
Journal of Software Engineering and Applications, 2024, 17, 259-269
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.175015 May 28, 2024 259 Journal of Software Engineering and Applications

Enhanced Memory-Safe Linux Security Modules
(eLSMs) for Improving Security of Docker
Containers for Data Centers

Juan Martinez Delbugio, Vijay K. Madisetti

School of Cybersecurity & Privacy (SCP), Georgia Institute of Technology, Atlanta, GA, USA

Abstract
The adoption of Docker containers has revolutionized software deployment
by providing a lightweight and efficient way to isolate applications in data
centers. However, securing these containers, especially when handling sensi-
tive data, poses significant challenges. Traditional Linux Security Modules
(LSMs) such as SELinux and AppArmor have limitations in providing fine-
grained access control to files within containers. This paper presents a novel
approach using eBPF (extended Berkeley Packet Filter) to implement a LSM
that focuses on file-oriented access control within Docker containers. The
module allows the specification of policies that determine which programs
can access sensitive files, providing enhanced security without relying solely
on the host operating system’s major LSM.

Keywords
Docker, LSM, MAC, Rust, Memory Safe Languages

1. Introduction

The concept of Linux containerization, also known as OS-level virtualization,
has been around for a long time, as evidenced by technologies such as LXC and
OpenVZ. However, its popularity skyrocketed with the introduction of Docker
[1] in 2013. Docker revolutionized container management by introducing a sim-
ple Dockerfile format for creating Docker images, streamlining the deployment
of isolated containers that run software applications.

Docker’s easy-to-use approach has led to the widespread adoption of contai-
nerization in modern software development. Many applications are now dep-
loyed in Docker containers, offering flexibility and scalability. However, with

How to cite this paper: Delbugio, J.M. and
Madisetti, V.K. (2024) Enhanced Memory-
Safe Linux Security Modules (eLSMs) for
Improving Security of Docker Containers
for Data Centers. Journal of Software En-
gineering and Applications, 17, 259-269.
https://doi.org/10.4236/jsea.2024.175015

Received: April 23, 2024
Accepted: May 25, 2024
Published: May 28, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.175015
https://www.scirp.org/
https://doi.org/10.4236/jsea.2024.175015
http://creativecommons.org/licenses/by/4.0/

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 260 Journal of Software Engineering and Applications

this convenience come several security challenges. Dockerized container appli-
cations may be exposed to malicious attackers both in local networks and the
cloud, data center, or the Internet.

These applications often contain multiple programs and sensitive files that in-
teract in complex ways, requiring robust security measures. While efforts have
been made to strengthen container security through Mandatory Access Control
(MAC) mechanisms such as SELinux and AppArmor, these approaches have li-
mitations. They are often tied to the major Linux Security Module (LSM) of the
host operating system and focus primarily on application-based access control
rather than protecting critical information assets.

Addressing these limitations and enhancing container security requires inno-
vative approaches that prioritize information assets alongside program-level se-
curity measures.

2. Background

In this section, we explore the fundamental aspects of Linux kernel security
frameworks and their application to securing Docker containers. We also ex-
plore the dynamics of Linux Security Modules, their implementation, and how
they can be integrated into the Linux kernel.

2.1. Linux Security Modules

The Linux kernel contains several security subsystems designed to protect both
the operating system and the applications running on it. Despite differences in
their security objectives, these systems share a common design principle. They
use “hooks” built into the kernel to intercept critical security operations (e.g., file
access, network-related actions) initiated by processes. These hooks are provided
by the kernel in what is known as the Linux Security Module framework, while
the implemented subsystems are known as Linux Security Modules (LSMs).

Although the goal of stacking LSMs has been around for over two decades, the
Linux kernel supports only one major LSM at a time [2] [3]. This limitation has
somewhat limited the development of new LSMs. Currently, SELinux [4] and
AppArmor [5] stand out as the most prominent LSMs.

Originally developed and released by the NSA, SELinux has been widely
adopted and is pre-installed and enabled by default in distributions such as Red
Hat Enterprise Linux and similar (Rocky Linux, AlmaLinux, CentOS Stream,
Fedora). It has also influenced SEAndroid, which is the default security frame-
work on Android devices. Consistent with the Bell-LaPadula (BLP) security
model, SELinux enforces confidentiality controls through security labels that re-
strict processes from reading data at higher security levels and writing data at
lower levels. However, SELinux can be complicated, making it difficult for no-
vice users to configure.

On the other hand, AppArmor is preferred by distributions such as Ubuntu,
Debian, SUSE Linux Enterprise Server, openSUSE, and their derivatives. Unlike

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 261 Journal of Software Engineering and Applications

SELinux, AppArmor offers a simpler approach by allowing users to define pro-
files and associate them with binaries via their paths. These profiles restrict
access to files, directories, and resources, providing a level of security. However,
AppArmor’s focus on binaries may not fit well with file-oriented security ap-
proaches that focus on how files can be accessed rather than what applications
can do.

2.2. LSMs for Containers

Containers, a form of lightweight virtualization, have been widely adopted for
their efficiency and resource utilization benefits. They provide a virtual host en-
vironment for applications without the overhead of separate kernels, making
them ideal for scenarios that require dense deployment and fast spin-up speeds.

Docker, a leading container platform, leverages Linux kernel features such as
kernel namespaces for user isolation and cgroups for resource management.
However, Docker containers share the same kernel, which limits their access to
kernel-level security features available to traditional virtual machines or hosts. In
particular, this means that all containers are bound to the major LSM installed in
the shared kernel, although efforts have been made to support different LSMs
per container [6].

2.3. LSMs in Rust, a Memory-Safe HLL

While originally implemented in assembler, most of today’s Linux kernel code is
written in C/C++. The choice of C/C++ over other high-level languages (HLLs)
is based on performance, direct manipulation of virtual memory, and the ab-
sence of a garbage collector (GC). However, there are some drawbacks: HLLs are
easier to program, offer many more software abstractions (resulting in simpler
code), and, most importantly for security, prevent many classes of memory bugs.

In 2023, according to the CVE database, 190 out of 191 Linux kernel vulnera-
bilities were related to memory corruption bugs or memory overflows [7]. Not
only is the number of vulnerabilities important, but so is the impact. Because
operating system code typically runs with the highest privileges, these types of
vulnerabilities tend to be critical.

Much research has been done on the use of HLLs for operating system de-
velopment [8] [9] [10]. In recent years, however, the discussion has become
more relevant due to the emergence of Rust [11]. Rust, a multi-paradigm pro-
gramming language, is notable for its memory management. Using the RAII
(Resource Acquisition is Initialization) paradigm, dynamic memory is implicit-
ly freed when the owner variable goes out of scope, preventing many memo-
ry-related bugs such as double free, use-after-free, null pointer dereferences, and
so on.

While most LSMs continue to be implemented in C/C++, the emergence of
Rust provides a compelling avenue for developing new LSMs with improved
memory safety and robustness.

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 262 Journal of Software Engineering and Applications

2.4. LSMs in eBPF

eBPF (extended Berkeley Packet Filter) is a versatile framework in Linux for
creating efficient and secure user-defined programs that run inside the kernel.
Applications include network filtering, tracing, and system monitoring.

eBPF programs are dynamically loaded into the kernel and operate in a re-
stricted sandbox environment. However, through this sandbox, eBPF programs
can attach to LSM hooks and enhance security and access controls, allowing for
custom security policies and monitoring mechanisms.

Despite their limitations compared to major LSMs, eBPF-based LSMs offer
unique advantages. They can be dynamically loaded without kernel modifica-
tions, and they can complement existing major LSMs by providing additional
security measures. For example, SUSE has announced Lockc, an experimental
LSM that applies additional measures to limit the capabilities of Docker con-
tainers [12].

3. Problem

The widespread deployment of applications in Docker containers in local and
cloud-based data centers presents significant security challenges. Accessible
from local networks to the broader Internet, these applications become tempting
targets for malicious entities. Within these containers, numerous programs in-
teract, often handling highly sensitive files that are critical to the application’s
functionality.

Managing access control in this context is a fundamental security concern.
Traditional access control mechanisms, often based on user permissions and
configurations, may not adequately address the specific needs of controlling
program access to files and directories.

In addition, traditional LSMs have two main limitations: they are tied to the
major LSM enforced by the host operating system, and they have difficulty im-
plementing simple rules to protect highly sensitive files.

This project aims to provide a simpler mechanism for protecting highly sensi-
tive files in containers using mandatory access control policies that specify which
programs can access those files, protecting highly sensitive files from being
compromised if some of the various components of the Docker container are.

4. Related Approaches

In this section, we will discuss several alternatives for protecting highly sensitive
files.

4.1. Traditional Mechanisms

While the traditional Linux mechanism based on user permissions serves as a
foundational layer, it often falls short when trying to restrict access based on
specific applications.

One option would be to use a different Linux user for each sensitive file. Each

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 263 Journal of Software Engineering and Applications

user would own its associated file, and no other user would have permission to
access it. Then the programs that are allowed to access that file should be owned
by those users and have the SUID flag enabled.

This approach lacks the scalability and simplicity that are fundamental tenets
of containerized environments. For example, if a program could access more
than one sensitive file, each user should have their own copy of the program, or
users should be in the same group, and the binary should use the GUID flag.

Also, this mechanism can be bypassed by gaining root access to the container.

4.2. Major LSMs

Various LSMs provide ways to enforce policies on Docker containers. In partic-
ular, Docker provides the—security-opt parameter, which allows users to initiate
processes within a container with different SELinux types or AppArmor policies
[13].

Developing a custom SELinux policy or AppArmor profile is complicated.
While tools like udica [14] for SELinux and bane [15] for AppArmor streamline
this process, they focus primarily on container-wide restrictions rather than
fine-grained segmentation between applications. Creating nuanced, file-oriented
policies requires manual effort and a deep understanding of LSM syntax and
transition rules, which is a challenge for many users.

Also, creating policies in LSMs such as SELinux and AppArmor requires high
privileges over the kernel and cannot be done from inside the container unless it
is configured with high privileges (using the—privileged parameter), a practice
that is discouraged due to security concerns and containerization principles. In
any case, since the Linux kernel supports only one major LSM at a time, policies
are constrained by the LSM running in the host operating system.

4.3. Lockc

Lockc [12] is an eBPF-based LSM written in Rust that is used to restrict Docker
containers. While it is compatible with major LSMs, and has the advantages of
being developed in Rust and using eBPF, its purpose is not to protect files in
containers, but to protect the host operating system from containers.

It is based on the idea that “containers do not contain” and can be used to
prevent processes in containers from performing actions such as reading kernel
logs, accessing directories that might leak information about the host (/sys/fs,
/proc/acpi, etc.), creating bind mounts, and more.

5. Proposed Solution

The proposed solution is an LSM designed to enforce file-based access control
policies within Docker containers. This LSM module is able to receive a specified
policy file along with the container ID and then apply the specified policy to that
container.

The policy file consists of one or more Access Control Lists (ACLs), each of

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 264 Journal of Software Engineering and Applications

which specifies a file (by its path) and the programs (by their paths) that are al-
lowed to access the file, along with the permitted access mode.

Here is an example of such a policy (Figure 1).
This example, which is included in the LSM documentation (see Section 10),

protects a specific log file by defining that only a specific script can modify it. At
the same time, the script is marked as read-only. In this way, the user can guar-
antee that the log file will only be modified in the way defined by the script.

It’s important to note that this policy enforcement works on top of Linux’s
discretionary access control system. Therefore, the user running the program
must still have appropriate permissions for the file, regardless of the access rights
of the program.

Files with ACLs defined in the policy are referred to as protected files, while
those without ACLs remain unaffected by the LSM. This approach enhances the
usability of the module while ensuring that strict access controls are maintained.

Design

The LSM implemented in memory-safe Rust is implemented using eBPF, allow-
ing users to dynamically load the module into their operating system and use it
alongside the major LSM installed on their system.

The module architecture consists of two main components: a user-space pro-
gram and an eBPF program, as shown in Figure 2. The user-space program han-
dles user input, including the policy file and container ID, and generates specific
data structures used by the eBPF program for access control.

6. Implementation

Since security is a primary concern, Rust was chosen as the programming lan-
guage for implementation. This decision is in line with the current trend of ex-
ploring memory-safe languages for LSM development, as discussed in Section
2.3. The LSM eBPF program was developed using aya-rs [16].

Figure 1. Example of a policy.

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 265 Journal of Software Engineering and Applications

Figure 2. High-level design.

The user-space program is responsible for receiving a policy file and the con-

tainer ID to which the policy will be applied. It performs tasks such as parsing
the policy, retrieving the list of processes running in the Docker container, and
loading the eBPF program.

The eBPF program and the user-space program maintain several eBPF maps
[17] that allow information to be exchanged between the two components:
• FILE_ID: Maps file paths to numeric IDs. This map is loaded by the us-

er-space program at startup and remains static.
• BINARY_ID: Similar to FILE_ID, but for binary paths.
• ALLOWED_ACCESSES: Maps a pair (file_id, binary_id) to an access mode,

indicating permissions for the associated binary over the given file. This map
is loaded by the user-space program initially and remains unchanged.

• PID_TO_BINARY: For each tracked process, maps the process ID (PID) to
the ID of the running binary (or 0 if the binary is unknown). This map is in-
itialized by the user-space program using the process IDs of the Docker con-
tainer’s cgroup and is updated by the eBPF program.

To maintain the list of tracked processes (those in the PID_TO_BINARY
map), the eBPF program hooks into BTF tracepoints. It removes processes from
the map when they exit, and adds new processes when they fork from a tracked
process.

The eBPF program also attaches to several LSM hooks. In particular, it detects
when tracked processes execute binaries and updates the PID_TO_BINARY
map accordingly. In addition, by attaching to file_open and other path-related
hooks, the eBPF program detects when a tracked process attempts to access a

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 266 Journal of Software Engineering and Applications

protected file and denies the action if the process lacks sufficient permissions.

7. Evaluation

The module has been tested on Ubuntu 22.04 (jammy), but may also work on
other operating systems. Also, the Linux kernel version must be higher than
6.8, as this version adds security_path_*-based LSM hooks to the sleepa-
ble_lsm_hooks list [18] [19].

For more information about the steps required to run the module, see its do-
cumentation (see Section 10). Two examples are documented: the basic example
and the web example.

7.1. Basic Example

The basic example (See Figure 3) creates a Docker container with a confidential
file located in /root/data.txt, and then applies a policy to the container that pro-
tects the file to be readable only by cat and vim, and writable only by vim.

Once the module is running, users can verify that no other programs can be
used to modify or read the confidential information. It is also impossible to de-
lete, copy, move, change file permissions, or perform any other action that could
compromise the confidentiality, integrity, or availability of the file.

7.2. Web Example

The second example (see Figure 4) runs a simple web application. The purpose
of the web application is to maintain a web-accessible log file (see Figure 5)
where users can add logs or comments, but cannot modify previous content.

The web application has a command injection vulnerability that allows mali-
cious users to compromise the server. However, by applying a special policy, it is
possible to protect the append-only property of the log file.

This is done by creating a script (see Figure 6) that encapsulates the semantics
of how the log file can be modified (it gets a log and appends it to the file). Then
the ACL of the log file specifies that only this script can modify the log file, and

Figure 3. Basic example.

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 267 Journal of Software Engineering and Applications

Figure 4. Web example form.

Figure 5. Web example log file.

Figure 6. Script that modifies the log file.

the ACL of the script specifies that it cannot be modified by any program.

This approach (using a read-only program that encapsulates the semantics of
how to modify the target file) seems to be a good pattern for protecting highly
sensitive files, and is a simple solution.

Even after gaining remote code execution on the Docker container, malicious
users would not be able to delete the file or change its previous content (they can
only append information). This means that even after a full compromise, web
application administrators can still recover this information asset.

8. Comparison with Related Projects

The resulting LSM overcomes several limitations of traditional LSMs in Docker
environments. First, it can operate independently of the major LSM running on
the host operating system. This capability presents eBPF as an alternative for
implementing specific LSMs that can be seamlessly loaded into the kernel, en-
hancing security measures without interfering with the major LSM.

Second, this module simplifies file access control by eliminating the need to
define profiles for each application or create unique security labels for each ob-

https://doi.org/10.4236/jsea.2024.175015

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 268 Journal of Software Engineering and Applications

ject in the system. By applying simple, file-oriented, path-based policies, users
can effectively secure their information assets.

Moreover, the module uses Rust, a modern programming language that com-
bines memory safety with high performance. While some LSMs exist in Rust
(e.g., Lockc), this solution contributes to the ongoing adoption of Rust in Linux
kernel development and signals progress in that direction.

However, the implemented LSM has certain limitations. Currently, the mod-
ule cannot be applied to multiple containers simultaneously due to static naming
conventions for eBPF maps (as discussed in Section 6). This limitation could be
overcome by compiling the eBPF program from the user-space application and
using unique identifiers for maps in each run.

It’s also important to note that the solution developed focuses solely on re-
stricting file access and does not include network-oriented control, inter-process
communication, or other types of resource usage.

9. Conclusion

In conclusion, this paper presents a practical and innovative approach to en-
hancing security in Docker containers through a file-oriented access control
LSM implemented using eBPF and memory-safe Rust. The module addresses the
limitations of traditional LSMs by providing fine-grained access control to sensi-
tive files within containers. Using Rust for development adds a layer of security
and performance optimization. While the module has certain limitations, such
as concurrent container support, it represents a significant step forward in se-
curing containerized environments. Future work could focus on addressing
these limitations and expanding the scope of control using eBPF and Rust in Li-
nux kernel development, and comparison with existing solutions.

10. Availability

The code is publicly available in the following repository
https://github.gatech.edu/jdelbugio3/file-armor, encouraging further research on
the topic.

Acknowledgements

We thank the reviewers for their comments that improved the paper.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Merkel, D. (2014) Docker: Lightweight Linux Containers for Consistent Develop-

ment and Deployment. Linux Journal, 2.

[2] Edge, J. (2019) LSM Stacking and the Future. https://lwn.net/Articles/804906/

https://doi.org/10.4236/jsea.2024.175015
https://github.gatech.edu/jdelbugio3/file-armor
https://lwn.net/Articles/804906/

J. M. Delbugio, V. K. Madisetti

DOI: 10.4236/jsea.2024.175015 269 Journal of Software Engineering and Applications

[3] Corbet, J. (2022) Still Waiting for Stackable Security Modules.
https://lwn.net/Articles/912775/

[4] Smalley, S.D., Vance, C. and Slamon, W. (2003) Implementing SELinux as a Linux
Security Module.

[5] App Armor. https://apparmor.net

[6] Bacis, E., Mutti, S., Capelli, S. and Paraboschi, S. (2015) DockerPolicyModules:
Mandatory Access Control for Docker containers. 2015 IEEE Conference on Com-
munications and Network Security (CNS), Florence, 28-30 September 2015,
749-750. https://doi.org/10.1109/CNS.2015.7346917

[7] MITRE Corporation. CVE Linux Kernel Vulnerability Statistics.
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

[8] Cutler, C., Kaashoek, M.F. and Morris, R.T. (2018) The Benefits and Costs of Writ-
ing a POSIX Kernel in a High-Level Language. 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18), 8-10 Oct 2018, Carslbad,
89-105.

[9] Back, G., et al. (2000) Techniques for the Design of Java Operating Systems. 2000
USENIX Annual Technical Conference, San Diego, 18-23 Jun 2000, 17-20.

[10] Back, G. and Hsieh, W.C. (2005) The KaffeOS Java Runtime System. ACM Transac-
tions on Programming Languages and Systems, 27, 583-630.
https://doi.org/10.1145/1075382.1075383

[11] MSRC Team (2019) Why Rust for Safe Systems Programming.
https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/

[12] Rosteck, M. (2022) Announcing Lockc: Improving Container Security.
https://www.suse.com/c/rancher_blog/announcing-lockc-improving-container-secu
rity/

[13] McCune, R. (2023) Container Security Fundamentals Part 5: AppArmor and SELi-
nux.
https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-5/

[14] udica-Generate SELinux Policies for Containers!
https://github.com/containers/udica

[15] Custom & Better AppArmor Profile Generator for Docker Containers.
https://github.com/genuinetools/bane

[16] https://github.com/aya-rs/aya

[17] BPF Maps. https://docs.kernel.org/bpf/maps.html

[18] [PATCH bpf-next] bpf: Add Small Subset of SECURITY_PATH Hooks to BPF
sleepable_lsm_hooks list.
https://lore.kernel.org/all/ZXM3IHHXpNY9y82a@google.com/

[19] bpf_lsm.c-kernel/bpf/bpf_lsm.c-Linux Source Code (v6.8)-Bootlinmaps.
https://elixir.bootlin.com/linux/v6.8/source/kernel/bpf/bpf_lsm.c

https://doi.org/10.4236/jsea.2024.175015
https://lwn.net/Articles/912775/
https://apparmor.net/
https://doi.org/10.1109/CNS.2015.7346917
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://doi.org/10.1145/1075382.1075383
https://msrc.microsoft.com/blog/2019/07/why-rust-for-safe-systems-programming/
https://www.suse.com/c/rancher_blog/announcing-lockc-improving-container-security/
https://www.suse.com/c/rancher_blog/announcing-lockc-improving-container-security/
https://securitylabs.datadoghq.com/articles/container-security-fundamentals-part-5/
https://github.com/containers/udica
https://github.com/genuinetools/bane
https://github.com/aya-rs/aya
https://docs.kernel.org/bpf/maps.html
https://lore.kernel.org/all/ZXM3IHHXpNY9y82a@google.com/
https://elixir.bootlin.com/linux/v6.8/source/kernel/bpf/bpf_lsm.c

	Enhanced Memory-Safe Linux Security Modules (eLSMs) for Improving Security of Docker Containers for Data Centers
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Linux Security Modules
	2.2. LSMs for Containers
	2.3. LSMs in Rust, a Memory-Safe HLL
	2.4. LSMs in eBPF

	3. Problem
	4. Related Approaches
	4.1. Traditional Mechanisms
	4.2. Major LSMs
	4.3. Lockc

	5. Proposed Solution
	Design

	6. Implementation
	7. Evaluation
	7.1. Basic Example
	7.2. Web Example

	8. Comparison with Related Projects
	9. Conclusion
	10. Availability
	Acknowledgements
	Conflicts of Interest
	References

