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Abstract

In this paper, we introduce and study the notion of HB-closed sets in
L-topological space. Then, HB-convergence theory for Z-molecular nets and
L-ideals is established in terms of HB-closedness. Finally, we give a new defi-
nition of fuzzy H-continuous [1] which is called HB-continuity on the basis
of the notion of H-bounded L-subsets in Z-topological space. Then we give
characterizations and properties by making use of HB-converges theory of
L-molecular nets and Z-ideals.

Keywords

L-Topological Space, HB-Closed Set, H-Bounded Set, HB-Continuous
Mappings, HB-Convergence, L-Molecular Nets, L-Ideals

1. Introduction

Continuity and its weaker forms constitute an important and intensely investi-
gated area in the field of general topological spaces. In 1975 Long and Hamlett [2]
introduced the notion of H-continuity and it has been further investigated by
many authors including Noiri [3]. In 1993 Moony [4] studied the notion of
H-bounded sets and some new characterizations and properties of A-bounded
sets are examined. In 1995 Dang and Behers [1] extended the notion of
H-continuity to fuzzy topology, and introduced the notion of fuzzy H-conti-
nuous functions using the fuzzy compactness given by Mukherjee and Sinha [5].
However, the fuzzy compactness has some shortcomings, such as the Tychonoff
product theorem does not hold, and it contradicts some kinds of separation
axioms. Hence, the notion of fuzzy H-continuous functions in [1] is unsatisfac-
tory. In this paper, we first define the concept of HB-closed sets by means of the
concept of almost N-boundedness (H-bounded Z-subsets). Then by making use
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of HB-closed sets we introduce and study the HB-convergence theory of
L-molecular nets and L-ideals. Finally, we give a new definition of fuzzy
H-continuous [1] which calls HB-continuity on the basis of the notions of
HB-closedness in Z-topological space. In section 3, we introduce the concepts of
HB-closure (HB-interior) operator and HB-closed (HB-open) sets in L-topo-
logical spaces and their various properties are given. And with the help of these
notions we introduce and study the concept of AB-limit point of Z-molecular
nets and Z-ideals. In section 4, we introduce and study the concept
HB-continuous by means of HB-closed set and we present its properties and
study the relationship between it and Z-continuous, H-continuous mappings.
Finally, in section 5, some new interesting characterizations of HB-continuous

mappings by AB-limit points of Z-molecular nets and Z-ideals are established.

2. Preliminaries

This paper L=L(<,v,A,") denotes a completely distributive lattice with the
smallest element 0 and the largest element 1 (0 #1) and with an order reversing
involution on it. An a €L is called a molecule of LZif a#0 and a<vvy
implies ¢ <v or a<y for all v,y eL. The set of all molecules of L is de-
noted by M (L). Let X be a nonempty set. L* denotes the family of all map-
pings from X to L. The elements of L* are called Z-subsets on X. L* can be
made into a lattice by inducing the order and involution from L. We denote the
smallest element and the largest element of L* by 0, and 1, respectively. If
a €L, then the constant mapping «: X —{a} is L-subset [6]. An L-point (or
molecule on L"), denoted by X,, aeM(L) is a L-subset which
_ a:x=y
is defined by Xa(y)={0 xzy

The family of all molecules L* is denoted by M (L>< ) [7]. For ¥ c L*, we
define 2" by the set {@c ¥ :w is finite subfamily of W}. An L-topology on
X is a subfamily 7 of L* closed under arbitrary unions and finite intersec-
tions. The pair (LX ,r) is called an Z-topological space (or L-ts, for short) [8]. If
(L)< ,r) is an L-ts, then for each 7L, cl(n), int() and 7' will denote
the closure, interior and complement of 77. A mapping f:L* — L' is said to
be an [L-valued Zadeh function induced by a mapping f:X —>Y , iff
f (,u)(y):v{,u(x): f(x)= y} for every uel” and every yeY [7]. An
L-ts (L>< ,r) is called fully stratified if for each ael, aer [9]. If (L>< ,r)
is an L-ts, then the family of all crisp open sets in 7 is denoted by [7] ie,
(X ,[z’]) is a crisp topological space [10].

Definition 2.1 [11]: If (LX ,T) is L-ts, then pel* is called regular open
set iff u= int(cl (1)) The family of all regular open sets is denoted by
RO(LX ,r) . The complement of the regular open set is called the regular closed
set and satisfy p=cl (int( ,u)) . The family of all regular closed sets is denoted by
RC(L*.7).

Definition 2.2 [11]: The Z-valued Zadeh mapping f, : (L’< ,r) - (LY ,A)
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is called:
(i) Almost Z-continuous iff f,*(17)ez’ foreach 7<RC ( L ,A) .
(ii) Weakly Z-continuous iff f, (7)< int( f (Cl (77))) foreach neA.
Definition 2.3 [12]: Let f, :(LX ,r)—)(LY,A) be an L-valued Zadeh map-
pingand Ac X, then f|_|A LA > L is defined as follows:
(fL|A)(,u): f(u)nl, = f(,u*), for each pel” and call f|_|A the restric-

tion of fon A. Where 4° denote the extension of x in L*, that is for each
Xxe X,

0 T xg A

- 11

Definition 2.4 [13]: Let (L*,z) bean Z-tsand X, €M (L*). Then:
(i) ner’ is called a remote neighborhood (R-nbd, for short) of X, if

X, €77 . The set of all R-nbds of X, is called remoted neighborhood system and
is denoted by R, .

(ii) AeLl” is called an *-remoted neighborhood (R"-nbd, for short ) of
X, if there exists peR, such that A<u. The set of all R"-nbds of X, is
called *-remoted neighborhood system and is denoted by R} .

Definition 2.5 [14]: Let (L>< ,z’) be an L-ts, yel® and aeM(L). Then

Y 7' iscalled an:

(i) a -remoted neighborhood family of u, briefly « -RF of u, if for each
L-point X, € u thereis A€WV suchthat 1eR, .

(ii) « -remoted neighborhood family of u, briefly & -RF of u, if there
exists yef’ (a) such that ¥ isan y-RF of u,where
B (a)=p(a)nM (L), and S(a) denotes the union of all the minimal sets
relative to « .

Definition 2.6 [11]: Let (LX ,r) be an L-ts, yel” and aeM(L). Then
Y 7' iscalled an:

(i) Almost « - * -remoted neighborhood family of s, (or briefly, almost « -
R*F ) of u,if for each L-point X, € i thereis Ae¥ such that
int(4)e R, -

(ii) Almost & - * -remoted neighborhood family of x, (or briefly almost &
-R'F)of u,ifthereexists y€f"(a) suchthat ¥ isanalmost y-R'F of
.
Definition 2.7 [15]: Let (L>< ,z’) be an L-ts, yel” and aeM(L). Then
Y cRC ( L* ,r) is called an « -regular closed remoted neighborhood family of
u, briefly a -RCRF of u, if for each L-point X, € ¢ there is A€V such
that Ae R,, -

Definition 2.8 [16]: Let (LX ,z’) bean L-tsand pel”.Then x,eM (LX)
is called @-adherent point of x and write x, e@.cl(u) iff pint(4) for
each 1eR, .If u=0cl (u),then p iscalled @-closed L-subset. The family
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of all @-closed L-subset of X is denoted by 6’C(L>< ,z’) and its complement is
called the family of all & -open L-subset and denoted by 6O ( L* ,r) .

Definition 2.9 [11]: Let (L>< ,z’) be an Z-ts, uel”. Then u is called al-
most N-compact (or H-compact) set in (Lx,r) if for each aeM (L) and
every o -RF ¥ of u there is ¥ e 2%) such that V. is an almost « -
R'F of u.

If 1, is H-compact set, then (L>< ,7) is called H-compact space.

Theorem 2.10 [11]: Suppose that f :(LX ,r) —)(LY ,A) is an L-almost con-
tinuous and w e L* is an H-compact L-subset in (L)< ,z’), then f_(u) isan
H-compact L-subset in (LY ,A) .

Definition 2.11 [17]: An L-ts (L>< ,r) is said to be:

(i) LT, -space iff for any x,, y, € M (LX ) , Xzy thereis de Rxa such that
y, ed.

(ii) LT, -spaceiff forany x,,y, €M (L)< ), x#y thereis 1eR, , n€R,
such that Avn=1,.

(iii) LT , -space iff for any x,,y,eM (LX) , x=y there is 1eR, ,

2
neRyy such that int(1)vint(n)=1,.
(iv) LR, -space (regular space) iff for all ¢ eM (L), xe X and for each
A€R, thereis neR, , pet’ suchthat v p=1, and AAp=0,.

(v) LT, -spaceiffitis LR,-spaceand LT, -space.
Theorem 2.12 [14]: Let (LX ,z’) be an L-ts and every H-compact set in fully

stratified and LT , -space, then itis & -closed L-subset.
2=
2

Theorem 2.13 [11]: An L-ts (LX ,z’) is LR, -space iff for any uel”,
cl(p)=0cl(p).

Proof. Let (LX ,z’) be an LR, -space. For any g el” it is always true that
cl(u)<o.cl(u). Now, let x, €M (LX) such that x, ecl(u) andlet 1eR, ,

since (LX,T) is LR, -space, there is neR, such that A<int(). Now
X, #cl(x) implies that u<Ai for each i1eR, which implies that
u<int(n) which implies that x, ¢ 6.cl(x). Thus O.cl(u)<cl(u). Hence
cl(u)=06cl(p). Conversely, let x, €M (LX) and A€R, . Then cl(4)e R.,
and so X, €cl(1)=06cl(2). Hence there is 7€R, such that A<int(7).

Thus (L>< ,2') is LR, -space.

Corollary 2.14 [11]: If (L>< ,r) is LR, -space, then closed L-subset is 6
-closed L-subset and hence 6@.cl(u) is @-closed forany pel*.

Definition 2.15 [13]: Let (D,<) be a directed set. Then the mapping
S:D—L" and denoted by S={u, :neD} is called a net of Z-subsets in X.
Specially, the mapping S:D —> M (LX ) is said to be a molecular net in L*. If
pel® andforeach neD, Seu then Siscalledanetin .

Definition 2.16 [13]: Let (Lx,r) be an Z-ts and S ={S(n):ne D} be a

DOI: 10.4236/apm.2024.145019

336 Advances in Pure Mathematics


https://doi.org/10.4236/apm.2024.145019

Najah A. Alharbi

molecular net in L*. Sis called a molecular & -net (¢ eM (L) ), if for each
y€f (a) there exists neD such that v(S(m))Z;/ whenever m>n,
where V(S (m)) is the height of the molecular S(m).

Definition 2.17 [13]: Let S={S(n):neD} and T={T(m):meE} be a
be molecular nets in (LX ,z’). Then T is said to be a molecular subnet of § if
there is a mapping f:E — D that satisfies the following conditions:

(i) T=Sof

(ii) For each neD there is meE such that f(l)>n for each l€E,
I>m.

Definition 2.18 [7]: Let (Lx,r) be an L-ts and § be a molecular net in
(LX ,r). Then x,eM (LX ) is called:

(i) a @ -limit point of S, (or S @ -converges to X, ) in symbols S—2—>x_ if
for each ue R,, there isa neD such for each meD and m>n we have

S(m)eint(x). The union of all @ -limit points of Sare denoted by 6.lim(S).

0
(ii) a @ -cluster (O -adherent) point of & in symbols SocX, if for each
u#eR, andforeach neD thereisa meD suchthat m>n and

S(m)eint(). The union of all & -cluster points of Sis denoted by 6.adh(S).
Theorem 2.19 [13]: Let (LX ,r) be an L-ts, uel* and x,eM (LX ) .
Then x, € .cl(u) iff there exists a molecular net Sin g such that Sis @
-convergesto X, .
Theorem 2.20 [15]: Assume that S = {S (n) ‘he D} is a molecular net in an

0
Lts (L*,7) and X, eM(L* ) Then Socx, iff there exists a subnet 7 of §

such that T—2—>x_ .

Theorem 2.21 [14]: Let (L>< ,r) be an Z-ts and pmel®. Then u is
H-compact set iff each o -net S contained in x has a @ -cluster point in p
with height o forany aeM(L).

Definition 2.22 [18]: The nonempty family | = L* is called an ideal if the
following conditions are satisfied, for each 11, 1, € L*

i) 1, 1

() If g<p, and g,el,then g el.

(iii) If g4, 4, €l ,then v, el .

Theorem 2.23 [19]: Let (L>< ,r) be an L-ts, uel* and x,eM (LX) .
Then x, €@.cl(y) iff there exists an ideal 7in L* such that /is 6 -converges
to X, and puel.

Definition 2.24 [20]: An Z-mapping f, :(LX ,r) —>(LY ,A) is called H-con-
tinuous if f* (77) et foreach nel’ isclosed and almost N-compact.

3. H-Closure and H-Interior Operators in L-Topological
Space

In this section, we introduce the concepts of H-Closure operator and H-interior
operator by using an almost N-bounded (or H-bounded) set and discuss their

properties.
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Definition 3.1: Let (LX,‘[) be an L-ts, gel®. Then u is called almost
N-bounded (or H-bounded) set in (LX ,1) if for each aeM (L) and every
a-REF ¥ of 1,, thereis ¥, e 2%) such that Y is an almost & -R'F of
.

If 1, is A-bounded set, then (L>< ,r) is called H-bounded space.

Theorem 3.2: Suppose that f| :(LX ,r) —>(LY ,A) is an L-almost continuous
and pel® is an H-bounded L-subset in (LX ,r) , then f (u) is an
H-bounded L-subset in (LY ,A) .

Proof. Let x4 bean H-bounded in L* andlet ¥ A’ bean a-RFof 1,
(aeM (L)), then {cl(int(ﬂ,)):ﬁ € ‘I’} c RC(LY ,A) isan o -RCRF of 1,.We

now will show that Q ={fL71(C|(int(/1))):/le‘I—’} is an o -RF of 1, . In fact,

since f_ isan L-almost continuous and cl (int(l)) IS RC(LY ,A) then
f[l(cl(int(ﬂ)))er'. According to the definition, ¥ there exists 1eW¥

such that cl(int(ﬂ))eR,L(xa),La, fL(Xa)gcl(int(/i)) hence

X, & fL‘l(cI(int(l))) for every X e X . This means that Qis an «a -RF of 1, .
Since p isan H-bounded set, there exists V¥, € 2™ such that

{17 (cI(int(2))): 2 ¥.} 2™ is an almost @-R'F of 4. Thus for some
yefB (@) andforeach X, €y thereexists A€W, such that

int( 1, (cl(int(2))))eR; . Since f is an L-almost continuous then it is
L-weakly continuous and since int(1)eA then

i (int(2)) <int( 1, (cl(int(2)))) and so x, e f*(int(2)). Consequently,

there exists X, ex and A€W, satisfying int(4)e R:L(XV) and vy, = f, (Xy)
for each y, e f (u). Thus, ¥, €2 is an almost @ -R'F of f (u). By
Definition 3.1, we have f_(x) an H-bounded Z-subset in (LY ,A) .

Theorem 3.3: Let (LX ,T) be an L-ts and let e L*. Then the following
statements are true:

(1) If p is H-compact set, then g is H-bounded set.

(i) If u is H-bounded setand 7 < u,then 7 is H-bounded set.

(iii) If u is H-compactsetand 7 <y ,then 7 is A-bounded set.

Proof. (i) Let u be an H-compact setandlet W ={p :iel}cz’ bean «a
-RFof 1, andso ¥ is a-RFof u.Since u is H-compact set, then there
exists ¥, = {pi a| :1,2,---,m} 2™ such that Y.  is an almost & - R°F of
4. Thus p is H-bounded set.

(ii) Let u be an H-bounded set and n<u.let W={p :iel}cz’ be an
a -RFof 1, .Since u is A-bounded set, then there exists
Y, ={p:i=12,--,m} €2™) suchthat ¥, isanalmost @-R'F of u,thus
there exists yef’ (a) such that ¥, is an almost y-R'F of u. Hence
VX, ep, 3A€¥, such that int(l)e R:y. Since n<u, then VX en<u,

F2eV¥, such that int(1)e R:y. Hence ¥, is an almost y-R'F of n and
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so V¥, isanalmost @ -R'F of 7. Thus 7 is A-bounded set.

(iii) Let u# be an H-compact set and 7<u. let ¥ <7’ be an « -RF of
1, and so a -RF of u . Since u is H-compact set, then there exists
Y e 2" such that Y. is an almost & -R'F of u,since n<u,then ¥,
isan almost @ -R'F of 7. Thus 7 is H-bounded set.

Theorem 3.4: Let (LX ,r) be an L-ts, aeM(L) and pel*. Then u is
H-bounded iff for each molecular « -net § contained in x has @ -cluster
pointin 1, with height «.

Proof. Let ux be an H-bounded set and S = {S (n) ‘ne D} be an molecular
o -net in y . If S does not have any @ -cluster point in 1, with height « .
Then for all x, eM (LX ) , X, is not @ -cluster point of S and so there exists
A, €R, and n,eD such that S(n)eint(Z,) for every neD and nxn,.
Put W={4 :xeXandaeM (L)}, then ¥ isan @ -RF of 1,.According to
the hypothesis, ¥ has a finite family P, :{lxi i =1,2,~--,k} e2™ such that

¥, isanalmost @ -R'F of u,thatisforsome yef"(a) andeach
k
Y, € u there exists A, ¥, (i<k) such that iht(/iX )e R;y .Put 1= -/,\1;“X. ,

k k
for each y, eu, we have i/:\lint(ﬂbXi )=int(i/_\l/lxi):int(/l), thus int(4)e R;y.

Since D is a directed set, then there is n, € D such that n >n i=12,---,k

and S(n)eint(ﬂxi), i=1,2,--,k whenever n>n, and so S(n)eint(1).

This shows that for each y, € u, v(S (n)) *y whenever n>n,. This contra-
dicts the hypothesis that Sis a molecular « -net. Therefore, S has at least a &
-cluster pointin 1, with height « .

Conversely, assume that each molecular « -net Scontained in 4 hasan 6
-cluster point in 1, with height ¢ and ¥ is an « -RF of 1, . If for each
Y. e 2¥) such that ¥, is not almost & - R'"F of u, that is, for each
yepB (a) thereexists (,¥,)e " (a)x 2") there exists molecule
X, €# such that for each 1eV¥, int(4) e Rx(ylm . Put D :ﬂ*(a)XZ(‘I’)

and defined the order as follows: (yl,\Pi)Z(yz,\Pf) iff >y, and W' o W2,
Then S:{S(NG):X(Wﬂ)eyi(%‘l‘o)eD} is an molecular & -net in pu.
Since ¥ isan «a -RF of 1, , then there exists p€'¥ such that peR and
hence int(p)eR; . Because (ple2™ . We take any pef(a),

X, €int(p) whenever (y,%¥,)>(,p). Therefore S(%\Pa)eint(p), which

7.¥,)
contradicts to the hypothesis. Therefore there exists W, 2") such that Y is
almost & -R'F of g andhence u is H-bounded.

Theorem 3.5: If (LX,T) fully stratified and LT2£ -space, then pel” is
H-compact setiff x is @ -closed and A-bounded set.?

Proof. If uel” is H-compact set, then by Theorem 2.12 we have u is 6
-closed and by Theorem 3.3 (i) we have u is H-bounded. Conversely, let u
be an @ -closed and H-bounded set and let Sbe an « -netin u. Since u is
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H-bounded, then by Theorem 3.4 we have $ has @ -cluster point, say X, in
1, with height « . By Theorem 2.20, then there is a subnet 7"of Ssuch that 7
0 -converges to X, and so x,e@cl(u) by Theorem 2.19. Since x is 6
-closed, then x=6cl(x) and so X, € u, then by Theorem 2.21 we have u
is H-compact set.

Theorem 3.6: If (L>< ,z’) is LR, -space, then pel* is H-bounded set iff
O.cl(u) is H-bounded set.

Proof. If 6.cl(u) is H-bounded set, then x is H-bounded set by Theorem

3.3 (ii). Conversely, suppose that x4 is A-bounded and ¥ = {nxj ‘je J} is an
o -RF of 1, . Then for each xe X there is Ty, €V such that My, € R, -
Since (LX,‘[) is LR, -space, then there is 1eR, there is ﬂxj €R, and

thereis p, € 7' such that AV Py =1 and. p, A7, =0y . Then the fami-
ly {ﬂxj ‘X, eM (LX )} isan «a -RF of 1, . Since u is H-bounded, then exists

finite subset J, of J such that {ﬂ,xj :jeJc} is an almost & -R'F of u.

Since /1XJ_ vV Py =1, X eﬁxj , then X, €p, . Since p, A7, =0, , then

{77*; :jeJc} is an almost @ -R*'F of Py - Therefore yprj for Jel,.
Since P, e7’, and (LX,T) is LR, -space, then by Theorem 2.13, we have
cl(pxj):H.CI(pXj) and so {nxj i eJD} is an almost & -R'F of H.CI(pXJ)

and since H.Cl(y)ge.cl(pxj), then {nxj :jeJc} is an almost @ -R'F of
O.cl(u). Hence Gcl(u) is H-bounded set.

Theorem 3.7: If (Lx,z') is LT, -space, then pel* is H-bounded set iff
4 is L-subset of H-compact set.

Proof. If u is H-bounded, then by Theorem 3.6 and corollary 2.14, we have
O.cl(u) is O@-closed and H-bounded set, hence by Theorem 3.5, we have
O.cl(u) is H-compact set. Conversely, If x is L-subset of H-compact set, then
by Theorem 3.3 (iii), we have x is A-bounded set.

Definition 3.8; Let (LX ,z’) be an L-ts and X, eM (LX ) If opel® s
closed and H-bounded set, then u is called HB-remoted neighborhood of X,
(HBR-nbd, for short) of x, if x, & . The set of all HBR-nbds of x, is de-
noted by HBR,

We note that HBR, <R, , VX, €M (LX)

The following example shows that the converse is not true in general

Example 3.9: Let X ={x}, L=[01], and let 7={0,,%;,x;,1,}. Then
(LX ,r) is L-ts. We have R, = {04, X3, X } . Now, we show that x, e L* is not
H-bounded set.

Let ¥={x,1,}c7',then ¥ is.8-RFof 1, .But for each
7€ B (.8)=(0,2], any finite subfamily ¥, €2 is not almost y-RF of
X;. Thus ¥, is not almost 8-R°F of X,. Thus X, is not A-bounded set
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andso X; ¢ HBR, .Hence R, & HBR, .
Definition 3.10: Let (LX ,z’) be an L-ts and xel”. Then x, €M (LX) is

called an A-bounded adherent point of x and write x, € HB.cl(u) iff
putA for each 2eHBR, . If u=HBcl(u), then u is called HB-closed

L-subset. The family of all HB-closed L-subsets is denoted by HBC ( L* ,r) and
its complement is called the family of all AFB-open L-subsets and denoted by
HBO(L* 7).

Theorem 3.11: Let (LX ,r) be an L-ts and let g e L*. Then the following
statements are true:

(i) m<cl(u)<HBcl(u).

(i) If nel* and <y then HB.cl(x)<HBcl(y).

(iii) HB.cl(HB.cl(u))=HB.cl(u).
(iv) HB.ol(u)=n{nel* :neHBC (L 7),u<n|.

Proof. (i) Let x, e M (LX ) such that x, ¢ HB.cl (), then there exists
A€HBR, such that p#<A. Since HBR, cR, and so A1eR, and hence

X, ¢cl(u). Thus cl(u)<HBcl(u).
(ii) Let x,eM (LX) such that x, ¢ HB.cl(77), then there exists e HBR,

such that n<A. Since u<n, then u<Ai and so x,¢HBcl(x). Thus
HBcl () < HB.cl(7).

(iii) Suppose X, €M (LX) such that x, e HB.CI(HB.CI(,U)). According to
Definition 3.10, we have HB.cl(u) % for each AeHBR, . Hence, there ex-

ists y, eM (LX) such that y, eHBcl(x) with y, ¢1 andso u%A4,thatis,

X, € HB.cl (). This shows that HB.cl (HB.CI (,u)) <HBcl(x). On the other
hand, u<HBcl(u) follows from (i) and so HB.cl(u)<HB.clI(HBcI(u)).
Therefore, HB.cl (HB.CI (,u)) =HBcl(u).

(iv) On account of (i) and (iii). HB.cl(x) isan HB-closed set containing u,

and so HB.Cl(u)> /\{77 elX:pe HBC.(LX ,r),,u < 77} . Conversely, in case
x,eM (LX) sand X, e HBCl(x), then u %A for each AeHBR, .Hence, if

n is an HB-closed set containing x , then 7n£1 , and then
x, e HB.cl(77)=17.
This implies that HB.cl (ﬂ) < /\{77 elX:ipe HBC.( L* ,r),y < 17} . Hence

HB.CI(y):/\{n e 157 e HBC.(L* ,r),yﬁn}

From Theorem 3.11, one can see that every HB-closed L-subset is a closed
L-subset, but the inverse is not true since every closed L-subset is not
H-bounded set in general as the following example shows.

Example 3.12: By Example 3.9, let 7€ L* be an L-subset, where n=x,,
then 7 is closed L-subset because 7'={0,,X;,X;1,}. But x, el* is not
H-bounded set.

Theorem 3.13: Let (LX ,T) be an Z-ts. The following statements hold:
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(i) 04,1 e HBC(L 7).

G IF 4g, .+, 4  HBC(L* 7), then s < HBC(LX ).

(i) If {z:iel}<HBC(L*,7), then Ay HBC(L* 7).

(iv) Every H-bounded and closed set is HB-closed.

(v) mel” is HB-closed iff there exists AeHBR, such that u<2 for
each x, eM (LX) with X, ¢ u

Proof. (i) Obvious.

(ii) Let gy, 44, 14, € HBC(LX ,r) and x, eM (LX) such that

n n
X, € HB.cl (\/l,uij, then for each 1< HBR, we have N £A andso g £4
1= « i=]

for some i=1,2,---,n.Hence x, e HB.cl(z;) for some i=12,--,n.Since g
is HB-closed set, then HB.cl(z;)<y; for some i=1,2,-,n and so X, €y

n n n
for some i=1,2,---,n and hence xae‘vlyi.Thus HB.CI(ylyi)S_vllui (*)
1= 1= 1=
n n
Conversely, since 4 <HB.cl(z) then L < HB.CI(\/lluiJ (* *). Hence

from (*) and (* *) we have HB.Cl(_vl,uijz_vl/Ji.Thus );lyieHBC(LX,r).

(iii) Let 4, 44, 4, € HBC(LX ,z’) and x, eM (LX) such that
X, € HB.cl (/\I ,ui), then for each 1 e HBR, we have A Hi £A andso gy £A4
ie i ie
for each iel. Hence x, eHBcl(y) for each iel. Since g is HB-closed
set, then HB.cl(z;)<y; for each iel and so x, ey for each iel and
hence X, € A H; Thus HB.CI(_/\I yi)S A K (*).
le le le
Conversely, since z; <HB.cl(z) then A1 S HB.CI(_/\I ,ui) (* *). Hence
from (*) and (* *) we have HB.CI(_/\I ﬂi):./\l 4 . Thus A€ HBC(LX ,2').
le le le
(iv) Let e Ll* be an H-bounded and closed set and let X, e M (LX) such
that X, ¢ u, since u is H-bounded and closed set, then xeHBR, , since

u<u then x, ¢HBcl(x) andso HB.cl(u)< u . Therefore u is HB-closed
set.
(v) Suppose that u is HB-closed set, X, € M (Lx) and X, ¢ 1. By Defini-

tion 3.9, there exists A€ HBR, with u<A. Conversely, provided that the
condition is satisfied. If x is not HB-closed set, then there exists x, € M (L>< )
such that x, e HB.cl(x) and X, . Hence u% A for each 1eHBR, . It
conflicts with the hypothesis, and so u is HB-closed set.

Theorem 3.14: Let (LX ,r) be an L-ts and pel*. Then pue HBC(LX ,z’)
iff peHBR, foreach X, &u.

Proof. It follows directly from Theorem 3.13 (v).

Theorem 3.15: Let (Lx,r) be an L-ts and pxel*. Then the mapping
HB.cl:L* — L* is called closure operator of HB-boundedness iff it satisfies:
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(i) HB.cl(0,)=0,.

(i) w<HBcl(u).

(iii) HB.cl(xvn)=HBcl(u)v HBcl(7).

(iv) HB.cl(HBcl(u))=HBcl(u).

A closure operator of HB-boundedness HB.cl generates L-topology 7,
on X as: 1,54 = {,u el* 1HBcl(y')= ,u’} .

Proof. It follows directly from Theorems 3.11 and 3.13.

Theorem 3.16: Let (LX ,z’) be an Z-ts. Then:

i) rg<7.

(ii) If (L>< ,r) is H-bounded space, then 7=7;.

Proof. (i) Let petyy, then HBcl(x')<u' . Since cl(u')<HBcl(x'),
hence

cl(#')<y' andso per.

(ii) We note that 7,5 <7 from (i). Now, let per then g’ e7’. Since 1,
is H-bounded and x'<1,, then u' is H-bounded (By Theorem 3.3 (ii)) and
by Theorem 3.13 (iv) we have u' is HB-closed set and so u'e7,5. Thus
T=T.5.

Definition 3.17. Let (L*,7z) bean Z-ts, uel* and

HB.int(,u)zv{pe X:pe HBO(LX ,r),pS,u} . We say that HB.int(u) is
the HB-interior of .

The following Theorem shows the relationships between HB-closure operator
and HB-interior operator.

Theorem 3.18: Let (LX ,z’) be an Z-ts and u e L*. Then the following are
true:

(i) u is HB-openiff =HB.int(u).

(i) (HB.cl(x)) =HB.int(x') and (HBu.int(u)) =HB.cl(4').
(i) HB.cl(u)=(HB.int(4')) and HB.int(u)=(HBel(x)) .
(iv) HB.int(u)<int(u)<u.
(WIf nel” and p<n then HB.int(x)<HB.int(7).
(vi) HB.int(HB.int(x))=HB.int(u).
Proof. (i) Let z el bean HB-open set, then
HB.int () = v{p elX:pe HBO(LX ,r),p < ,u} =u andso p=HB.int(u).
Conversely, let 1 =HB. int(,u) , since
HB.int ()= v{p elX:pe HBO(LX ,T),p < ,u} . Therefore u is HB-open set.

(ii) It follows directly from Definition 3.17 and Theorem 3.11 (iv).

(iii) It follows directly from (ii)

(iv) It follows directly from (ii) and Theorems 3.11 (i)

(v) It follows directly from (ii) and Theorem 3.11 (ii)

(vi) It follows directly from (ii) and Theorem 3.11 (iii)

Theorem 3.19: Let (LX ,r) be an L-ts. The following statements hold::
(i) Oy, eHBO(L*,7).
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G)IF gt .00, 4, € HBO(L* 7), then » 1 < HBO(L" 7).
(ifi) If {44 :ic 1} HBO(L",7),then v 4 eHBO(L 7).

Definition 3.20: Let (Lx,z') be an I-ts and S be a molecular net in L*.
Then x,eM (LX ) is called

(i) limit point of S [13], (or S converges to X,) in symbol S — x, if for
every p€R, there is neD such for each meD and m=n we have
S(m) ¢ 4. The union of all limit points of Sis denoted by lim(S).

(ii) A-bounded limit point of S, (or S HB-converges to X_) in symbol

HB
S—X, ifforevery ueHBR, thereisan neD suchthat meD and

m=>n, we have S(m)¢ x. The union of all HB-limit points of Sis denoted by
HB.lim(S).

Theorem 3.21: Suppose that $ is a molecular net in (Lx,r), uelX and
X, €M (LX ) . Then the following statements hold:

HB
(i)If S—>x,,then S—>X,.
HB

(i) x, eHB.lim(S) iff S—>x,.

(iii) lim(S)<HB.lim(S).

(iv) x, eHB.cl(u) (resp. X, e.cl(u)), iff there exists a molecular net Sin
p such that Sis HB-converges (resp. converges) to X, .

(v) HB.lim(S) is HB-closed setin L*.

Proof. (i) Let S—>x, and let AeHBR, . Since HBR, —R then

Xa’

A€R, Since S—X,, then for every peR, thereis neD such for each

meD and m>n, we have S(m)e/i.Thus SiB)Xa.
(ii) Let x, e HB.Iim(S) andlet Ae HBR, .Since X, ¢, then
HB.Iim(S) ¢ A . Therefore there exists y, € M (L>< ) such that
y, € HB.lim(S) and y, 4. Then e HBRyy and so there is neD much

for each meD and m>n we have S(m)ga, but since AeHBR, so

HB HB
S—X,. Conversely, let S— X, , then by Definition 3.20 (ii) we have

X, € HB.lim(S)
(iii) Let x, €lim(S) andlet ne HBR, .Since HBR, cR, ,then neR, .
And since X, € Iim(S) , then for each Ae Rxa there is ne D such for each

meD and m>n,wehave S(m)gA andso S(m)e¢7n.Hence
X, € HB.lim(S).So lim(S)<HB.lim(S).

(iv) Let XaeM(LX) such that x, e HB.cl(x),then p£A foreach
leHBRxH. Since u £ A, then there exists a(,u,l)eM(L) such that

Xo(uz) €M With X, &A . Since the pair (HBR >) is a directed set and so

th,_

we can define a molecular net S:HBR, — M (LX) as follows S(1)= X o)

for each 41€HBR, Hence §is a molecular net in x. Now let 7€ HBR,
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such that 1 <7, so we have there exists S(7)= X EN and so
S(77) =Xy, € 4 - Hence Sis HB-converges to X, .

Conversely, let Sbe a molecular netin x such that Sis HB-converges to X,
then for each Ae HBRX(I there is neD such for each meD and m=>n,

we have S(m)eﬂ. Since S(n)ey for each neD, meD. So S(m)ey
and ,uZS(m)>/1 hence u£A foreach A€HBR, .This means that

X, € HB.cl (u).

(v) Let X, € HB.cl(HB.lim(S)), then HB.lim(S)£2 for each AeHBR,
and then there exists y, €M (LX) such that y e HB.lim(S) and y, gd.
Then for each ue HBRyy , there is ne D much for each meD and m>n
wehave S(m)¢u andso S(m)¢A.Hence X, € HB.lim(S). Thus
HB.cl (HB.lim(S)) < HB.lim(S) andso HB.lim(S) is HB-closed set,

Definition 3.22: Let (Lx,r) be an L-ts and 7 be an ideal in L*. Then
X, €M (LX ) is called:
(i) limit point of 7[18], (or /converges to X, ) in symbol | — X, if Rxa cl.

The union of all limit points of 7is denoted by lim(1).

HB
(ii) H-bounded limit point of / (or 7/ HB-converges to X, ) in symbol | —X,
if HBR, <. The union of all ZB-limit points of 7is denoted by HB.lim (1.

Theorem 3.23: Suppose that 7 is an ideal in (Lx,r) , nel® and

X, €M (LX ) . Then the following statements hold:
HB
I | ->x,,then I >X,.

HB
(i) x, eHB.lim(1) iff 1—>x,.
(iii) lim(1)<HB.lim(1).
HB
(iv) X, € HB..cl(x) iff there exists an ideal 7in L* such that | —>X, and

uel
(v) HB.Iim(1) is HB-closed setin L*.
Proof. (i) Let |1 — X, then Rxa c | . Since HBRXH c Rxa , then HBRxa cl.

HB
Thus | —>Xx,.
(i) Let x, € HB.lim(1) andlet A€HBR, .Since X, ¢4 and

X, € HB.Iim(I ) , then HB.Iim(I ) ¢ A . Therefore there exists y, €M (LX)
such that y, e HB.Iim(I) and y, ¢A.Then A€ HBR, andso

HBR, < HBR, <l hence HBR, <. Thus I iB>Xa. Conversely, let | iB)Xa,
then by Definition 3.22 (ii) we have x, € HB.lim(1).

(iii) Let X, elim(l) and let neHBR, . since X, €lim(l), so for each
A€R, , A€l andsince neHBR, so neR, . Hence X, € HB.lim(1). So
lim(1)<HB.lim(1).

(iv) Let x,eM (LX ) such that X, € HB.cl (). The family
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I={pelX:31eHBR, >p<4i} isanidealin L . Now we show that ##1 .
Since X, € HB.cl(x), then for each A€ HBR, , u£A. So By definition of /

HB
we have u¢ 1. Finally, we show that | —>X,. Let 1eHBR, , since 1<4,
HB
then Ael.So HBRxa c|.Thus | —>X,.

HB
Conversely, let 7 be an ideal in L* such that | —>X, and u¢|. Then for
each Ae HBRXa s

X, e HB..cl ().
(v) Let X, e HB..cl(HB.lim(1)), then HB.lim(1)£ A for each A€HBR,

Ael.Since Ael, puegl,then £ andso

and then there exists y, e M (LX) such that y, eHB.lim(I) and y, 4.

HB
Since A€ HBRyy and |-y, then nel foreach neHBR, .Since y ¢4

then Ael.But 1€HBR, andso x, € HB.Iim(1). Thus
HB..CI(HB.Iim(I))S HB.lim(1) andso HB.lim(1) is HB-closed set,

4. HB-Continuous Mappings in L-Topological Space

In this section we first define HB-continuous mappings in L-topological space
and then investigate some of its characterizations,

Definition 4.1: An Z-mapping f, : (LX ,1) - (LY ,A) is called :

(i) HB-continuous at X, € M (LX ) it f'(n)e R, foreach neHBR, ., |

(ii) HB-continuous if f ! (77) et foreach nel” isclosed and H-bounded.

Theorem 4.2; Let f, :(LX ,T) - (LY ,A) be an Z-continuous mapping. Then
the following properties are equivalent :

(i) f, is HB-continuous.

(ii) f_ is HB-continuousat X, foreach x,eM (L>< ) .

(iii) If 7eA and 7' is H-bounded, then f*(n)er.

(iv) If nel’ is H-bounded, then f'(n)er’.

Proof. (i) = (ii): Let f_: (LX ,z’) - (LY ,A) be an HB-continuous and
X, €M (LX ) , NE HBRfL(Xa) then f[l (77) e7'.Since f, (Xa) ¢ 1, then
Xy & fL_l (77)

Andso f*(n)e R,, - Thus f_ is HB-continuousat X, foreach
X, eM (LX),

(ii) = (i): Let f_ be an HB-continuous at x, for each X, €M (Lx ) If f,
is not AB-continuous, then there is 77 € L' is H-bounded and closed such that
ft(n)er, ie, c ( fL’l(n));(_ f (7). Then there exists x, €M (LX) such
that x, ecl ( f! (77)) and X, ¢ f* (7) implies that fL(x,)en, since 7 is
closed and H-bounded, then neHBR, , ;. But f*(17)¢R, , this contradic-
tion. Thus f, is AB-continuous mapping.

(i) = (iii): Let f, :(LX ,r)—)(LY ,A) be an HB-continuous and 7€ A such
that 7' is H-bounded and so 7' is H-bounded and closed. By (i), we have
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f'(n)er . Since f7'(n)= ( f! (77))’ ,then f*(n)er.

(iii) = (i): Let 7€’ be an H-bounded and closed, then 7' €A . By (iii), we
have f'(n')er, thus f*(n)= ( f (0’ )) , then f*(n)er’. Hence f,_ is
HB-continuous mapping.

(iv) = (iii)): Let neA and 7n' be an H-bounded. By (iv), we have

f'(n)er . Thus ' (n)= ( £ (77’)) er.

(iv) = (il): Let ne HBRfL(XX) and x,eM (LX) . Then 7n is closed and
H-bounded set, f (X,)¢n andso x, ¢ f_*(#). By (iv), we have f (n)et
and x, ¢ f'(7) hence f'(7)eR, . Thus f_is HB-continuous mapping
at X, foreach x,eM (LX).

(iv)= (i): Let ne LY be a closed and H-bounded set. By (iv), we have

f*(7)er’ . Thus f,_ is HB-continuous mapping.

Theorem 4.3: Let f :(Lx,z')—>(LY,A) be an L-surjective mapping. Then
the following conditions are equivalent:

(i) f, is HB-continuous mapping.

(ii) For each pel*, f, (CI (,u)) <HB.cl ( f, (,u)) ,

(iii) For each nel’, cl ( £t (77)) < fL'l(HB.CI (77)) ,

(iv) Foreach nel’, fL’l(HB. int(n)) < int( f (77)) ,

(v) For each HB-open L-subset p in L', then f *(p) isopen L-subsetin

LX

(vi) For each HB-closed L-subset A in L', then f *(1) is closed Z-subset
in L*.

Proof. (i) = (ii): Let #eLl* and x,eM (LX) such that x, ecl(x). Then

f(x,)e f, (CI (/1)) .Let ne HBRfL(Xa)' So by (i) and by Theorem 4.3, we have
f (n)e R, . Since X, ecl (#), then u% ft (77) Since f, is L-surjective

then f (u)£¢n and neHBR so fL(Xa)eHB.CI(fL(y)). Hence

f (o1 (1) < HB (. ().

(i) = (iii): Let neL’.Then f*(17)eL*.By (ii) we have
f(cl(f.* () < HB.l (£, (7 (n))) < HB.el (7). So
f(cl(f.* () <HBel (7). Thus £, (cl(f* ()< f* (HB.cl(n)). Since
ol (1 (m)) < £ (c (7 () then I (17 () < £ (HB.cl (1))

(iii) = (iv): Let nel’ . By (iii), we have cI(fL‘l( ))<f *(HB.cl(n'))
since ¢l (f*())=(int( (7)) and 7 (HB.cl(7)) = (HB.int(n))) -

So (int(f[1 (77))>' S(fL'l(HB.int(n)))’.Thus fL’l(HB.int(n mt( 77))
(iv)= (v): Let p bean HB-open L-subsetin L'.Then
f.*(p)=f,*(HB.int(p)) and by (iv), we have
f.*(HB.int(p)) < int( f! (p)) ,s0 f(p)< int( £t (p)) .Thus f*(p)er.

fL(Xa)
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(v) = (vi): Let A be an HB-closed L-subset in L. By (v), we have

f'(2)er. Then ( f! (/1))’ =f'(V)er andso f'(2)er’.

(vi)= (i): Let neL’ be an closed and H-bounded set, then 7 is HB-closed
L-subset in L. By (vi), we have f'(7)er’. Thus f_ is AHB-continuous
mapping.

Theorem 4.4: If f : (L)< , z’) - (LY ,A) is HB-continuous mapping, then

f: (L)< ,z’) - (Lf(x),Af(X)) is HB-continuous mapping.

Proof. Let 7€Ay, such that lf(x)\n is H-bounded set, then lf(x)\n is
H-bounded and closed in (Lf(x),Af(X)) . Therefore p =1, \(1f(x) \77) €A and

p' is H-bounded in (LY,A). Since f, :(Lx,z')—>(LY,A) is HB-continuous
mapping, the by Theorem 4.2 (iii), we have f *(p)er, thus

7 (p) = fL’l(L V(L) \77))=1X \(fL’l(lf(x) \77))=1x (L ()= 17 (n).
Hence f'(n7)er consequently, fLZ(LX,T)%(Lf(X),Af(X)) is
HB-continuous mapping.

Theorem 4.5: If fL:(LX,r)—> LY,A) is HB-continuous mapping and
Ac X then fL|A:(LA,rA)—>(LY,A) is HB-continuous mapping.

Proof. Let 7L’ bean H-bounded and closed set. Since
f :(Lx ,z’) - (LY ,A) is HB-continuous mapping, then f*(77)e7’ and since
( fL|A)7l (n)=f"(n)Al,er). Hence f |, is HB-continuous mapping.
Theorem 4.6: Every f : (L>< ,1) - (LY ,A) L-continuous mapping is HB-

continuous mapping.

Proof. Let f, :(L>< ,r)—)(LY,A> be an L-continuous and let 7 e LY be an
closed and H-bounded set, then f* (7)et'. Thus f_ is HB-continuous map-
ping.

The following example shows that the converse is not true in general.

Example 4.7: Let {I jile J} be the usual interval base of the relative
L-topology on L=1=[0,1] induced by the set of real numbers. Define a
L-topology 7 on [0,1] generated by the base consisting of, 0,, 1, and
{Ijk sjedandk e(O,l)} where

k:xel
i (X):{O Dxel

Let A be the L-topology on 7 such that the complements of any number of

A is countable L-subset in 7/ (ie., the support of the L-subset is countable). Let
f :(Lx,r) - (LY,A) be a function defined by f(x)=X,forall xel . Thenit
can be see that f, is AB-continuous but not Z-continuous mapping.

Theorem 4.8: A mapping f : (L>< ,z') - (LY ,AHB> is L-continuous mapping
iff it is HB-continuous mapping.

Proof. Since A}z <A’, then necessity is evident. Now, we suppose that f,
is HB-continuous and 7 €Az . Then by Theorem 4.3 (iii) we have

ft(n)= fL_l(HB.C|(77))ZC|(f,__l(n)> and so f'(p)er’ . Thus f_ is
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L-continuous mapping.

Theorem 4.9: Let f, :(Lx,r)—>(LY,A) be an Z-mapping and (LY,A) is
H-bounded space. Then f, is Z-continuous mapping iff f,_ is AB-continuous
mapping.

Proof. By Theorem 4.6 we need only to investigate the sufficiency. Let 7€ A".
Since (LY,A) is H-bounded space then by Theorem 3.2(ii), we have 7 is
H-bounded set and so 7 is HB-closed L-subset. By HB-continuity of f , we
have f *(n)er’.Hence f_ is L-continuous mapping.

Theorem 4.10: If f,_ is AB-continuous, then f, is A-continuous mapping.

Proof. Follows from the fact that every H-compact set is H-bounded set.

Theorem 4.11: Let f, :(Lx ,z’) N (LY ,A) be an Z-mapping and (LY ,A) be
LT, -space. Then f, is A-continuousiff f,  is AB-continuous mapping.

Proof. Let f, be an HB-continuous mapping and let 7eL’ be a closed
and H-compact, then by Theorem 3.3 (i), we have 7 is H-bounded and closed.
Since f, is HB-continuous then f *(77)er’. Thus f_ is H-continuous.

Conversely, let f, be an H-continuous and let 7eL’ be a closed and
H-bounded. Then 7 is H-compact and closed. Since f, is A-continuous,
then f'(7)er'.Thus f_ is HB-continuous mapping.

Remark 4.12: For an Z-mapping f, : (LX,T)—>(LY,A), we obtain the fol-
lowing implications:

L-continuity = HB-continuity —> H-continuity.

None of these implications are reversible. However, if it (LY ,A) is
H-bounded (resp. LT, -) space, then Theorem 4.10 (resp. Theorem 4.12) im-
plies that the concepts of L-continuity (resp. HB-continuity) and H-continuity
are equivalent.

Theorem 4.13: If f_: (LX ,rl) - (LY ,rz) is Z-continuous and
g, :(LY,TZ)—>(LZ,13) is HB-continuous, then g, o f, :(Lx,fl)—>(LZ,r3) is
HB-continuous.

Proof. Let 7€’ be a closed and almost N-compact. Since g, is HB-con-
tinuous, then g[l(n)ez'é and since f is ZL-continuous, then

f (g[l (77)) er; Hence g, of, HB-continuous mapping.

Theorem 4.14: If (Lx,z') and (LY ,A) are L-ts's and 1, =1,v1; such

that 1,,1; ez’ and fL:(LX,r)—>(LY,A) is L-mapping and fL|A, fL|B are

HB-continuous mappings, then f, is AB-continuous mapping.

Proof. Let 7L’ bean N-almost bounded and closed then

(fl) v (1) () = () AL) v (17 (1) A L)
=(f7 () A v))= 17 (1) AL = 17 ()

Hence f '(n)er'.Thus f_ is HB-continuous mapping.

Theorem 4.15: If f, :(Lx,z')—>(LY,A) is HB-continuous mapping, injec-
tive, (LY ,A) is LT, -space and A-bounded, then (LX ,r) is LT, -space.

Proof. Let X,,y,eM (L>< ) such that x=y . Since f is injective
L-mapping, then f_(x,),f, (yy) eM (LY) and f(x)# f(y). Since (LY,A)
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is LT, -space, then f (x,),f, (yy) are closed L-subsets in (LY ,A) . Since
(LY,A) is H-bounded, then f, (Xa), f, (yy) are H-bounded L-subsets. Since
f: (LX , z') - (LY ,A) is HB-continuous mapping, then f*(f (x,),)=Xx,
and fL’l(fL(y,),)= y, are closed L-subsets in (LX,T). Hence (Lx,z’) is
LT, -space.

5. Characterizations of HB-Continuous Mappings in
L-Topological Space

Theorem 5.1: Let f, :(LX ,r) - (LY ,A) be an HB-continuous mapping and

be a fully stratified LT , -space and LR, -space. If f.(1¢) is contained in
2

some H-compact set of L', then f,_ is Z-continuous mapping.
Proof. Let 7€’ bean H-compact set containing f, (1) andlet peA’.
Since 7 is B-compact in (LY,A) which is fully stratified LT ,-space and
2=

2
LR, -space, so n€A’ and 7 is H-bounded by Theorem 3.3 (ii). Thus
napeA’. Hence by Theorem 3.3 (iii), we have nApel’ is H-bounded.
Thus nApel’ is closed and H-bounded. By HB-continuity of f,, then we
have f'(nAap)er’. But,
ft(map)=1t (AT (p)=f " (p)AL = (p). So f'(p)er'. Hence
f, is L-continuous mapping.

Theorem 5.2: If f, :(LX ,r) — (LY ,A) is L-closed and L-almost continuous
mapping, then f*: (LY ,A) - (L>< ,1) is HB-continuous mapping.

Proof. Let 7€ L* be an H-bounded and closed. Since f, is Z-almost con-
tinuous mapping, then by Theorem 3.2 we have is H-bounded in L. Since f,
is Z-closed mapping, then f_(77)eA’. Hence by Theorem 4.3, we have f* is
HB-continuous mapping.

Theorem 5.3: Let (LX ,z’) be an L-ts and (LY ,A) be a fully stratified LT21

2

-space and LR, -space. If f, :(L)< ,r) - (LY ,A) is a bijective and Z-almost
continuous mapping, then f*: (LY ,A) - (LX ,r) is HB-continuous mapping.

Proof. Let 7€’ be an H-compact. Since f, is Z-almost continuous
mapping, then by Theorem 2.10, f (7) is H-compact. Since (LY ,A) is fully
stratified LT, -space and LR, -space, then fi(n)eA” and f () is
H-bounded. Hénce by Theorem 4.2, we have f " is HB-continuous mapping.

Corollary 5.4: Let (Lx,r) be an H-compact space and (LY,A) be a fully
stratified LT21 -space and LR, -space. If f, :(LX,T)A(LY,A) is a bijective

2
and L-almost continuous mapping, then f, isa homeomorphism.
Proof. Follows from Theorem 5.1 and 5.3.
Theorem 5.5: Let f, :(L)< ,r) - (LY ,A) be a surjective Z-mapping, then the
following conditions are equivalent :
(i) f_ is HB-continuous mapping.
(ii) Foreach x,eM (LX ) and each molecular net Sin L*,
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f (S)—=—>f (x,) at S—>x,.
(iii) f_(lim(S))<HB.lim(f (S)) foreach Sin L*.
Proof: (i) = (ii): Let XaeM(LX) and S:{S(n):neD} be an molecular

netin L* which convergesto X,.Let 7€HBR, , |, by (i), we have

f(n)e R, . Since S—Xx, then there is an neD for all meD, m>n
such that S(m)% f*() andso f, (S (m)) £ f f'(n)=n.Thus

f (S(m))£n.Hence f (S)—"—f (x,) .

(ii) = (iii): Let S be a molecular net in L* and let y, € f, (Iim(S)), then
there exists X, €lim(S) such that y, = f, (X, ). By (ii) we have
f_(x,)eHB.lim(f_(S)). Thus f,_(lim(S))<HB.lim(f (S)) foreach Sin
L.

(iii) = (i): Let nel’ be an HB-closed and X, €M (LX) such that
X, €cl ( f (77)) By Theorem 2.19, we have molecular net Sin f* (7) which
convergesto X,.Thus X, €lim(S) andso f_(x,)e f_(lim(S)). By (i),
fL(x,)e f (lim(S))<HB.lim(f_(S)) and so f (S)—=—f (X,). On the
other hand, since § is molecular net in f,:1 (77) , then for each neD,
S(n)e f*(7) and so f (S(n))<f, ( ft (77)) =7 . Hence f (S(n))<n for
each neD.Thus f (S) ismolecular netin 7.So we have
f (S)—=—>f_(X,) and f_(S) ismolecularnetin 7 andso
f_(x,)eHBcl(n). But since 7 is HB-closed L-subset, so 7=HB.cl(7).
Thus f,(X,)en . Hence X,ef*(n). So Cl(f[l(n))ﬁ f*(17) . Hence
f (7)et'. Then f_ is HB-continuous mapping.

Theorem 5.6: If f, :(L>< ,r)—)(LY ,A) is a surjective Z-mapping. Then the
following conditions are equivalent:

(i) f_ is HB-continuous mapping.

(ii) Foreach x,eM (LX) and each Z-ideal 7in L*, then

fo()—S>f (x,) if 1>x,.

(iii) f,(lim(1))<HB.lim(f (1)) foreach 7in L*.

Proof: (i) = (ii): Let X, €M (L*) and I —>x,.Let neHBR, , , by (i),
we have f*(77)e R, . Since | —Xx, then f! (7)el. Since X, ¢ ft(n),
then f_(x,)€n,so nef (1).Hence HBR, (., < f_(1). Thus
fL(I)i) fL(th)'

(i) = (iii): Let /be an L-ideal in L* andlet y, e f, (lim(1)), then there ex-
ists x, elim(1) suchthat y, = f_(x,).By (ii) we have
f (1)—2>f_(x,).S0 vy, =f(x,)e HB.Iim( f (1 )) . Hence
f,(lim(1))<HB.lim(f_ (1)) foreach Zin L*.

(iii) = (i): Let ne LY be an HB-closed set and X, €M (LX) such that
x, €cl ( £ (77)) . By Theorem 2.23, there exists L-ideal /which converges to X,

such that fo1(77) ¢ 1. Moreover, f (1)< {p el ing p} if el with
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n<A, then there exists pel satisfy X, &u such that f_(x,)eA. Since
n<A, then f (x,)e¢n. This show that x,eu if f (x,)en. Thus
ft(n)<u. So f'(n)el, a contradiction. Hence n¢ f_(1). On the other
hand, by (iii), f, (x,)e f_(lim(1))<HB.lim(f_(I)).Thus

f (1)—=—>f (x,) and so f_(x,)eHB.cl(y). But since 7 is HB-closed
L-subset, so n=HB.cl(n).Thus f (x,)en.Hence x, e f*(n).So
Cl(f[l(n))ﬁ f'(n). Hence f_'(n)er'. Then f_ is HB-continuous map-
ping.
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