Environment in Burkina Faso.  
● a field of modules located on the roof; 
● an array of grid-connected inverters 
● a data acquisition system; 
● the electrical network; 
● electrical loads. 

 Description of the PV field 
The PV array consists of 380 AT solar 205 W modules. It has the following 

characteristics  
● a peak power of 80 kWp; 
● an overall surface area of 486 m2; 
● a nominal yield η0 of 13%. 
● The PV array faces due south at an angle of 15˚. 

 Description of the inverter park 
The inverter park consists of eight (08) Sunny Tripower 10000TL-10 inverters, 

each with the following characteristics:  
● a nominal output power of 10,000 W; 
● a maximum efficiency η0 of 98.1%; 
● the ability to search for the maximum power point (MPP). 

Figure 1 shows the efficiency curve of the inverters. It shows that the effi-
ciency of the inverters falls dramatically when the AC power is less than around 
500 W.  

These inverters incorporate an acquisition system that allows PV system pa-
rameters to be measured and displayed on a computer, mobile phone, etc.  

 Description of the acquisition system 
A data acquisition station integrated into the inverters monitors the system’s 

main electrical parameters (voltage, current and frequency). The system is also 
equipped with radiation and temperature sensors. Thanks to SMA’s Sunny Por-
tal (System-, Mess- und Anlagentechnik), a measurement and equipment tech-
nology system, data can be recorded and consulted at any time and from any lo-
cation using a protected access account. For our study, we had a username and  
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Figure 1. Inverter efficiency. 
 
password for access. The access allowed us to view and extract meteorological 
data such as ambient temperature, module temperature, solar radiation and also 
all the electrical parameters such as DC and AC voltage, inverter frequency, DC 
and AC power as well as the energy produced, in an Excel file [4] [5]. 

2.2. PV Field Efficiency 

Experimentally, the efficiency of the PV array is determined by the relationship 
in Equation (1): 

 _
PV

Experimental field
P

S G
η =

∗
 (1) 

where PPV is the power of the PV array (W), G is the irradiance in the plane of 
the collectors (W/m2) and the area of the PV array (m2). 

The theoretical yield is determined from formula (2) [4] [6] [7] [8]: 

 ( ), 1pv literature ref p refT Tη η β = − −   (2) 

where refη  is the reference efficiency of the field as: 

 ,ref ref modules lossη η η= ∗  (3) 

lossη  is the estimated efficiency linked to losses within the field (cables, diodes, 
etc.) [7]. In our case, 0.13 0.95 0.123refη = × = , Tp is the panel temperature and 
Tref is the reference temperature (Tref = 25˚C); β is the temperature coefficient (to 
be determined or supplied by the manufacturer). The literature [4] [7] indicates 
that β varies between 0.0025 and 0.008 K−1. The parameter β was determined 
from experimental measurements and is 0.0061. 

2.3. Inverter Efficiency 

The inverter is an essential component for any PV system that has to supply 
electrical energy in alternating current or be connected to the electricity grid. It 
is generally characterised by: 
● its input voltage 
● its rated power; 
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● its efficiency 
● output signal quality and harmonic content; 
● no-load consumption. 

All eight inverters are of the Sunny Tripower 10000TL-10 type. The UPv input 
voltage ranges from 150 V to 800 V. Their rated power is equal to 10,000 W, 
their efficiency is 98.1% and they supply a 50 Hz signal. In this work, we will 
characterise the inverter by its efficiency. 

The instantaneous value of the experimental efficiency ηond depends on the 
ratio of the output power Psortie to the input power Pentrée of the inverter. It 
can be written as [8]-[14]: 

 output
ond

input

P
P

η =  (4) 

To calculate the theoretical efficiency, we take into account the power lost by 
the inverter, which is written as: 

 loss input outputP P P= −  (5) 

Dividing (5) by the rated power of the inverter Pnom/inv gives: 
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 Thus ond
loss

ηη
η η
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The losses (ηloss) can be described to a good approximation using Equation (11) 
[8] [9]: 

 2
loss oH kη η= +  (11) 

where ηo is a no-load inverter constant and k is a constant related to resistive 
losses. 

Finally, we deduce the theoretical efficiency of the inverter expressed by:  

 2ond
o k
ηη

η η η
=

+ +
 (12) 

The values of ηo and k can be determined from the inverter efficiency curve. 
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Let ηi be the efficiency of the inverter at i% load (0 < i < 100), we have: 

 
,

100
100i

i loss

i
i

η
η

=
+

 (13) 

The expression for ηi is taken from (13), which gives: 

 ,
,

1 1
100i loss

i ond

iη
η
 

= × −  
 

 (14)  

According to Equation (11) we have: 

 ( )2
, 100i loss o k iη η= +  (15) 

Equating Equation (14) with Equation (15) gives: 
2 1 1

100 100o
i

i ikη
η
  + = −  

   
 

Solving this equation gives: 
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100 o
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 (16) 

Considering a second state of charge j we have: 
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 (17) 

Solving for equality between Equations (16) and (17) gives: 
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 (18) 

If we consider the efficiency at 10% of rated power η10 and the efficiency at 
100% of rated power η100 we obtain: 

 
100

1 1ok η
η

= − −  (19) 
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99oη η η

 
= − − 
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 (20) 

In our study we obtain ηo= 0.0062 and k = 0.0227. 

3. Results and Discussion  

Figure 2 shows the experimental and theoretical yields ηExperimental_field and 
ηTheoretical_field. 

Between 12 pm and 2 pm, irradiance reaches its peak (around 1000 W/m2). 
The same applies to temperature (60˚C). At the same time, however, the yield 
reaches a minimum value (10%). As the temperature rises throughout the day, 
the field’s yield decreases from 13% at 9 a.m. to 10% at 12 noon. Then, as the 
temperature drops, the yield increases. 

Equation (2) correctly reproduces the field yield over the course of the day, 
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except at the beginning and end of the day when irradiance values are low. The 
correlation rate is around 0.7687. 

Using the values of ηo and k in Equation (12), we obtain the inverter efficiency 
in Figure 3, where we plot the evolution of the simulated and measured effi-
ciency over the course of a day. 

The efficiency measured varies throughout the day. It rises from 70% at 7 am 
to 97% at 9 am, and then remains constant until 7pm, before falling at the end of 
the day. 

There is also a strong correlation (0.9882) between simulated and measured 
efficiency. On the basis of these findings, we can say that Equation (12) repro-
duces the inverter’s efficiency during the day satisfactorily.  

We will use the inverter efficiency to estimate the field input power because it 
is independent of temperature and its correlation rate (0.9882) is much higher 
than that of the field efficiency (0.7687). 

For some days, or inverter input power data is missing. They can therefore be 
estimated using the theoretical inverter efficiency given by equations 4 and 12. 
Comparison of the estimated input powers with the measured input powers 
shows that there is a strong correlation (0.9998) as shown in Figure 4. 

 

 
Figure 2. Changes in experimental and theoretical yield in the field on 07/07/2016. 
 

 
Figure 3. Evolution of simulated and measured inverter efficiency. 
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Figure 4. Evolution of measured and simulated input power. 

4. Conclusions 

The results obtained in this study confirm the robustness of the proposed ap-
proach for estimating the input power of a PV plant using inverter efficiency as 
the key parameter. The high correlation between the theoretical and measured 
value of the inverter efficiency, reaching 0.9882, attests to the reliability of the ef-
ficiency equation obtained. This high correlation suggests that the efficiency eq-
uation satisfactorily reproduces the real behaviour of the inverter throughout the 
day. 

Thanks to this efficiency value, the input power could be accurately estimated. 
The comparison between the estimated and measured input powers reveals a 
strong correlation, reaching 0.9998, thus demonstrating the effectiveness of the 
proposed approach for estimating the input power under conditions where the 
input data is incomplete or missing. 

In conclusion, this study paves the way for a practical and reliable method to 
assess the overall performance of power plants, by providing an accurate esti-
mate of their input power. This approach could be of great use to PV plant 
managers, enabling them to optimise plant operation and make informed deci-
sions to improve energy efficiency. 

The method can also be applied to any system, provided that the experimental 
coefficients linked to the location can be found. 
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