
Open Journal of Fluid Dynamics, 2024, 14, 83-99
https://www.scirp.org/journal/ojfd

ISSN Online: 2165-3860
ISSN Print: 2165-3852

DOI: 10.4236/ojfd.2024.142004 May 28, 2024 83 Open Journal of Fluid Dynamics

Thrust Optimization of Flapping Wing via
Gradient Descent Technologies

Jeshwanth Kundem

Department of Mechanical Engineering, IIT Guwahati, Guwahati, India

Abstract
The current work aims at employing a gradient descent algorithm for opti-
mizing the thrust of a flapping wing. An in-house solver has been employed,
along with mesh movement methodologies to capture the dynamics of flow
around the airfoil. An efficient framework for implementing the coupled
solver and optimization in a multicore environment has been implemented
for the generation of optimized solutions—maximizing thrust performance &
computational speed.

Keywords
Steepest Descent, CFD, Flapping Wing Airfoil, Thrust Performance

1. Introduction

The fact that flapping airfoil generates thrust was first recognized by Knoller,
and later independently by Betz. They observed that a flapping wing creates an
effective angle of attack, resulting in a normal force vector with both lift and
thrust components. Due to the flapping wing, a relative motion is created and it
is clear that there is a net force in the horizontal direction. If this thrust force is
greater than the net viscous drag on the body there is a net thrust generated.
This is known as Knoller Betz Effect.

This was later verified by Katzmayr by measuring the average thrust on a sta-
tionary airfoil placed in a sinusoid ally oscillating wind stream [1]. Dickinson et
al. [2] talked about the enhanced aerodynamic performance of insects resulting
from an interaction of three distinct yet interactive mechanisms: delayed stall, ro-
tational circulation and wake capture. Delayed stall functions during the transla-
tion portions of the stroke, when the wings sweep through the air with a large an-
gle of attack. In contrast, rotational circulation and wake capture generate aero-

How to cite this paper: Kundem, J. (2024)
Thrust Optimization of Flapping Wing via
Gradient Descent Technologies. Open Jour-
nal of Fluid Dynamics, 14, 83-99.
https://doi.org/10.4236/ojfd.2024.142004

Received: April 28, 2024
Accepted: May 25, 2024
Published: May 28, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution-NonCommercial
International License (CC BY-NC 4.0).
http://creativecommons.org/licenses/by-nc/4.0/

Open Access

https://www.scirp.org/journal/ojfd
https://doi.org/10.4236/ojfd.2024.142004
https://www.scirp.org/
https://doi.org/10.4236/ojfd.2024.142004
http://creativecommons.org/licenses/by-nc/4.0/

J. Kundem

DOI: 10.4236/ojfd.2024.142004 84 Open Journal of Fluid Dynamics

dynamic forces during the stroke reversals, when the wing rapidly rotates and
changes direction.

They observed that the delayed stall alone is not sufficient to explain the ele-
vated aerodynamic performance. The rotational mechanisms we describe are
necessary components of the basic unsteady aerodynamic toolkit in this species.
They developed a more general theory of insect aerodynamics that incorporates
both translational and rotational mechanisms.

In the present study based on the available literature, with special reference to
[3] [4] [5] about the flapping wings, the following aspects are considered:
• Motion Optimization of an airfoil in plunge is considered. The justification

for such an analysis may be had from the fact that plunging corresponds to
the primary thrust generation mechanism of the flapping wing. It is well
known that mimicking the plunging motion in a flapping device is a lot easi-
er compared to pitching and plunging together. In the design of a flapping
wing which involves very tight weight margins, there are two conflicting re-
quirements about the size/weight of the actuator. On one hand, a more effi-
cient flapping motion which involves both pitching and plunging, can result
in a smaller propulsive system for a specified mission. On the other hand,
such a motion, which is more complex as compared to a simple plunging mo-
tion can result in a more complex actuator, which adds weight to the system.
Therefore in the present work, we have restricted ourselves to the optimiza-
tion of plunging motion alone. The optimization involving pitch and plunge
is a topic of future research.

• As also shown by Kaya et al. [5], the optimal motion for the highest efficiency
for a plunging airfoil is non-sinusoidal. Even though our optimization efforts
are to improve thrust rather than efficiency, we expect that the resulting op-
timal motion path is also to be far from sinusoidal motion.

• The motion of the wing can be mathematically represented as a spline func-
tion using NURBS [6]. The control points for this curve naturally become the
optimization variables which are determined using a steepest ascent ap-
proach.

• The present computations involving unsteady NS computations are very ex-
pensive; generating the aerodynamic data on a given point in the search space
is of the order of 20 - 30 hours on reasonably fine meshes for 2 - 3 cycles of
motion. For very obvious reasons, parallel computing becomes the most nat-
ural choice for such an analysis.

All the unsteady flow computations in this work are done with High-resolution
Flow solver on Unstructured Meshes (HIFUN) code. The code is a cell-centered
finite volume compressible flow solver. The second-order accurate three-point
backward difference scheme is employed for time discretization, whereas the
spatial gradients are computed using diamond path reconstruction. The system
of equations is solved using a dual-time stepping strategy [7], which allows for
efficient and easy implementation of convergence acceleration techniques, without

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 85 Open Journal of Fluid Dynamics

loss in temporal accuracy.

2. Gradient Descent Optimization Framework

Optimization is the process of obtaining the best results under given circums-
tances. The existence of optimization methods can be traced to the days of New-
ton, Lagrange, and Cauchy. Cauchy first applied the Steepest Descent Method to
solve the unconstrained minimization problem 1847. Traditional optimization
techniques are of three categories—Mathematical Programming Techniques,
Stochastic Process Techniques, and Statistical Methods. The Steepest Descent
method is an Unconstrained Optimization Technique which is a sub-category of
Mathematical Programming. Unconstrained Optimization is of two types Direct
Search Methods and Indirect Search (Descent) Methods. In this section, we dis-
cuss its validation & application with flapping wings.

2.1. Mathematical Formulation & Algorithm

The following steps summarize the steepest descent approach where f(X) is the
objective function. The objective function in our case the thrust coefficient − Ct

1) Start with an arbitrary initial point X1. Set the iteration number as i = 1.
2) Find the search direction iS as

()i i iS f f X= ∇ =∇ .

3) Determine the optimal step length *
iλ in the direction iS and set

* *
1i i i i i i iX X S X fλ λ+ = − = − ∇ .

4) Test the new point, 1iX + for optimality. If 1iX + is optimum, stop the
process. Otherwise, go to step 5.

5) Set the new iteration number i = i + 1 and go to step 2.
The method of Steepest Descent may appear to be the best-unconstrained op-

timization technique since each one-dimensional search starts in the optimal di-
rection. It should be noted that evaluating the gradient components requires an
unsteady flow solution over a few periods of the flapping motion until the peri-
odic flow behavior is reached.

The step size and initial point are very crucial while using the Steepest Descent
Algorithm. For a function having multiple optimum values, different initial val-
ues converge to different optimal solutions. This is discussed with an example
below. Step size in the algorithm may be determined by one of the following
methods.

1) Constant Step Size:
A constant step size is used irrespective of the objective function. The optimi-

zation is not in the user’s control and this method is used very often for checking
the convergence. This generally takes more computational cost when compared
to other methods.

2) Linear Search Methods:
Famous linear search techniques like Fibonacci Search, Golden Section, and

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 86 Open Journal of Fluid Dynamics

Quadratic Interpolation Methods can be used to find the optimum step size for
every perturbation. These techniques require the calculation of the objective
function value at every experiment. However, the step size changes dynamically
which decreases the computational cost when compared to the constant step
size.

3) Adaptive Step:
In this method, the previous step size is incremented or decremented de-

pending on certain conditions. This is a blend of Newton-Marquardt’s Approach
where the step size is increased when we are going in the correct path and de-
creased otherwise. The decision can be taken based on two successive values of
the Objective Function.

If () ()1i if X f X+ < then SET 1 1i icλ λ+ = where 1 1c >
Else SET 1 2i icλ λ+ = where 20 1c< <
The constants are chosen as 1.2 and 0.7 respectively. This technique is more

optimal when compared to the methods discussed earlier. It is the other way
round for a Steepest Descent Approach.

4) Momentum Term Approach:
This technique is proposed by Rumelhart which uses the previous update to

compute the current one by introducing a momentum term] [0,1η∈ . The new
point is then

[] *
1 1i i i i iX X X X Sη λ+ −= + − +

This is a non-traditional approach without theoretical support which gives
good results. It can be traced as an average gradient descent that is sometimes
used to improve gradient descent.

In the present problem, we are encountered with a situation where a conti-
nuous presentation of the Objective Function and we calculate its value at a par-
ticular point numerically using the flow solver. The solver takes a lot of time to
calculate the function value; therefore, the linear search methods are not em-
ployed in step-size computation.

2.2. Convergence Criteria & Validation

There are three convergence criteria for the Steepest Ascent Algorithm for ter-
minating the iterative process.

1) The first criterion is based on changes in functional values

() ()
()

1
1

i i

i

f X f X
f X

ε+ −
≤

2) The second criterion is based on the change in functional derivative

2
i

f
x

ε∂
≤

∂

3) The third criterion is based on the change in the design vector

1 3i iX X ε+ − ≤

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 87 Open Journal of Fluid Dynamics

Out of the three, the first one is the most frequently used convergence criteria.
In some cases, the process can be terminated after the desired number of itera-
tions.

Both Steepest Ascent and Steepest Descent Algorithms are validated using
well-known functions as objective functions, out of which three of them are dis-
cussed here. The optimization is done on the Windows Platform in Dev-C++
software which uses a “gcc” compiler and the computational cost in terms of no.
of iterations is calculated by three methods outlined earlier

1) Basic Function

() () ()1 1 2 3sin 2cos siny x x x= + −

2) Himmelblau’s Function

() ()2 22 2
2 1 2 1 211 7y x x x x= + − + + −

3) Trid Function

()2
3 1

1 2
1

n n

i i i
i i

y x x x −
= =

= − −∑ ∑

Without loss of generality number of variables is chosen to be 6n = .
The convergence criteria and the initial step length are taken to be 0.000001

and 0.001 respectively. The number of iterations taken for a particular function
to optimize is calculated and is found that the Adaptive Step is the best regarding
computational cost. The dependence of the algorithm on the starting point can
be spotted below.

The adaptive step size approach shows the near problem-independent con-
vergence for all test functions and is chosen due to its simplicity and lower cost
in the present work to decide on the dynamic step size.

The plots of Himmelblau’s function and Trid function (for two variables) are
plotted in MATLAB to visualize the occurrence of the optimum solution (Figure
1 & Figure 2). As discussed in Table 1 the validation of Himmelblau’s function
which has multiple optima depending on the initial guess and the Trid Function
which has one global minimum for two variables can be made.

3. Optimization Framework

In this section, the numerical tools and techniques used in trajectory definition
and cost function evaluation as well as the development of the integrated solv-
er-optimization framework were discussed. It begins with a clear description of
the airfoil regime followed by a clear description of the cost function being op-
timized during the study. Additionally, the use of NURBS is taken up in greater
detail along with a description of the parallel architecture that has been imple-
mented in the framework. Both of these would form crucial components of the
entire study at a later stage when the flow solver and optimization routine would
run in tandem to generate results.

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 88 Open Journal of Fluid Dynamics

Figure 1. Himmelblau’s function.

Figure 2. Trid function.

3.1. Objective Function

The present work aims at maximizing the time-averaged thrust being generated
for the given flow conditions and characteristics. This average quantity is defined

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 89 Open Journal of Fluid Dynamics

Table 1. Various function characteristics with steepest descent algorithm.

Function
Initial
Point

Optimal Solution Number of Iterations

Expected Calculated Case 1 Case 3 Case 4

Basic
Function
(Steepest
Ascent)

1
1
1

 
 
 
 
 

1.570

0
1.570

 
 
 
 − 

1.570

0
1.571

 
 
 
 − 

 3084 68 1546

Himmelblau’s
Function
(Steepest
Descent)

1
1
 
 
 

3
2
 
 
 

2.999
2.000
 
 
 

 2305 91 1156

1
1
− 
 
 

2.805

3.131
− 
 
 

2.805

3.131
− 
 
 

 2.882 73 1442

1
1

 
 − 

3.584
1.848

 
 − 

3.584
1.848

 
 − 

 3165 90 1588

1
1
− 
 − 

3.779
3.283

− 
 − 

3.780
3.283

− 
 − 

 3793 87 1899

Trid
Function
(Steepest
Descent)

1
1
1
1
1
1

 
 
 
  
 
 
 
 
  

6
10
12
12
10
6

 
 
 
  
 
 
 
 
  

5.999
9.999

11.999
11.999
9.999
5.999

 
 
 
  
 
 
 
 
  

 21,303 85 10,623

as:

()()11 d
m P

mP
T T t t

P
+

= ∫

where T is the time-varying thrust function, and P is the period for the periodic
thrust function (the motion being executed by the wing repeats itself after time
P). The initial values when the motion is initiated are ignored and when the flow
properties reach a stationary state, attaining a periodic nature, a time-averaged
value is generated for the period P. The constraints added include a minimum
amount of lift to be generated to counter the weight for level flight and the thrust
being sufficient to overcome the drag acting on the vehicle.

Computation of the time-averaged thrust coefficient would require the use of
a method that would provide for replacing the integral with a summation since the
thrust coefficient is available only at discrete time intervals (0.01 non-dimensional
time units for the current study). Thus, employing a quadrature rule, which al-
lows approximating definite integrals by stating them as a weighted sum of func-
tion values at specified points within the domain of integration, becomes critical.
An n-point Gaussian quadrature rule is a quadrature rule constructed to yield an
exact result for polynomials of degree 2n − 1 or less by such choice of sampling
points. The time-varying thrust coefficient was assumed to be represented by a
polynomial of degree 19 and therefore, by employing a 10-point Gaussian qua-

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 90 Open Journal of Fluid Dynamics

drature rule, an integral of acceptable accuracy was obtained for optimization.

3.2. Path Representation Using NURBS

The optimization of the plunge for time can result in non-sinusoidal motion and
thus, there is a requirement to able to accurately and lucidly represent different
motion paths using a fixed set of parameters. Thus, Non-uniform Rational Bezi-
er Splines (NURBS) are used to represent the different paths. In NURBS, a nth
degree Bezier curve is used to represent the required curve. The nth-degree
Bezier curve is defined as:

()
()
()

,0

,0

n
i n i ii

n
i n ii

B u w P
C u

B u w
=

=

  =
  

∑
∑

0 1u< <

where (),i nB u is the nth degree Bernstein’s polynomial which is the basis of the
blending functions, Pi are the control points, wi are the scalar weights. To ensure
smooth curves, we choose the wi’s as 1, 0.6, 0.8, 0.8, 0.6 and 1. The nth degree
Bernstein’s polynomial is defined as:

() ()
(),

! 1
! !

n ii

i n
n u u

B u
i n i

−−
=

−

0 1u< <

NURBS are piecewise rational polynomial representations of a curve. Bernstein’s
polynomials or the blending functions used in NURBS are used to blend differ-
ent parts of the curve to give a smooth and continuous curve. Each control point
influences the final curve according to the assigned blending function. A blend-
ing function defines the weight of the control point at each point of the curve.

Figure 3 shows a NURBS curve with control points. By joining the control
points we obtain a control polygon. The shape of the control polygon controls
the shape of the NURBS curve. As seen in the figure the NURBS curve has a
starting slope equal to the slope of the control polygon line, joining the first two
control points. Then the shape of the NURBS curve evolves according to the
control polygon lines, ensuring a smooth and continuous curve. Again the slope
of the NURBS curve at the end of the curve is equal to that of the control poly-
gon line. By choosing different sets of Pi’s, we get different motion curves.

These control points are the optimization parameters as the right combination
of these control points determines the motion path or curve with the best effi-
ciency under the given constraints. The control points determine the plunge
path of the airfoil. Hence, certain constraints are imposed on the control points
so that the motion paths obtained are practically achievable. Constraints are
continuity, amplitude, and time period.

These control points are the optimization variables. Each motion curve is de-
fined by six control points. Since the first and the last control points are fixed,
only the remaining four control points are the optimization variables. The x and
y coordinates of these four control points make the number of optimization

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 91 Open Journal of Fluid Dynamics

Figure 3. NURBS control polygon.

variables equal to eight. Also, the continuity constraint fixes the y coordinate of
the fifth control point. Hence the total number of optimization variables is re-
duced to seven. These seven optimization variables can take any value in the
search space subject to the above constraints.

4. Overall Validation & Results

Steepest descent optimization was taken up for implementation within the cur-
rent framework involving parallel process management and NURBS. In this sec-
tion, an attempt is made to outline the flow of information and the sequence of
steps while running the optimization algorithm.

4.1. Optimization Procedure Applied

The objective function evaluation is performed on “n” slave processors (where n
has been limited to seven by a choice of seven decision variables). Hence, each
slave processor performs an unsteady flow computation for a plunge motion
path during every optimization cycle. The other optimization steps are carried
out by the master processor.

1) Initialization: The initial plunge motion path is randomly initialized by
starting with a control point coordinate which then generates the path based on
the method of NURBS. The constraints are enumerated before enforced while
evaluating these points. The time-averaged thrust value is calculated at the base
value using the unsteady flow solver.

2) Perturbation: The cost function is discrete in this case, so the gradients are
obtained by perturbing the control variables and re-evaluating the cost function.

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 92 Open Journal of Fluid Dynamics

3) Objective Function Evaluation: The perturbed control points indicate mar-
ginally different motion paths and the CFD simulation for these motions gives
the thrust coefficients for the perturbed motion trajectory.

4) Gradient Computation: The gradients needed for optimization are calcu-
lated using numerical differentiation by using the thrust coefficients obtained in
b. and c. In practice, a perturbation of h = 10−3 suffices to obtain accurate gra-
dients.

5) Update: A new set of control points is calculated, with the help of the op-
timum step length obtained by the Adaptive Scheme.

Convergence: If the convergence criterion is not satisfied they are sent as the
initial values for the next optimization iteration. The process is continued till the
optimum curve is evolved.

4.2. Optimization with NURBS Excluded

The first batch of runs was aimed at validating the successful implementation of
the steepest descent optimization algorithm in the current parallel framework
designed using shell scripting and relying on numerical differentiation for the
computation of gradients. This phase excluded the use of the NURBS routine for
generating curves that acted as an intermediary between the actual decision va-
riables and the output function.

The mathematical program replacing the CFD solver generated output based
on the Trid function. This simplified routine was plugged in instead of the actual
CFD solver and multiple runs were completed based on random initial values.
The program converged satisfactorily to the optimal function value in each case.
Figure 4 presents the evolution of the function value with increasing optimiza-
tion iterations for initial values of (1, 2, 3, 4, 5, and 7) and its subsequent con-
vergence to the optimal value of 0 after 69 optimization cycles. Thus, the opti-
mization framework developed stands validated with its efficacy displayed in op-
timizing the Trid Function.

4.3. Optimization with Full Functionality NURBS Included

The next step towards full validation of the motion optimization framework
running in conjecture with the steepest descent optimization algorithm was to
incorporate the usage of curves generated using NURBS. The mathematical rou-
tine mimicking the CFD program was modified accordingly to receive input in
the form of a curve (limited to a set of discrete points describing the curve) gen-
erated from the set of control points (designated as the decision variables). The
fake program generated an output that was equal to the total absolute area under
the curve. The area under the curve was approximated using the trapezoidal rule
(1-point Gauss Quadrature rule).

The framework was initialized using the set of control points: (0, 0), (1.256,
1.1), (2.512, 1.1), (3.768, −1.1), (5.024, −1.1) and (6.28, 0), that produced an ap-
proximately sinusoidal curve. Figure 5 presents the value of the output function

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 93 Open Journal of Fluid Dynamics

Figure 4. Steepest descent on trid function.

and its subsequent convergence to zero within the given error threshold after 61
cycles. Figure 6 presents the evolution of the curve with increasing optimization
iterations. The entire exercise, therefore, successfully demonstrates the usage of
curves generated using NURBS as a means of providing input to the output
function with only the control points used by NURBS being the decision va-
riables.

4.4. Case Study: Sinusoidal & Non-Sinusoidal Motion

To illustrate the need and possible mechanism of thrust production in pure
plunge, we consider the simulations of the NACA 0014 airfoil at Re = 10,000 and
M = 0.1 for two different motion trajectories. The first is a sinusoidal motion
with a plunge amplitude of 0.3 and the second is a non-sinusoidal motion as
shown in Figure 7.

The thrust history (represented by the instantaneous values of the reversed
drag coefficient) for two plunge cycles are shown for either case in Figure 8. The
non-sinusoidal motion is more thrust-producing than the sinusoidal motion,
which is reflected in the fact that the thrust coefficient in the former case is four
times that of the latter.

The vorticity contours for either case at the mean and maximum amplitude po-
sitions (beginning of downstroke and upstroke) are shown in Figures 9-14 for
both cases. Although not very evident from these plots, an analysis of the vorticity

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 94 Open Journal of Fluid Dynamics

Figure 5. Steepest descent with NURBS for area optimization.

Figure 6. Evolution of input curves with optimization cycles.

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 95 Open Journal of Fluid Dynamics

Figure 7. Non-sinusoidal motion curve.

Figure 8. Time-varying drag for sinusoidal & non-sinusoidal.

patterns in a complete cycle indicates that while they are similar for both motion
trajectories, the vortex strength in the non-sinusoidal case is greater than that in
the symmetric sinusoidal case. This reaffirms the fact that the momentum excess
in the wake when plunging in a non-sinusoidal trajectory is larger compared to
the sinusoidal trajectory, which appears as a larger time-averaged thrust.

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 96 Open Journal of Fluid Dynamics

Figure 9. Mean vorticitycontours—sinusoidal motion.

Figure 10. Mean vorticitycontours—non sinusoidal motion.

Figure 11. Vorticitycontours—sinusoidal motion—downstroke.

Figure 12. Vorticitycontours—non-sinusoidal motion—downstroke.

Based on an Initial input curve that was sinusoidal and generated by the con-
trol points (0, 0), (1.256, 1.3), (2.512, 1.3), (3.768, −1.3), (5.024, −1.3) and (6.28,
−1.3). The motion was expected to turn increasingly non-sinusoidal with every

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 97 Open Journal of Fluid Dynamics

Figure 13. Vorticitycontours—sinusoidal motion—upstroke.

Figure 14. Vorticitycontours—nonsinusoidal motion—upstroke.

subsequent optimization cycle and register a definite increase in thrust genera-
tion. But despite all attempts at ensuring the correct operation of each tool and
the overall integrated framework by repeated validation at every step of the
process, the steepest descent failed to work satisfactorily in tandem with the CFD
solver within the given programming architecture. Figure 15 which presents the
time-averaged drag coefficient (negative of the thrust coefficient, as a negative
value of drag indicates net thrust being generated) to the total optimization
cycles ran displays no clear trend and therefore, it is possible to conclude that
this technique fails to function correctly when applied in the manner envisaged
during the study. Additionally, it was observed that the evolution of the motion
curves with increasing optimization cycles also showed no tendency to converge
onto a certain kind of motion and continued to oscillate around the initial curve
that was inputted.

Multiple attempts were made to enable the correct functioning of the steepest
descent algorithm for obtaining optimized results but were largely unsuccessful.
A change in the choice of initial value for the motion curves also was unable to
resolve the issue. In light of the validation attempts (that were very successful)
described before, it was concluded that the improper functioning of the algo-
rithm was due to incorrect computation of the gradient vector at each optimiza-
tion step. The gradient vector computation is based on an accurate time-varying
value of the thrust coefficient obtained from the CFD solver and the subsequent
time-averaging. Thus, it has been strongly speculated that the order of accuracy
obtained from these two operations working in combination is not high enough

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 98 Open Journal of Fluid Dynamics

Figure 15. Change in drag with optimization cycles.

to allow for accurate gradient vector computation paving the way for an overall
failure of the technique. It is worthwhile to note that a switch to a trapezoidal
rule (1-point Gauss Quadrature) from a 10-point Gauss Quadrature was also
implemented to overcome these shortcomings but the results obtained contin-
ued to be inconclusive.

5. Conclusion

In this article, we studied the optimization aspects of flapping wing airfoil. Even
though there are multiple aspects of the flapping wing such as pitch, plunge, and
rolling—only the plunging aspect in 2D was studied as a simple first step. A few
types of thrust profiles were considered to mimic the plunge motion, which were
then optimized via the Gradient descent optimization technique. The optimiza-
tion worked in parallel with an in-house FVM solver that enables dynamic mesh-
ing. It has been concluded that the algorithm being a derivative-based technique,
was unable to reach an optimized state to calculate the maximum thrust for a 2D
airfoil, even with various stepping procedures, and starting points. Further ad-
vanced techniques that are derivative-free will be studied as the next step to aid
in comparison and form a path forward.

Statement

“Department of Mechanical Engineering, IIT Guwahati, Guwahati, India” is the
affiliation when work was conducted. I hereby state that the mentioned affilia-
tion is no longer my current affiliation.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/ojfd.2024.142004

J. Kundem

DOI: 10.4236/ojfd.2024.142004 99 Open Journal of Fluid Dynamics

References
[1] Katzmayr, R. (1992) Effect of Periodic Changes of Angle of Attack on Behavior of

Airfoils. https://api.semanticscholar.org/CorpusID:107198920

[2] Dickinson, M.H., Lehmann, F.-O. and Sane, S.P. (1999) Wing Rotation and Aero-
dynamic Basis of Insect Flight. Science, 284, 1954-1960.
https://doi.org/10.1126/science.284.5422.1954

[3] Tuncer, I.H. and Kaya, M. (2005) Parallel Optimization of Flapping Airfoils in a
Biplane Configuration for Maximum Thrust. In: Winter, G., Ecer, A., et al., Eds.,
Parallel Computational Fluid Dynamics 2004, Elsevier Science, 137-144.
https://www.sciencedirect.com/science/article/abs/pii/B978044452024150018X
https://doi.org/10.1016/B978-044452024-1/50018-X

[4] Tuncer, I.H. and Kaya, M. (2003) Thrust Generation Caused by Flapping Airfoils in
a Biplane Configuration. Journal of Aircraft, 40, 509. https://doi.org/10.2514/2.3124

[5] Tuncer, I.H. and Kaya, M. (2005) Optimization of Flapping Airfoils for Maximum
Thrust and Propulsive Efficiency. AIAA Journal, 43, 2329-2336.
https://doi.org/10.2514/1.816

[6] Piegel, L. and Tiller, W. (1997) The NURBS Book. Springer, Berlin.
https://doi.org/10.1007/978-3-642-59223-2

[7] Jameson, A. (1991) Time Dependent Calculations Using Multigrid, with Applica-
tions to Unsteady Flows Past Airfoils and Wings. Honolulu, USA.
https://doi.org/10.2514/6.1991-1596

https://doi.org/10.4236/ojfd.2024.142004
https://api.semanticscholar.org/CorpusID:107198920
https://doi.org/10.1126/science.284.5422.1954
https://www.sciencedirect.com/science/article/abs/pii/B978044452024150018X
https://doi.org/10.1016/B978-044452024-1/50018-X
https://doi.org/10.2514/2.3124
https://doi.org/10.2514/1.816
https://doi.org/10.1007/978-3-642-59223-2
https://doi.org/10.2514/6.1991-1596

	Thrust Optimization of Flapping Wing via Gradient Descent Technologies
	Abstract
	Keywords
	1. Introduction
	2. Gradient Descent Optimization Framework
	2.1. Mathematical Formulation & Algorithm
	2.2. Convergence Criteria & Validation

	3. Optimization Framework
	3.1. Objective Function
	3.2. Path Representation Using NURBS

	4. Overall Validation & Results
	4.1. Optimization Procedure Applied
	4.2. Optimization with NURBS Excluded
	4.3. Optimization with Full Functionality NURBS Included
	4.4. Case Study: Sinusoidal & Non-Sinusoidal Motion

	5. Conclusion
	Statement
	Conflicts of Interest
	References

