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Abstract 
The current work aims at employing a gradient descent algorithm for opti-
mizing the thrust of a flapping wing. An in-house solver has been employed, 
along with mesh movement methodologies to capture the dynamics of flow 
around the airfoil. An efficient framework for implementing the coupled 
solver and optimization in a multicore environment has been implemented 
for the generation of optimized solutions—maximizing thrust performance & 
computational speed. 
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1. Introduction 

The fact that flapping airfoil generates thrust was first recognized by Knoller, 
and later independently by Betz. They observed that a flapping wing creates an 
effective angle of attack, resulting in a normal force vector with both lift and 
thrust components. Due to the flapping wing, a relative motion is created and it 
is clear that there is a net force in the horizontal direction. If this thrust force is 
greater than the net viscous drag on the body there is a net thrust generated. 
This is known as Knoller Betz Effect. 

This was later verified by Katzmayr by measuring the average thrust on a sta-
tionary airfoil placed in a sinusoid ally oscillating wind stream [1]. Dickinson et 
al. [2] talked about the enhanced aerodynamic performance of insects resulting 
from an interaction of three distinct yet interactive mechanisms: delayed stall, ro-
tational circulation and wake capture. Delayed stall functions during the transla-
tion portions of the stroke, when the wings sweep through the air with a large an-
gle of attack. In contrast, rotational circulation and wake capture generate aero-
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dynamic forces during the stroke reversals, when the wing rapidly rotates and 
changes direction. 

They observed that the delayed stall alone is not sufficient to explain the ele-
vated aerodynamic performance. The rotational mechanisms we describe are 
necessary components of the basic unsteady aerodynamic toolkit in this species. 
They developed a more general theory of insect aerodynamics that incorporates 
both translational and rotational mechanisms.  

In the present study based on the available literature, with special reference to 
[3] [4] [5] about the flapping wings, the following aspects are considered: 
• Motion Optimization of an airfoil in plunge is considered. The justification 

for such an analysis may be had from the fact that plunging corresponds to 
the primary thrust generation mechanism of the flapping wing. It is well 
known that mimicking the plunging motion in a flapping device is a lot easi-
er compared to pitching and plunging together. In the design of a flapping 
wing which involves very tight weight margins, there are two conflicting re-
quirements about the size/weight of the actuator. On one hand, a more effi-
cient flapping motion which involves both pitching and plunging, can result 
in a smaller propulsive system for a specified mission. On the other hand, 
such a motion, which is more complex as compared to a simple plunging mo-
tion can result in a more complex actuator, which adds weight to the system. 
Therefore in the present work, we have restricted ourselves to the optimiza-
tion of plunging motion alone. The optimization involving pitch and plunge 
is a topic of future research. 

• As also shown by Kaya et al. [5], the optimal motion for the highest efficiency 
for a plunging airfoil is non-sinusoidal. Even though our optimization efforts 
are to improve thrust rather than efficiency, we expect that the resulting op-
timal motion path is also to be far from sinusoidal motion.  

• The motion of the wing can be mathematically represented as a spline func-
tion using NURBS [6]. The control points for this curve naturally become the 
optimization variables which are determined using a steepest ascent ap-
proach.  

• The present computations involving unsteady NS computations are very ex-
pensive; generating the aerodynamic data on a given point in the search space 
is of the order of 20 - 30 hours on reasonably fine meshes for 2 - 3 cycles of 
motion. For very obvious reasons, parallel computing becomes the most nat-
ural choice for such an analysis. 

All the unsteady flow computations in this work are done with High-resolution 
Flow solver on Unstructured Meshes (HIFUN) code. The code is a cell-centered 
finite volume compressible flow solver. The second-order accurate three-point 
backward difference scheme is employed for time discretization, whereas the 
spatial gradients are computed using diamond path reconstruction. The system 
of equations is solved using a dual-time stepping strategy [7], which allows for 
efficient and easy implementation of convergence acceleration techniques, without 
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loss in temporal accuracy. 

2. Gradient Descent Optimization Framework 

Optimization is the process of obtaining the best results under given circums-
tances. The existence of optimization methods can be traced to the days of New-
ton, Lagrange, and Cauchy. Cauchy first applied the Steepest Descent Method to 
solve the unconstrained minimization problem 1847. Traditional optimization 
techniques are of three categories—Mathematical Programming Techniques, 
Stochastic Process Techniques, and Statistical Methods. The Steepest Descent 
method is an Unconstrained Optimization Technique which is a sub-category of 
Mathematical Programming. Unconstrained Optimization is of two types Direct 
Search Methods and Indirect Search (Descent) Methods. In this section, we dis-
cuss its validation & application with flapping wings.  

2.1. Mathematical Formulation & Algorithm 

The following steps summarize the steepest descent approach where f(X) is the 
objective function. The objective function in our case the thrust coefficient − Ct 

1) Start with an arbitrary initial point X1. Set the iteration number as i = 1. 
2) Find the search direction iS  as 

( )i i iS f f X= ∇ =∇ . 

3) Determine the optimal step length *
iλ  in the direction iS  and set 

* *
1i i i i i i iX X S X fλ λ+ = − = − ∇ . 

4) Test the new point, 1iX +  for optimality. If 1iX +  is optimum, stop the 
process. Otherwise, go to step 5.  

5) Set the new iteration number i = i + 1 and go to step 2. 
The method of Steepest Descent may appear to be the best-unconstrained op-

timization technique since each one-dimensional search starts in the optimal di-
rection. It should be noted that evaluating the gradient components requires an 
unsteady flow solution over a few periods of the flapping motion until the peri-
odic flow behavior is reached.  

The step size and initial point are very crucial while using the Steepest Descent 
Algorithm. For a function having multiple optimum values, different initial val-
ues converge to different optimal solutions. This is discussed with an example 
below. Step size in the algorithm may be determined by one of the following 
methods.  

1) Constant Step Size: 
A constant step size is used irrespective of the objective function. The optimi-

zation is not in the user’s control and this method is used very often for checking 
the convergence. This generally takes more computational cost when compared 
to other methods. 

2) Linear Search Methods: 
Famous linear search techniques like Fibonacci Search, Golden Section, and 
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Quadratic Interpolation Methods can be used to find the optimum step size for 
every perturbation. These techniques require the calculation of the objective 
function value at every experiment. However, the step size changes dynamically 
which decreases the computational cost when compared to the constant step 
size. 

3) Adaptive Step: 
In this method, the previous step size is incremented or decremented de-

pending on certain conditions. This is a blend of Newton-Marquardt’s Approach 
where the step size is increased when we are going in the correct path and de-
creased otherwise. The decision can be taken based on two successive values of 
the Objective Function.  

If ( ) ( )1i if X f X+ <  then SET 1 1i icλ λ+ =  where 1 1c >  
Else SET 1 2i icλ λ+ =  where 20 1c< <  
The constants are chosen as 1.2 and 0.7 respectively. This technique is more 

optimal when compared to the methods discussed earlier. It is the other way 
round for a Steepest Descent Approach.  

4) Momentum Term Approach: 
This technique is proposed by Rumelhart which uses the previous update to 

compute the current one by introducing a momentum term ] [0,1η∈ . The new 
point is then 

[ ] *
1 1i i i i iX X X X Sη λ+ −= + − +  

This is a non-traditional approach without theoretical support which gives 
good results. It can be traced as an average gradient descent that is sometimes 
used to improve gradient descent. 

In the present problem, we are encountered with a situation where a conti-
nuous presentation of the Objective Function and we calculate its value at a par-
ticular point numerically using the flow solver. The solver takes a lot of time to 
calculate the function value; therefore, the linear search methods are not em-
ployed in step-size computation.  

2.2. Convergence Criteria & Validation 

There are three convergence criteria for the Steepest Ascent Algorithm for ter-
minating the iterative process. 

1) The first criterion is based on changes in functional values 

( ) ( )
( )

1
1

i i

i

f X f X
f X

ε+ −
≤  

2) The second criterion is based on the change in functional derivative 

2
i

f
x

ε∂
≤

∂
 

3) The third criterion is based on the change in the design vector 

1 3i iX X ε+ − ≤  
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Out of the three, the first one is the most frequently used convergence criteria. 
In some cases, the process can be terminated after the desired number of itera-
tions. 

Both Steepest Ascent and Steepest Descent Algorithms are validated using 
well-known functions as objective functions, out of which three of them are dis-
cussed here. The optimization is done on the Windows Platform in Dev-C++ 
software which uses a “gcc” compiler and the computational cost in terms of no. 
of iterations is calculated by three methods outlined earlier 

1) Basic Function  

( ) ( ) ( )1 1 2 3sin 2cos siny x x x= + −  

2) Himmelblau’s Function 

( ) ( )2 22 2
2 1 2 1 211 7y x x x x= + − + + −  

3) Trid Function 

( )2
3 1

1 2
1

n n

i i i
i i

y x x x −
= =

= − −∑ ∑  

Without loss of generality number of variables is chosen to be 6n = . 
The convergence criteria and the initial step length are taken to be 0.000001 

and 0.001 respectively. The number of iterations taken for a particular function 
to optimize is calculated and is found that the Adaptive Step is the best regarding 
computational cost. The dependence of the algorithm on the starting point can 
be spotted below. 

The adaptive step size approach shows the near problem-independent con-
vergence for all test functions and is chosen due to its simplicity and lower cost 
in the present work to decide on the dynamic step size.  

The plots of Himmelblau’s function and Trid function (for two variables) are 
plotted in MATLAB to visualize the occurrence of the optimum solution (Figure 
1 & Figure 2). As discussed in Table 1 the validation of Himmelblau’s function 
which has multiple optima depending on the initial guess and the Trid Function 
which has one global minimum for two variables can be made. 

3. Optimization Framework  

In this section, the numerical tools and techniques used in trajectory definition 
and cost function evaluation as well as the development of the integrated solv-
er-optimization framework were discussed. It begins with a clear description of 
the airfoil regime followed by a clear description of the cost function being op-
timized during the study. Additionally, the use of NURBS is taken up in greater 
detail along with a description of the parallel architecture that has been imple-
mented in the framework. Both of these would form crucial components of the 
entire study at a later stage when the flow solver and optimization routine would 
run in tandem to generate results.  
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Figure 1. Himmelblau’s function. 
 

 
Figure 2. Trid function. 

3.1. Objective Function 

The present work aims at maximizing the time-averaged thrust being generated 
for the given flow conditions and characteristics. This average quantity is defined  
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Table 1. Various function characteristics with steepest descent algorithm. 

Function 
Initial 
Point 

Optimal Solution Number of Iterations 

Expected Calculated Case 1 Case 3 Case 4 

Basic  
Function 
(Steepest 
Ascent) 

1
1
1

 
 
 
 
 

 
1.570

0
1.570

 
 
 
 − 

 
1.570

0
1.571

 
 
 
 − 

 3084 68 1546 

Himmelblau’s 
Function 
(Steepest 
Descent) 

1
1
 
 
 

 
3
2
 
 
 

 
2.999
2.000
 
 
 

 2305 91 1156 

1
1
− 
 
 

 
2.805

3.131
− 
 
 

 
2.805

3.131
− 
 
 

 2.882 73 1442 

1
1

 
 − 

 
3.584
1.848

 
 − 

 
3.584
1.848

 
 − 

 3165 90 1588 

1
1
− 
 − 

 
3.779
3.283

− 
 − 

 
3.780
3.283

− 
 − 

 3793 87 1899 

Trid  
Function 
(Steepest 
Descent) 

1
1
1
1
1
1

 
 
 
  
 
 
 
 
  

 

6
10
12
12
10
6

 
 
 
  
 
 
 
 
  

 

5.999
9.999

11.999
11.999
9.999
5.999

 
 
 
  
 
 
 
 
  

 21,303 85 10,623 

 
as: 

( )( )11 d
m P

mP
T T t t

P
+

= ∫  

where T is the time-varying thrust function, and P is the period for the periodic 
thrust function (the motion being executed by the wing repeats itself after time 
P). The initial values when the motion is initiated are ignored and when the flow 
properties reach a stationary state, attaining a periodic nature, a time-averaged 
value is generated for the period P. The constraints added include a minimum 
amount of lift to be generated to counter the weight for level flight and the thrust 
being sufficient to overcome the drag acting on the vehicle. 

Computation of the time-averaged thrust coefficient would require the use of 
a method that would provide for replacing the integral with a summation since the 
thrust coefficient is available only at discrete time intervals (0.01 non-dimensional 
time units for the current study). Thus, employing a quadrature rule, which al-
lows approximating definite integrals by stating them as a weighted sum of func-
tion values at specified points within the domain of integration, becomes critical. 
An n-point Gaussian quadrature rule is a quadrature rule constructed to yield an 
exact result for polynomials of degree 2n − 1 or less by such choice of sampling 
points. The time-varying thrust coefficient was assumed to be represented by a 
polynomial of degree 19 and therefore, by employing a 10-point Gaussian qua-
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drature rule, an integral of acceptable accuracy was obtained for optimization. 

3.2. Path Representation Using NURBS 

The optimization of the plunge for time can result in non-sinusoidal motion and 
thus, there is a requirement to able to accurately and lucidly represent different 
motion paths using a fixed set of parameters. Thus, Non-uniform Rational Bezi-
er Splines (NURBS) are used to represent the different paths. In NURBS, a nth 
degree Bezier curve is used to represent the required curve. The nth-degree 
Bezier curve is defined as: 

( )
( )
( )

,0

,0

n
i n i ii

n
i n ii

B u w P
C u

B u w
=

=

  =
  

∑
∑

 

0 1u< <  

where ( ),i nB u  is the nth degree Bernstein’s polynomial which is the basis of the 
blending functions, Pi are the control points, wi are the scalar weights. To ensure 
smooth curves, we choose the wi’s as 1, 0.6, 0.8, 0.8, 0.6 and 1. The nth degree 
Bernstein’s polynomial is defined as: 

( ) ( )
( ),

! 1
! !

n ii

i n
n u u

B u
i n i

−−
=

−
 

0 1u< <  

NURBS are piecewise rational polynomial representations of a curve. Bernstein’s 
polynomials or the blending functions used in NURBS are used to blend differ-
ent parts of the curve to give a smooth and continuous curve. Each control point 
influences the final curve according to the assigned blending function. A blend-
ing function defines the weight of the control point at each point of the curve. 

Figure 3 shows a NURBS curve with control points. By joining the control 
points we obtain a control polygon. The shape of the control polygon controls 
the shape of the NURBS curve. As seen in the figure the NURBS curve has a 
starting slope equal to the slope of the control polygon line, joining the first two 
control points. Then the shape of the NURBS curve evolves according to the 
control polygon lines, ensuring a smooth and continuous curve. Again the slope 
of the NURBS curve at the end of the curve is equal to that of the control poly-
gon line. By choosing different sets of Pi’s, we get different motion curves. 

These control points are the optimization parameters as the right combination 
of these control points determines the motion path or curve with the best effi-
ciency under the given constraints. The control points determine the plunge 
path of the airfoil. Hence, certain constraints are imposed on the control points 
so that the motion paths obtained are practically achievable. Constraints are 
continuity, amplitude, and time period.  

These control points are the optimization variables. Each motion curve is de-
fined by six control points. Since the first and the last control points are fixed, 
only the remaining four control points are the optimization variables. The x and 
y coordinates of these four control points make the number of optimization 
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Figure 3. NURBS control polygon. 
 
variables equal to eight. Also, the continuity constraint fixes the y coordinate of 
the fifth control point. Hence the total number of optimization variables is re-
duced to seven. These seven optimization variables can take any value in the 
search space subject to the above constraints. 

4. Overall Validation & Results 

Steepest descent optimization was taken up for implementation within the cur-
rent framework involving parallel process management and NURBS. In this sec-
tion, an attempt is made to outline the flow of information and the sequence of 
steps while running the optimization algorithm. 

4.1. Optimization Procedure Applied 

The objective function evaluation is performed on “n” slave processors (where n 
has been limited to seven by a choice of seven decision variables). Hence, each 
slave processor performs an unsteady flow computation for a plunge motion 
path during every optimization cycle. The other optimization steps are carried 
out by the master processor.  

1) Initialization: The initial plunge motion path is randomly initialized by 
starting with a control point coordinate which then generates the path based on 
the method of NURBS. The constraints are enumerated before enforced while 
evaluating these points. The time-averaged thrust value is calculated at the base 
value using the unsteady flow solver. 

2) Perturbation: The cost function is discrete in this case, so the gradients are 
obtained by perturbing the control variables and re-evaluating the cost function.  
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3) Objective Function Evaluation: The perturbed control points indicate mar-
ginally different motion paths and the CFD simulation for these motions gives 
the thrust coefficients for the perturbed motion trajectory. 

4) Gradient Computation: The gradients needed for optimization are calcu-
lated using numerical differentiation by using the thrust coefficients obtained in 
b. and c. In practice, a perturbation of h = 10−3 suffices to obtain accurate gra-
dients. 

5) Update: A new set of control points is calculated, with the help of the op-
timum step length obtained by the Adaptive Scheme. 

Convergence: If the convergence criterion is not satisfied they are sent as the 
initial values for the next optimization iteration. The process is continued till the 
optimum curve is evolved. 

4.2. Optimization with NURBS Excluded 

The first batch of runs was aimed at validating the successful implementation of 
the steepest descent optimization algorithm in the current parallel framework 
designed using shell scripting and relying on numerical differentiation for the 
computation of gradients. This phase excluded the use of the NURBS routine for 
generating curves that acted as an intermediary between the actual decision va-
riables and the output function. 

The mathematical program replacing the CFD solver generated output based 
on the Trid function. This simplified routine was plugged in instead of the actual 
CFD solver and multiple runs were completed based on random initial values. 
The program converged satisfactorily to the optimal function value in each case. 
Figure 4 presents the evolution of the function value with increasing optimiza-
tion iterations for initial values of (1, 2, 3, 4, 5, and 7) and its subsequent con-
vergence to the optimal value of 0 after 69 optimization cycles. Thus, the opti-
mization framework developed stands validated with its efficacy displayed in op-
timizing the Trid Function. 

4.3. Optimization with Full Functionality NURBS Included 

The next step towards full validation of the motion optimization framework 
running in conjecture with the steepest descent optimization algorithm was to 
incorporate the usage of curves generated using NURBS. The mathematical rou-
tine mimicking the CFD program was modified accordingly to receive input in 
the form of a curve (limited to a set of discrete points describing the curve) gen-
erated from the set of control points (designated as the decision variables). The 
fake program generated an output that was equal to the total absolute area under 
the curve. The area under the curve was approximated using the trapezoidal rule 
(1-point Gauss Quadrature rule). 

The framework was initialized using the set of control points: (0, 0), (1.256, 
1.1), (2.512, 1.1), (3.768, −1.1), (5.024, −1.1) and (6.28, 0), that produced an ap-
proximately sinusoidal curve. Figure 5 presents the value of the output function 
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Figure 4. Steepest descent on trid function. 
 
and its subsequent convergence to zero within the given error threshold after 61 
cycles. Figure 6 presents the evolution of the curve with increasing optimization 
iterations. The entire exercise, therefore, successfully demonstrates the usage of 
curves generated using NURBS as a means of providing input to the output 
function with only the control points used by NURBS being the decision va-
riables.  

4.4. Case Study: Sinusoidal & Non-Sinusoidal Motion 

To illustrate the need and possible mechanism of thrust production in pure 
plunge, we consider the simulations of the NACA 0014 airfoil at Re = 10,000 and 
M = 0.1 for two different motion trajectories. The first is a sinusoidal motion 
with a plunge amplitude of 0.3 and the second is a non-sinusoidal motion as 
shown in Figure 7. 

The thrust history (represented by the instantaneous values of the reversed 
drag coefficient) for two plunge cycles are shown for either case in Figure 8. The 
non-sinusoidal motion is more thrust-producing than the sinusoidal motion, 
which is reflected in the fact that the thrust coefficient in the former case is four 
times that of the latter.  

The vorticity contours for either case at the mean and maximum amplitude po-
sitions (beginning of downstroke and upstroke) are shown in Figures 9-14 for 
both cases. Although not very evident from these plots, an analysis of the vorticity 

https://doi.org/10.4236/ojfd.2024.142004


J. Kundem 
 

 

DOI: 10.4236/ojfd.2024.142004 94 Open Journal of Fluid Dynamics 
 

 
Figure 5. Steepest descent with NURBS for area optimization. 
 

 
Figure 6. Evolution of input curves with optimization cycles. 
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Figure 7. Non-sinusoidal motion curve. 
 

 
Figure 8. Time-varying drag for sinusoidal & non-sinusoidal. 
 
patterns in a complete cycle indicates that while they are similar for both motion 
trajectories, the vortex strength in the non-sinusoidal case is greater than that in 
the symmetric sinusoidal case. This reaffirms the fact that the momentum excess 
in the wake when plunging in a non-sinusoidal trajectory is larger compared to 
the sinusoidal trajectory, which appears as a larger time-averaged thrust. 
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Figure 9. Mean vorticitycontours—sinusoidal motion. 
 

 
Figure 10. Mean vorticitycontours—non sinusoidal motion. 
 

 
Figure 11. Vorticitycontours—sinusoidal motion—downstroke. 
 

 
Figure 12. Vorticitycontours—non-sinusoidal motion—downstroke. 
 

Based on an Initial input curve that was sinusoidal and generated by the con-
trol points (0, 0), (1.256, 1.3), (2.512, 1.3), (3.768, −1.3), (5.024, −1.3) and (6.28, 
−1.3). The motion was expected to turn increasingly non-sinusoidal with every 
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Figure 13. Vorticitycontours—sinusoidal motion—upstroke. 
 

 
Figure 14. Vorticitycontours—nonsinusoidal motion—upstroke. 
 
subsequent optimization cycle and register a definite increase in thrust genera-
tion. But despite all attempts at ensuring the correct operation of each tool and 
the overall integrated framework by repeated validation at every step of the 
process, the steepest descent failed to work satisfactorily in tandem with the CFD 
solver within the given programming architecture. Figure 15 which presents the 
time-averaged drag coefficient (negative of the thrust coefficient, as a negative 
value of drag indicates net thrust being generated) to the total optimization 
cycles ran displays no clear trend and therefore, it is possible to conclude that 
this technique fails to function correctly when applied in the manner envisaged 
during the study. Additionally, it was observed that the evolution of the motion 
curves with increasing optimization cycles also showed no tendency to converge 
onto a certain kind of motion and continued to oscillate around the initial curve 
that was inputted. 

Multiple attempts were made to enable the correct functioning of the steepest 
descent algorithm for obtaining optimized results but were largely unsuccessful. 
A change in the choice of initial value for the motion curves also was unable to 
resolve the issue. In light of the validation attempts (that were very successful) 
described before, it was concluded that the improper functioning of the algo-
rithm was due to incorrect computation of the gradient vector at each optimiza-
tion step. The gradient vector computation is based on an accurate time-varying 
value of the thrust coefficient obtained from the CFD solver and the subsequent 
time-averaging. Thus, it has been strongly speculated that the order of accuracy 
obtained from these two operations working in combination is not high enough 
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Figure 15. Change in drag with optimization cycles. 

 
to allow for accurate gradient vector computation paving the way for an overall 
failure of the technique. It is worthwhile to note that a switch to a trapezoidal 
rule (1-point Gauss Quadrature) from a 10-point Gauss Quadrature was also 
implemented to overcome these shortcomings but the results obtained contin-
ued to be inconclusive.  

5. Conclusion  

In this article, we studied the optimization aspects of flapping wing airfoil. Even 
though there are multiple aspects of the flapping wing such as pitch, plunge, and 
rolling—only the plunging aspect in 2D was studied as a simple first step. A few 
types of thrust profiles were considered to mimic the plunge motion, which were 
then optimized via the Gradient descent optimization technique. The optimiza-
tion worked in parallel with an in-house FVM solver that enables dynamic mesh-
ing. It has been concluded that the algorithm being a derivative-based technique, 
was unable to reach an optimized state to calculate the maximum thrust for a 2D 
airfoil, even with various stepping procedures, and starting points. Further ad-
vanced techniques that are derivative-free will be studied as the next step to aid 
in comparison and form a path forward.  
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