
Journal of Software Engineering and Applications, 2024, 17, 246-258
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.175014 May 28, 2024 246 Journal of Software Engineering and Applications

Building Custom Spreadsheet Functions with
Python: End-User Software Engineering
Approach

Tamer Bahgat Elserwy1 , Atef Tayh Nour El-Din Raslan2, Tarek Ali1, Mervat H. Gheith1

1Department of Software Engineering, Faculty of Graduate Studies for Statistical Research (FGSSR), Cairo University, Giza, Egypt
2Department of Information Systems, Higher Institute of Advanced Studies, Giza, Egypt

Abstract
End-user computing empowers non-developers to manage data and applica-
tions, enhancing collaboration and efficiency. Spreadsheets, a prime example
of end-user programming environments widely used in business for data
analysis. However, Excel functionalities have limits compared to dedicated
programming languages. This paper addresses this gap by proposing a proto-
type for integrating Python’s capabilities into Excel through on-premises
desktop to build custom spreadsheet functions with Python. This approach
overcomes potential latency issues associated with cloud-based solutions.
This prototype utilizes Excel-DNA and IronPython. Excel-DNA allows creating
custom Python functions that seamlessly integrate with Excel’s calculation
engine. IronPython enables the execution of these Python (CSFs) directly
within Excel. C# and VSTO add-ins form the core components, facilitating
communication between Python and Excel. This approach empowers users
with a potentially open-ended set of Python (CSFs) for tasks like mathemati-
cal calculations, statistical analysis, and even predictive modeling, all within
the familiar Excel interface. This prototype demonstrates smooth integration,
allowing users to call Python (CSFs) just like standard Excel functions. This
research contributes to enhancing spreadsheet capabilities for end-user pro-
grammers by leveraging Python’s power within Excel. Future research could
explore expanding data analysis capabilities by expanding the (CSFs) func-
tions for complex calculations, statistical analysis, data manipulation, and
even external library integration. The possibility of integrating machine
learning models through the (CSFs) functions within the familiar Excel envi-
ronment.

Keywords
End-User Software Engineering, Custom Spreadsheet Functions (CSFs),

How to cite this paper: Elserwy, T.B.,
Raslan, A.T.N.E.-D., Ali, T. and Gheith,
M.H. (2024) Building Custom Spreadsheet
Functions with Python: End-User Software
Engineering Approach. Journal of Software
Engineering and Applications, 17, 246-258.
https://doi.org/10.4236/jsea.2024.175014

Received: March 28, 2024
Accepted: May 25, 2024
Published: May 28, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.175014
https://www.scirp.org/
https://orcid.org/0009-0001-3682-0188
https://doi.org/10.4236/jsea.2024.175014
http://creativecommons.org/licenses/by/4.0/

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 247 Journal of Software Engineering and Applications

Visual Studio Tools Office (VSTO) Add-Ins, Python with Excel Integration,
On-Premises Desktop Applications

1. Introduction

End-user computing offers a centralized and standardized approach to manag-
ing applications, devices, and data. This translates to improved collaboration,
scalability, and operational efficiency [1]. A significant trend in software tech-
nology is the rise of interactive applications built not by professional developers,
but by domain experts leveraging computational tools to achieve their goals [2].
The global EUC market is estimated at USD 10.3 billion in 2022 and is projected
for an 11% CAGR by 2032, reflecting the growing demand for EUC solutions
driven by digital transformation across industries efficiency [1]. Research has
shown that spreadsheets are a form of code, with spreadsheet users acting as
end-user programmers [2]. Excel, specifically, remains one of the most popular
end-user programming environments, with its importance in the business world
continuing to rise [3]. Microsoft’s recent announcement of Python integration
within Excel signifies a major step towards enhanced data analysis capabilities
within familiar software environments. This integration has the potential to
streamline tasks by leveraging Python’s robust programming capabilities within
Excel’s user-friendly interface [4]. The combination opens doors for users to
perform complex data analysis, statistical computations, and even develop pre-
dictive models efficiently. However, cloud-based Python integration in Excel
faces limitations, particularly concerning latency. Latency refers to the delay in
data processing caused by the time it takes for information to travel between the
client and the cloud server [5]. This paper addresses the limitations of cloud-
based Python integration in Excel, particularly latency issues arising from client-
server data transfer. This paper proposes an alternative solution: an on-premises
desktop application approach to build custom spreadsheet functions with Py-
thon developed with Excel-DNA and IronPython [6]. By keeping functionalities
local, to overcome potential latency issues and offer a smoother user experience
within Excel. Custom spreadsheet functions (CSFs) are custom functions created
by users to perform specific calculations within Excel. They can be implemented
through various methods, such as add-ins introducing new functions based on
specific statistical distributions, or sheet-defined functions allowing users to de-
fine functions directly within Excel sheets [7]. This prototype leverages the ar-
chitecture of Visual Studio Tools Office (VSTO) add-ins. These add-ins can mon-
itor user activity within Office applications and react to events, such as clicking
buttons added by the add-in itself [8]. VSTO add-ins follow a consistent metho-
dology: a managed code assembly is loaded by a Microsoft Office application.
Once loaded, the add-in can respond to events raised within the application and
call into its object model for automation and extension. Additionally, it can

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 248 Journal of Software Engineering and Applications

access any. NET Framework classes and communicates with the application’s
COM components through the primary interop assembly [8]. This makes VSTO
add-ins valuable tools for extending the functionalities of standard Office appli-
cations. This paper outlines the limitations of cloud-based Python integration in
Excel and proposes an alternative approach using an on-premises desktop ap-
plication.

This paper is organized through the relevant background information. The
next section delves into contemporary works related to this field. To establish
prototype infrastructure, the third section explores the existing architecture re-
levant to the study. Following that, the fourth section provides a detailed over-
view of the VSTO Add-Ins architecture. As this groundwork lays, the fifth sec-
tion, methodology and experiment setup, outlines the paper’s methods and pro-
cedures used in the research. Finally, the sixth section, results and discussions
presents and interprets the paper’s findings.

2. Background

This section discusses related research areas relevant to the development of cus-
tom spreadsheet functions (CSFs) in Excel.

2.1. End-User Software Engineering

This field focuses on empowering non-professional programmers to create soft-
ware [9]. It explores adapting existing software development tools for collabora-
tion between developers and non-programmers [10].

2.2. End-User Programming of Spreadsheets

Spreadsheets are a popular tool for end-user programming languages [11]. They
are commonly used for data organization, development of custom functionality,
and even education [12], while spreadsheets are flexible and user-friendly appli-
cations [13].

2.3. Concepts in Spreadsheet Programming

Spreadsheets consist of cells that can hold numbers, text, or formulas. These
formulas can reference other cells to perform calculations automatically. The
system for creating and modifying spreadsheets acts as a programming envi-
ronment. Spreadsheets are typically built on a grid structure, and the underlying
model may lack structure, especially for non-programmers who refine their
model as they develop the spreadsheet [14].

2.4. Custom Spreadsheet Functions

Custom spreadsheet functions (CSFs) are valuable when standard Excel func-
tions are insufficient. They allow users to work with data, create modular de-
signs, and improve spreadsheet reusability [15]. (CSFs) empower users to extend
Excel’s capabilities by creating custom functions for specific needs. These func-

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 249 Journal of Software Engineering and Applications

tions can automate tasks, perform advanced calculations, and enhance the over-
all flexibility and efficiency of Excel [16].

3. Related Work

Several studies have explored using Excel as a programming environment. Re-
search has investigated using Excel for complex programming tasks, highlighting
its potential for more powerful spreadsheet solutions. This suggests a shift to-
wards more formal programming practices within Excel. Other studies demon-
strate how Excel 365 allows creating solutions beyond traditional spreadsheets
solutions [17]. They advocate for using semantically meaningful code for reliable
results, contributing to expanding Excel’s capabilities. In the data science field,
Python is widely used for data analysis and statistics [18]. Libraries like Pandas
[19] help transfer data from spreadsheets into Python for further analysis. Addi-
tional tools like, xlutils [20], openpyxl [21], and xlsxwriter [22] simplify working
with spreadsheets in Python. Research has also explored unifying Python with
Excel, allowing users to directly call Python functions within Excel. PyXLL [23],
for example, enables writing Excel add-ins in Python instead of VBA. This sim-
plifies data analysis by leveraging Python libraries. A study in the oil industry
demonstrates the effectiveness of IronPython for streamlining analysis through
automation [24]. This aligns with the goal of integrating IronPython with Excel
to improve productivity and efficiency. Similar to its use in the oil industry,
IronPython scripts can be used to automate tasks within Excel, manipulate data,
perform calculations, and generate reports.

This paper focuses on creating a desktop-based solution that integrates Py-
thon with Excel using an on-premises desktop application. This allows users to
leverage Python for custom functionalities within Excel through Python-based
custom spreadsheet functions (CSFs). This research utilizes Excel-DNA and
IronPython technologies to achieve this integration. Overall, this work contri-
butes to the ongoing exploration of enhancing Excel’s capabilities through build-
ing custom spreadsheet functions with Python.

4. Underlaying Architecture

This paper investigates the potential of the Visual Studio Tools for Office (VSTO)
add-in architecture. This powerful functionality is enabled by a robust underly-
ing architecture designed by Microsoft specifically for VSTO Add-ins. VSTO
add-ins act as a bridge between software engineers and end-users in the realm of
Microsoft Excel. The add-ins can listen to what’s happening within the Office
environment. For example, the add-in can react to users clicking on buttons they
added themselves. The Visual Studio Tools for Office Add-in (VSTO Add-in)
architecture also facilitates communication between the user interface and the
custom spreadsheet functions (CSFs) engine. It effectively interprets user re-
quests and converts them into executable functions within the add-in. This em-
powers users to directly interact with these (CSFs) within the application’s in-

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 250 Journal of Software Engineering and Applications

terface, inputting data into cells and leveraging them for complex calculations
and task automation within their familiar Office environment.

However, the VSTO add-in architecture goes beyond a user interface. It pro-
vides a robust development framework for constructing the underlying logic of
(CSFs). Using Visual Studio and .NET languages, engineers define the functio-
nality of (CSFs), accessing the Office application’s object model to perform tasks
beyond standard capabilities. Moreover, the VSTO add-in framework enriches
the design of the logic for (CSFs), tailoring them precisely to meet users’ needs.
The VSTO add-in architecture integration is facilitated by Excel utilizing a ma-
nifest to load the VSTO add-in assembly. Subsequently, Figure 1 illustrates how
the VSTO add-in assembly initiates integration communication with Excel through
object model calls, events, and callbacks, ensuring a harmonious and integrated
experience for users [25].

Integrating the VSTO add-in architecture fosters an effortless workflow,
enabling users to leverage Python functions within Excel as if they were standard
features. Python scripts embedded within Excel as custom (CSFs) can address
specific user needs. End users benefit from a smooth integration of these (CSFs)
within the familiar Excel interface, extending the capabilities of Excel and em-
powering them to perform more advanced tasks.

5. The VSTO Add-Ins Architecture

The VSTO Add-Ins, built using Visual Studio Tools for Office, extend the func-
tionality of Microsoft Office applications like Word, Excel, and Outlook. This
architecture empowers developers to create powerful customizations that blend
effortlessly with the familiar Office environment. In the case of starting Micro-
soft office application by the end user, the application uses the deployment ma-
nifest and the application manifest to locate and load the most current version of
the VSTO Add-In assembly as depicted in Figure 2 which illustrates the basic
architecture of these VSTO Add-ins.

6. Methodology

This paper adopts a structured methodology. The initial phase involves setting
up the development environment. Next, custom spreadsheet functions (CSFs)

Figure 1. Excel utilizes a manifest to load the VSTO add-in assembly, enabling
integration communication through object model calls, events, and callbacks
(Source: Microsoft, 2023).

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 251 Journal of Software Engineering and Applications

Figure 2. The basic VSTO add-ins architecture (Source: Microsoft,
2023).

are developed using C# programming language, incorporating Python for en-
hanced capabilities. Following development, a rigorous testing process is under-
taken to ensure the effectiveness and reliability of the CSFs. Finally, the results
section presents and interprets the paper findings, providing valuable insights
into the performance of the custom spreadsheet functions. This paper investi-
gates an alternative solution, an on-premises desktop application approach to
build custom spreadsheet functions (CSFs) in Excel environment. This approach
targets to reduce potential latency issues and provide a smoother user experience
compared to cloud-based solutions. This paper presents a prototype that leve-
rages a combination of technologies based on Visual Studio Tools for Office ar-
chitecture. The prototype discuss foundational technologies to build such as Py-
thon-based functions, C# programming forms the foundation, building the core
components and backend functionalities as shown in Figure 3. Microsoft’s
VSTO Add-ins bridge the gap between Python scripts and the Excel environ-
ment, enabling smooth communication. IronPython Excel Spreadsheet Integra-
tion allows for direct execution of Python-based (CSFs) within Excel spread-
sheets. These Python-based (CSFs) integrate with Excel’s calculation model and
can handle various operations, with the potential for future expansion.

In a development context, a set of Python-based functions developed that in-
tegrate with Excel’s calculations by combining these technologies. These Py-
thon-based functions handle various operations such as mathematical calcula-
tions (e.g., sum, average, and maximum) within Excel spreadsheets. Crucially,
the set of Python-based (CSFs) is open-ended. This means that it is possible to
use any general-purpose function in the future to address recent problems that

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 252 Journal of Software Engineering and Applications

Figure 3. Build custom spreadsheet functions with python: An architectural overview.
(Source: Author, 2024).

emerge. Finally, Excel-DNA will simplify the integration of .NET components,
including C# and IronPython code, into Microsoft Excel, aiding in deploying the
prototype and managing add-ins.

6.1. Experiment Setup

This subsection outlines the steps to establish a development environment for
building custom Python-based spreadsheet functions with unique functionali-
ties. It emphasizes the importance of experimental setup to ensure that the ne-
cessary Python interpreter and dependencies are installed. To experiment setup,
follow these steps:

1) Start Visual Studio and initiate a new project. 2) Navigate to the “Create a
new project” section and select “Visual C#” as a development language. 3) Delve
into the “Office/SharePoint” category and choose “Excel” followed by the “Excel
Add-in” project template. This sets up the project specifically for crafting Excel
add-ins. 4) To empower Python functionality within add-ins, you need to refer-
ence the IronPython library.

5) Head over to the “Manage NuGet Packages” option within Visual Studio and
search for IronPython packages. Install the appropriate version that aligns with the
project requirements. 6) Similar to IronPython, Excel-DNA is essential for inte-
grating. NET components into Excel add-in. 7) Access the “Manage NuGet Pack-
ages” window again and search for Excel-DNA. Locate and install the compatible
version for the project. By following these steps, a well-equipped environment

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 253 Journal of Software Engineering and Applications

ready to tackle building custom Python functions within Excel environment.

6.2. Coding

In this direction, we developed a set of Python-based custom spreadsheet func-
tions (CSFs) to demonstrate this integration. For example, the PythonistaRan-
geAverage() function calculates the average of selected cell ranges within an Ex-
cel environment. The AVERAGE function calculates the average (arithmetic
mean) of supplied numbers. AVERAGE can handle arguments such as cell ref-
erences, ranges and numbers. This capability emphasizes that new worksheet
functions can be effortlessly incorporated into Excel’s existing calculation model
[26]. To understanding the interaction process, the interaction between Python
and Excel in this system follows these key steps.

6.2.1. Initialization
During startup, an Average Functions object is created. Within its constructor,
the system utilizes the IronPython interpreter to create a Python engine instance
(engine) and a scope instance (scope) using the Python. Create Engine() and en-
gine. Create Scope() methods, respectively as shown in pseudocode Listing 1.

Listing 1. Pseudocode shows flow of average calculation using Python
scripting within the Average Functions class.

6.2.2. Calling the Python Function
When calling the Python-based custom spreadsheet PythonistaRangeAve-
rage() function, an Average Functions object (pyFunctions) is created, and
the provided range data is set within the Python scope. The script file calcu-
lates_range_average.py is then executed using the engine and associated scope.
This script fetches the calculate_average function from the Python scope, see
pseudocode Listing 2. This function checks for non-empty cells, computes the
average, and returns the result.

Listing 2. Pseudocode shows calculate_average function in calcu-
lates_range_average.py script for calculating cell averages.

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 254 Journal of Software Engineering and Applications

In closing, this subsection showcased the integration of Python with Excel
through a sample set of Python functions. The PythonistaRangeAverage() func-
tion serves as a concrete example of how new functionalities can be effortlessly
incorporated into Excel’s existing calculation capabilities. The provided pseudo-
code as shown in Listing 1 and Listing 2 outline the key steps involved in this
interaction, including initialization, and calling the Python function. This ap-
proach paves the way for developers to extend Excel’s functionalities using Py-
thon such as enhancing its potential for data analysis and manipulation.

6.3. Testing the Python-Based Functions

This section discusses the testing process used to ensure the accuracy and ro-
bustness of the implemented custom spreadsheet function set. The testing process
is critical for identifying and resolving issues that could impede the functionality
of the (CSFs). However, development can also encounter challenges related to
debugging. A common hurdle is version compatibility. Incompatibilities might
arise between Excel-DNA, IronPython, and the .NET Framework versions
used in the project. To overcome this, meticulous management of project de-
pendencies is essential. Ensure all components, including Python, IronPython,
and the .NET Framework, are fully compatible with each other. It might also
be necessary to test with different version combinations to guarantee overall
integration.

Testing the Custom Spreadsheet Functions (CSFs)
This subsection details how to utilize the custom spreadsheet functions (CSFs)
within the Excel environment and here are steps to use it:

1) Start Excel and run the function by opening Microsoft Excel. Within the
spreadsheet, type = PythonistaRangeAverage() in a new empty cell (e.g., C2) or
inside the formula bar. This function behaves just like standard Excel functions,
as shown in Figure 4.

2) Select the desired range of cells to calculate the average, as illustrated in
Figure 5.

3) Press Enter to initiate the calculation. The result will be displayed in the cell
where the formula was entered, as shown in Figure 6.

Figure 4. Use formula bar to use Python-based PythonisatRangeAverage()
inside excel.

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 255 Journal of Software Engineering and Applications

Figure 5. Select range of cells to apply custom spreadsheet function Pytho-
nisatRangeAverage().

Figure 6. The result of execution Python script inside excel environment.

In the previous example, the VSTO add-in architecture integrates flawlessly. It

executes the (CSFs) call PythonistaRangeAverage() in the background. It then
transmits the data from the selected range to the custom function implemented
within the add-in.

In conclusion, the experiments verify that the PythonistaRangeAverage()
function performs the average calculations and returns the result back to Excel
environment, where it’s displayed in the Excel spreadsheet.

7. Results and Discussions

As a result, the testing process confirmed the implementation Python-based
custom spreadsheet functions (CSFs) within the Excel environment. Users can
directly call (CSFs) functions in their spreadsheets, the prototype Pythonista
RangeAverage() function just like any standard Excel function. Moreover, the
intuitive integration and functionality allow users to initiate Python script ex-
ecution simply by entering the (CSF) name and selecting the desired range
within a cell to calculate the average. The VSTO Add-in architecture efficiently
handles this call, passing the data to the Python function within the add-in, and
promptly displays the calculated back in the user’s spreadsheet. In this domain,
future research could explore expanding the available (CSFs) functions and in-
vestigate more complex calculations such as explore enabling (CSFs) functions
to handle more complex data analysis tasks. This could involve statistical func-
tions, data manipulation tools, or integration with external libraries. Further-

https://doi.org/10.4236/jsea.2024.175014

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 256 Journal of Software Engineering and Applications

more, investigate the possibility of integrating machine learning models written
in Python into the Excel environment through (CSFs) functions.

8. Conclusion

In conclusion, this paper introduces a novel solution on-premises desktop ap-
plication approach building custom spreadsheet functions with Python to over-
come latency issues associated with cloud-based Python integration in Excel. It
utilizes C# programming and VSTO add-ins to seamlessly connect Python scripts
with Excel, allowing users to perform calculations directly within spreadsheets as
any standard Excel function. This effective implementation empowers users and
validates the effectiveness of the methodology, demonstrating how VSTO
add-ins can transform Excel into a powerful data analysis tool. Future research
could explore expanding data analysis capabilities by expanding (CSFs) func-
tions for complex calculations, statistical analysis, data manipulation, and even
external library integration. The possibility of integrating machine learning
models through custom spreadsheet functions opens doors for even more po-
werful data analysis techniques within the familiar Excel environment.

Acknowledgements

I would like to be grateful to our teaching staff at the department of software en-
gineering, faculty of graduate studies for statistical research (FGSSR), Cairo
University for their guidance and support.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Global Market Insights (2023) End-User-Computing-EUC-Market.

 https://www.gminsights.com/industry-analysis/end-user-computing-euc-market

[2] Borghouts, J., Gordon, A.D., Sarkar, A. and Toronto, N. (2019) End-User Probabil-
istic Programming. Quantitative Evaluation of Systems, Glasgow, 10-12 September
2019, 3-24. https://doi.org/10.1007/978-3-030-30281-8_1

[3] Tallis, M., Waltzman, R. and Blazer, R. (2007) Adding Deductive Logic to a Cots
Spreadsheet. The Knowledge Engineering Review, 22, 255-268.
https://doi.org/10.1017/s0269888907001166

[4] Microsoft (2023) Announcing Python in Excel: Combining the Power of Python
and the Flexibility of Excel.
https://techcommunity.microsoft.com/t5/excel-blog/announcing-python-in-excel-c
ombining-the-power-of-python-and-the/ba-p/3893439

[5] Győrödi, R., Pavel, M.I., Győrödi, C. and Zmaranda, D. (2019) Performance of
OnPrem versus Azure SQL Server: A Case Study. IEEE Access, 7, 15894-15902.
https://doi.org/10.1109/ACCESS.2019.2893333

[6] NET Foundation (2023) Ironpython. https://ironpython.net/

https://doi.org/10.4236/jsea.2024.175014
https://www.gminsights.com/industry-analysis/end-user-computing-euc-market
https://doi.org/10.1007/978-3-030-30281-8_1
https://doi.org/10.1017/s0269888907001166
https://techcommunity.microsoft.com/t5/excel-blog/announcing-python-in-excel-combining-the-power-of-python-and-the/ba-p/3893439
https://techcommunity.microsoft.com/t5/excel-blog/announcing-python-in-excel-combining-the-power-of-python-and-the/ba-p/3893439
https://doi.org/10.1109/ACCESS.2019.2893333
https://ironpython.net/

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 257 Journal of Software Engineering and Applications

[7] Turk, T. (2021) SDFunc: Modular Spreadsheet Design with Sheet-Defined Func-
tions in Microsoft Excel. Journal of Software: Practice and Experience, 52, 415-426.
https://doi.org/10.1002/spe.3027

[8] Microsoft (2023) Architecture of VSTO Add-Ins.
https://learn.microsoft.com/en-us/visualstudio/vsto/architecture-of-vsto-add-ins?vi
ew=vs-2022

[9] Dwivedi, V. (2022) Halo: A Framework for End-User. Carnegie Mellon University,
Pittsburgh.

[10] Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi,
C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M.
and Wiedenbeck, S. (2011) The State of the Art in End-User Software Engineering.
ACM Computing Surveys, 43, Article No. 21.
https://doi.org/10.1145/1922649.1922658

[11] Chambers, C., Erwig, M. and Luckey, M. (2010) Sheetdiff: A Tool for Identifying
Changes in Spreadsheets. 2010 IEEE Symposium on Visual Languages and Hu-
man-Centric Computing, Leganes, 21-25 September 2010, 85-92.
https://doi.org/10.1109/VLHCC.2010.21

[12] Bock, A. and Biermann, F. (2019) Puncalc: Task-Based Parallelism and Speculative
Reevaluation in Spreadsheets. The Journal of Supercomputing, 76, 4977-4997.
https://doi.org/10.1007/s11227-019-02823-8

[13] Hermans, F., Pinzger, M. and Deursen, A. (2011) Supporting Professional Spread-
sheet Users by Generating Leveled Dataflow Diagrams. Proceedings of the 33rd In-
ternational Conference on Software Engineering, Honolulu, 21-28 May 2011, 451-
460. https://doi.org/10.1145/1985793.1985855

[14] Abraham, R., Burnett, M. and Erwig, M. (2009) Spreadsheet Programming. In:
Wah, B.W., Ed., Wiley Encyclopedia of Computer Science and Engineering, John
Wiley & Sons, Hoboken. https://doi.org/10.1002/9780470050118.ecse415

[15] McCutchen, M., Borghouts, J., Gordon, A., Jones, S. and Sarkar, A. (2020) Elastic
Sheet-Defined Functions: Generalising Spreadsheet Functions to Variable-Size In-
put Arrays. Journal of Functional Programming, 30, e26.
https://doi.org/10.1017/S0956796820000234

[16] Klasson, K.T. (2018) QXLA: Adding Upper Quantiles for the Studentized Range to
Excel for Multiple Comparison Procedures. Journal of Statistical Software, 85, 1-9.
https://doi.org/10.18637/jss.v085.c01

[17] Bartholomew, P. (2023) Excel as a Turing-Complete Functional Programming En-
vironment. arXiv:2309.00115. https://doi.org/10.48550/arXiv.2309.00115

[18] Nassereldine, A., Chen, P. and Xiong, J. (2022) Excel Spreadsheet Analyzer.
https://arxiv.org/abs/2211.06333

[19] McKinney, W. (2011) pandas: A Foundational Python Library for Data Analysis
and Statistics.
https://docslib.org/doc/4231522/a-foundational-python-library-for-data-analysis-an
d-statistics

[20] Xlutils Documentation. https://xlutils.readthedocs.io/en/latest/#

[21] https://openpyxl.readthedocs.io/en/stable/tutorial.html

[22] https://xlsxwriter.readthedocs.io/contents.html

[23] Introduction to PyXLL. https://www.pyxll.com/docs/introduction.html

[24] Fatra, R., Flodin, E., Bawono, C., Arshanda, M., Rivano, F. and Rachmanto, D.
(2020) Teasing Insight Out of Reams of Data Using Advanced Data Visualization

https://doi.org/10.4236/jsea.2024.175014
https://doi.org/10.1002/spe.3027
https://learn.microsoft.com/en-us/visualstudio/vsto/architecture-of-vsto-add-ins?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/vsto/architecture-of-vsto-add-ins?view=vs-2022
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/VLHCC.2010.21
https://doi.org/10.1007/s11227-019-02823-8
https://doi.org/10.1145/1985793.1985855
https://doi.org/10.1002/9780470050118.ecse415
https://doi.org/10.1017/S0956796820000234
https://doi.org/10.18637/jss.v085.c01
https://doi.org/10.48550/arXiv.2309.00115
https://arxiv.org/abs/2211.06333
https://docslib.org/doc/4231522/a-foundational-python-library-for-data-analysis-and-statistics
https://docslib.org/doc/4231522/a-foundational-python-library-for-data-analysis-and-statistics
https://xlutils.readthedocs.io/en/latest/
https://openpyxl.readthedocs.io/en/stable/tutorial.html
https://xlsxwriter.readthedocs.io/contents.html
https://www.pyxll.com/docs/introduction.html

T. B. Elserwy et al.

DOI: 10.4236/jsea.2024.175014 258 Journal of Software Engineering and Applications

and Analytics Software for Improved Reservoir Management, Rokan Light Oil, In-
donesia. SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Bali, 29-31
October 2019. https://doi.org/10.2118/196318-MS

[25] iFour Technolab (2016) Office Add-in Development: VSTO Add-ins vs JavaScript
API.
https://www.ifourtechnolab.com/blog/office-add-in-development-vsto-add-ins-vs-j
avascript-api

[26] Excel-DNA Free and Easy. NET for Excel. https://excel-dna.net/

https://doi.org/10.4236/jsea.2024.175014
https://doi.org/10.2118/196318-MS
https://www.ifourtechnolab.com/blog/office-add-in-development-vsto-add-ins-vs-javascript-api
https://www.ifourtechnolab.com/blog/office-add-in-development-vsto-add-ins-vs-javascript-api
https://excel-dna.net/

	Building Custom Spreadsheet Functions with Python: End-User Software Engineering Approach
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. End-User Software Engineering
	2.2. End-User Programming of Spreadsheets
	2.3. Concepts in Spreadsheet Programming
	2.4. Custom Spreadsheet Functions

	3. Related Work
	4. Underlaying Architecture
	5. The VSTO Add-Ins Architecture
	6. Methodology
	6.1. Experiment Setup
	6.2. Coding
	6.2.1. Initialization
	6.2.2. Calling the Python Function

	6.3. Testing the Python-Based Functions
	Testing the Custom Spreadsheet Functions (CSFs)

	7. Results and Discussions
	8. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

