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Abstract 
In this paper, we introduce and study the notion of HB-closed sets in        
L-topological space. Then, HB-convergence theory for L-molecular nets and 
L-ideals is established in terms of HB-closedness. Finally, we give a new defi-
nition of fuzzy H-continuous [1] which is called HB-continuity on the basis 
of the notion of H-bounded L-subsets in L-topological space. Then we give 
characterizations and properties by making use of HB-converges theory of  
L-molecular nets and L-ideals. 
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1. Introduction 

Continuity and its weaker forms constitute an important and intensely investi-
gated area in the field of general topological spaces. In 1975 Long and Hamlett [2] 
introduced the notion of H-continuity and it has been further investigated by 
many authors including Noiri [3]. In 1993 Moony [4] studied the notion of 
H-bounded sets and some new characterizations and properties of H-bounded 
sets are examined. In 1995 Dang and Behers [1] extended the notion of 
H-continuity to fuzzy topology, and introduced the notion of fuzzy H-conti- 
nuous functions using the fuzzy compactness given by Mukherjee and Sinha [5]. 
However, the fuzzy compactness has some shortcomings, such as the Tychonoff 
product theorem does not hold, and it contradicts some kinds of separation 
axioms. Hence, the notion of fuzzy H-continuous functions in [1] is unsatisfac-
tory. In this paper, we first define the concept of HB-closed sets by means of the 
concept of almost N-boundedness (H-bounded L-subsets). Then by making use 
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of HB-closed sets we introduce and study the HB-convergence theory of 
L-molecular nets and L-ideals. Finally, we give a new definition of fuzzy 
H-continuous [1] which calls HB-continuity on the basis of the notions of 
HB-closedness in L-topological space. In section 3, we introduce the concepts of 
HB-closure (HB-interior) operator and HB-closed (HB-open) sets in L-topo- 
logical spaces and their various properties are given. And with the help of these 
notions we introduce and study the concept of HB-limit point of L-molecular 
nets and L-ideals. In section 4, we introduce and study the concept 
HB-continuous by means of HB-closed set and we present its properties and 
study the relationship between it and L-continuous, H-continuous mappings. 
Finally, in section 5, some new interesting characterizations of HB-continuous 
mappings by HB-limit points of L-molecular nets and L-ideals are established. 

2. Preliminaries 

This paper ( ), , ,L L '= ≤ ∨ ∧  denotes a completely distributive lattice with the 
smallest element 0 and the largest element 1 ( 0 1≠ ) and with an order reversing 
involution on it. An Lα ∈  is called a molecule of L if 0α ≠  and α ν γ≤ ∨  
implies α ν≤  or α γ≤  for all , Lν γ ∈ . The set of all molecules of L is de-
noted by ( )M L . Let X be a nonempty set. XL  denotes the family of all map-
pings from X to L. The elements of XL  are called L-subsets on X. XL  can be 
made into a lattice by inducing the order and involution from L. We denote the 
smallest element and the largest element of XL  by 0X  and 1X , respectively. If 

Lα ∈ , then the constant mapping { }: Xα α→  is L-subset [6]. An L-point (or 
molecule on XL ),  denoted by xα ,  ( )M Lα ∈  is  a L-subset which  

is defined by ( )
:

0 :
x y

x y
x yα

α =
=  ≠

. 

The family of all molecules XL  is denoted by ( )XM L  [7]. For XLΨ ⊂ , we 
define ( )2 Ψ  by the set { }: is finite subfamily ofω ω⊂ Ψ Ψ . An L-topology on 
X is a subfamily τ  of XL  closed under arbitrary unions and finite intersec-
tions. The pair ( ),XL τ  is called an L-topological space (or L-ts, for short) [8]. If 

( ),XL τ  is an L-ts, then for each XLη∈ , ( )cl η , ( )int η  and η′  will denote 
the closure, interior and complement of η . A mapping : X Yf L L→  is said to 
be an L-valued Zadeh function induced by a mapping :f X Y→ , iff 
( )( ) ( ) ( ){ }:f y x f x yµ µ= ∨ =  for every XLµ∈  and every y Y∈  [7]. An 

L-ts ( ),XL τ  is called fully stratified if for each Lα ∈ , α τ∈  [9]. If ( ),XL τ  
is an L-ts, then the family of all crisp open sets in τ  is denoted by [ ]τ  i.e., 

[ ]( ),X τ  is a crisp topological space [10]. 
Definition 2.1 [11]: If ( ),XL τ  is L-ts, then XLµ∈  is called regular open 

set iff ( )( )int clµ µ= . The family of all regular open sets is denoted by 

( ),XRO L τ . The complement of the regular open set is called the regular closed 
set and satisfy ( )( )intclµ µ= . The family of all regular closed sets is denoted by 

( ),XRC L τ . 
Definition 2.2 [11]: The L-valued Zadeh mapping ( ) ( ): , ,X Y

Lf L Lτ → ∆  

https://doi.org/10.4236/apm.2024.145019
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is called: 
(i) Almost L-continuous iff ( )1

Lf η τ− ′∈  for each ( ),YRC Lη∈ ∆ . 

(ii) Weakly L-continuous iff ( ) ( )( )( )1 1intL Lf f clη η− −≤  for each η∈∆ . 

Definition 2.3 [12]: Let ( ) ( ): , ,X Y
Lf L Lτ → ∆  be an L-valued Zadeh map-

ping and A X⊆ , then : A Y
L Af L L→  is defined as follows: 

( )( ) ( ) ( )1L AAf f fµ µ µ∗= ∧ = , for each ALµ∈  and call L Af  the restric-

tion of f on A. Where µ∗  denote the extension of µ  in XL , that is for each 
x X∈ , 

( ) ( ) :
0 :

x x A
x

x A
µ

µ∗  ∈= 
∉

 

Definition 2.4 [13]: Let ( ),XL τ  be an L-ts and ( )Xx M Lα ∈ . Then: 
(i) η τ ′∈  is called a remote neighborhood (R-nbd, for short) of xα  if 

xα η∉ . The set of all R-nbds of xα  is called remoted neighborhood system and  
is denoted by xR

α
. 

(ii) XLλ∈  is called an ∗ -remoted neighborhood ( R∗ -nbd, for short ) of 
xα  if there exists xR

α
µ ∈  such that λ µ≤ . The set of all R∗ -nbds of xα  is  

called ∗ -remoted neighborhood system and is denoted by xR
α

∗ . 

Definition 2.5 [14]: Let ( ),XL τ  be an L-ts, XLµ∈  and ( )M Lα ∈ . Then 
τ ′Ψ ⊂  is called an: 

(i) α -remoted neighborhood family of µ , briefly α -RF of µ , if for each  
L-point xα µ∈  there is λ∈Ψ  such that xR

α
λ ∈ . 

(ii) α -remoted neighborhood family of µ , briefly α -RF of µ , if there 
exists ( )γ β α∗∈  such that Ψ  is an γ -RF of µ , where  

( ) ( ) ( )M Lβ α β α∗ = ∩ , and ( )β α  denotes the union of all the minimal sets 
relative to α . 

Definition 2.6 [11]: Let ( ),XL τ  be an L-ts, XLµ∈  and ( )M Lα ∈ . Then 
τ ′Ψ ⊂  is called an: 

(i) Almost α -∗ -remoted neighborhood family of µ , (or briefly, almost α -
R F∗ ) of µ , if for each L-point xα µ∈  there is λ∈Ψ  such that  

( )int xR
α

λ ∗∈ . 

(ii) Almost α -∗ -remoted neighborhood family of µ , (or briefly almost α
- R F∗ ) of µ , if there exists ( )γ β α∗∈  such that Ψ  is an almost γ - R F∗  of 
µ . 

Definition 2.7 [15]: Let ( ),XL τ  be an L-ts, XLµ∈  and ( )M Lα ∈ . Then 

( ),XRC L τΨ ⊂  is called an α -regular closed remoted neighborhood family of 
µ , briefly α -RCRF of µ , if for each L-point xα µ∈  there is λ∈Ψ  such  
that xR

α
λ ∈ . 

Definition 2.8 [16]: Let ( ),XL τ  be an L-ts and XLµ∈ . Then ( )Xx M Lα ∈  
is called θ -adherent point of µ  and write ( ).x clα θ µ∈  iff ( )intµ λ≤/  for  
each xR

α
λ ∈ . If ( ).clµ θ µ= , then µ  is called θ -closed L-subset. The family  

https://doi.org/10.4236/apm.2024.145019


Najah A. Alharbi 
 

 

DOI: 10.4236/apm.2024.145019 336 Advances in Pure Mathematics 
 

of all θ -closed L-subset of X is denoted by ( ),XC Lθ τ  and its complement is 

called the family of all θ -open L-subset and denoted by ( ),XO Lθ τ . 

Definition 2.9 [11]: Let ( ),XL τ  be an L-ts, XLµ∈ . Then µ  is called al-
most N-compact (or H-compact) set in ( ),XL τ  if for each ( )M Lα ∈  and 
every α -RF Ψ  of µ  there is ( )2 ΨΨ ∈�  such that Ψ�  is an almost α -
R F∗  of µ . 

If 1X  is H-compact set, then ( ),XL τ  is called H-compact space. 
Theorem 2.10 [11]: Suppose that ( ) ( ): , ,X Y

Lf L Lτ → ∆  is an L-almost con-
tinuous and XLµ∈  is an H-compact L-subset in ( ),XL τ , then ( )Lf µ  is an 
H-compact L-subset in ( ),YL ∆ . 

Definition 2.11 [17]: An L-ts ( ),XL τ  is said to be: 
(i) 1LT -space iff for any ( ), Xx y M Lα γ ∈ , x y≠  there is xR

α
λ ∈  such that 

yγ λ∈ . 

(ii) 2LT -space iff for any ( ), Xx y M Lα γ ∈ , x y≠  there is xR
α

λ ∈ , yR
γ

η ∈  

such that 1Xλ η∨ = . 

(iii) 12
2

LT -space iff for any ( ), Xx y M Lα γ ∈ , x y≠  there is xR
α

λ ∈ , 

yR
γ

η ∈  such that ( ) ( )int int 1Xλ η∨ = . 

(iv) 2LR -space (regular space) iff for all ( )M Lα ∈ , x X∈  and for each 

xR
α

λ ∈  there is xR
α

η ∈ , ρ τ ′∈  such that 1Xη ρ∨ =  and 0Xλ ρ∧ = . 

(v) 3LT -space iff it is 2LR -space and 1LT -space. 
Theorem 2.12 [14]: Let ( ),XL τ  be an L-ts and every H-compact set in fully  

stratified and 12
2

LT -space, then it is θ -closed L-subset. 

Theorem 2.13 [11]: An L-ts ( ),XL τ  is 2LR -space iff for any XLµ∈ , 
( ) ( ).cl clµ θ µ= . 
Proof. Let ( ),XL τ  be an 2LR -space. For any XLµ∈  it is always true that  
( ) ( ).cl clµ θ µ≤ . Now, let ( )Xx M Lα ∈  such that ( )x clα µ∉  and let xR

α
λ ∈ ,  

since ( ),XL τ  is 2LR -space, there is xR
α

η ∈  such that ( )intλ η≤ . Now 

( )x clα µ∉  implies that µ λ≤  for each xR
α

λ ∈  which implies that 

( )intµ η≤  which implies that ( ).x clα θ µ∉ . Thus ( ) ( ).cl clθ µ µ≤ . Hence 

( ) ( ).cl clµ θ µ= . Conversely, let ( )Xx M Lα ∈  and xR
α

λ ∈ . Then ( ) xcl R
α

λ ∈  

and so ( ) ( ).x cl clα λ θ λ∉ = . Hence there is xR
α

η ∈
 such that ( )intλ η≤ .  

Thus ( ),XL τ  is 2LR -space. 
Corollary 2.14 [11]: If ( ),XL τ  is 2LR -space, then closed L-subset is θ

-closed L-subset and hence ( ).clθ µ  is θ -closed for any XLµ∈ . 
Definition 2.15 [13]: Let ( ),D ≤  be a directed set. Then the mapping 
: XS D L→  and denoted by { }:nS n Dµ= ∈  is called a net of L-subsets in X. 

Specially, the mapping ( ): XS D M L→  is said to be a molecular net in XL . If 
XLµ∈  and for each n D∈ , S µ∈  then S is called a net in µ . 

Definition 2.16 [13]: Let ( ),XL τ  be an L-ts and ( ){ }:S S n n D= ∈  be a 
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molecular net in XL . S is called a molecular α -net ( ( )M Lα ∈ ), if for each 
( )γ β α∗∈  there exists n D∈  such that ( )( )S m γ∨ ≥  whenever m n≥ , 

where ( )( )S m∨  is the height of the molecular ( )S m . 
Definition 2.17 [13]: Let ( ){ }:S S n n D= ∈  and ( ){ }:T T m m E= ∈  be a 

be molecular nets in ( ),XL τ . Then T is said to be a molecular subnet of S if 
there is a mapping :f E D→  that satisfies the following conditions: 

(i) T S f= �  
(ii) For each n D∈  there is m E∈  such that ( )f l n≥  for each l E∈ , 

l m≥ . 
Definition 2.18 [7]: Let ( ),XL τ  be an L-ts and S be a molecular net in 

( ),XL τ . Then ( )Xx M Lα ∈  is called: 
(i) a θ -limit point of S, (or S θ -converges to xα ) in symbols S xθ

α→  if  
for each xR

α
µ ∈  there is a n D∈  such for each m D∈  and m n≥  we have  

( ) ( )intS m µ∉ . The union of all θ -limit points of S are denoted by ( ).lim Sθ . 

(ii) a θ -cluster (θ -adherent) point of S, in symbols S x
θ

α∝  if for each 

xR
α

µ ∈ and for each n D∈  there is a m D∈  such that m n≥  and  

( ) ( )intS m µ∉ . The union of all θ -cluster points of S is denoted by
 ( ).adh Sθ . 

Theorem 2.19 [13]: Let ( ),XL τ  be an L-ts, XLµ∈  and ( )Xx M Lα ∈ . 
Then ( )..x clα θ µ∈  iff there exists a molecular net S in µ  such that S is θ
-converges to xα . 

Theorem 2.20 [15]: Assume that ( ){ }:S S n n D= ∈  is a molecular net in an  

L-ts ( ),XL τ  and ( )Xx M Lα ∈ . Then S x
θ

α∝  iff there exists a subnet T of S  

such that T xθ
α→ . 

Theorem 2.21 [14]: Let ( ),XL τ  be an L-ts and XLµ∈ . Then µ  is 
H-compact set iff each α -net S contained in µ  has a θ -cluster point in µ  
with height α  for any ( )M Lα ∈ . 

Definition 2.22 [18]: The nonempty family XI L⊂  is called an ideal if the 
following conditions are satisfied, for each 1 2, XLµ µ ∈  

(i) 1X I∉  
(ii) If 1 2µ µ≤  and 2 Iµ ∈ , then 1 Iµ ∈ . 
(iii) If 1 2, Iµ µ ∈ , then 1 2 Iµ µ∨ ∈ . 
Theorem 2.23 [19]: Let ( ),XL τ  be an L-ts, XLµ∈  and ( )Xx M Lα ∈ . 

Then ( )..x clα θ µ∈  iff there exists an ideal I in XL  such that I is θ -converges 
to xα  and Iµ∉ . 

Definition 2.24 [20]: An L-mapping ( ) ( ): , ,X Y
Lf L Lτ → ∆  is called H-con- 

tinuous if ( )1
Lf η τ− ′∈  for each YLη∈  is closed and almost N-compact. 

3. H-Closure and H-Interior Operators in L-Topological  
Space 

In this section, we introduce the concepts of H-Closure operator and H-interior 
operator by using an almost N-bounded (or H-bounded) set and discuss their 
properties. 
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Definition 3.1: Let ( ),XL τ  be an L-ts, XLµ∈ . Then µ  is called almost 
N-bounded (or H-bounded) set in ( ),XL τ  if for each ( )M Lα ∈  and every 
α -RF Ψ  of 1X , there is ( )2 ΨΨ ∈�  such that Ψ�  is an almost α - R F∗  of 
µ . 

If 1X  is H-bounded set, then ( ),XL τ  is called H-bounded space. 
Theorem 3.2: Suppose that ( ) ( ): , ,X Y

Lf L Lτ → ∆  is an L-almost continuous 
and XLµ∈  is an H-bounded L-subset in ( ),XL τ , then ( )Lf µ  is an 
H-bounded L-subset in ( ),YL ∆ . 

Proof. Let µ  be an H-bounded in XL  and let ′Ψ ⊆ ∆  be an α -RF of 1Y   

( ( )M Lα ∈ ), then ( )( ){ } ( )int : ,Ycl RC Lλ λ∈Ψ ⊂ ∆  is an α -RCRF of 1Y . We 

now will show that ( )( )( ){ }1 int :LQ f cl λ λ−= ∈Ψ  is an α -RF of 1X . In fact,  

since Lf  is an L-almost continuous and ( )( ) ( )int ,Ycl RC Lλ ∈ ∆  then  

( )( )( )1 intLf cl λ τ− ′∈ . According to the definition, Ψ  there exists λ∈Ψ   

such that ( )( ) ( )int
Lf xcl R

α
λ ∈ , i.e., ( ) ( )( )intLf x clα λ∉  hence  

( )( )( )1 intLx f clα λ−∉  for every x X∈ . This means that Q is an α -RF of 1X . 
Since µ  is an H-bounded set, there exists ( )2 ΨΨ ∈�  such that  

( )( )( ){ } ( )1 int : 2Lf cl λ λ Ψ− ∈Ψ ∈�  is an almost α - R F∗  of µ . Thus for some 

( )γ β α∗∈  and for each xγ µ∈  there exists λ∈Ψ�  such that  

( )( )( )( )1int intL xf cl R
γ

λ− ∗∈ . Since Lf  is an L-almost continuous then it is 

L-weakly continuous and since ( )int λ ∈∆  then  

( )( ) ( )( )( )( )1 1int int intL Lf f clλ λ− −≤  and so ( )( )1 intLx fα λ−∉ . Consequently, 

there exists xγ µ∈  and λ∈Ψ�  satisfying ( ) ( )int
Lf x

R
γ

λ ∗∈ and ( )Ly f xγ γ=   

for each ( )Ly fγ µ∈ . Thus, ( )2 ΨΨ ∈�  is an almost α - R F∗  of ( )Lf µ . By 
Definition 3.1, we have ( )Lf µ  an H-bounded L-subset in ( ),YL ∆ . 

Theorem 3.3: Let ( ),XL τ  be an L-ts and let XLµ∈ . Then the following 
statements are true: 

(i) If µ  is H-compact set, then µ  is H-bounded set. 
(ii) If µ  is H-bounded set and η µ≤ , then η  is H-bounded set. 
(iii) If µ  is H-compact set and η µ≤ , then η  is H-bounded set. 
Proof. (i) Let µ  be an H-compact set and let { }:i i Iρ τ ′Ψ = ∈ ⊂  be an α

-RF of 1X  and so Ψ  is α -RF of µ . Since µ  is H-compact set, then there 
exists { } ( ): 1,2, , 2i i mρ ΨΨ = = ∈� �  such that Ψ�  is an almost α - R F∗  of 
µ . Thus µ  is H-bounded set. 

(ii) Let µ  be an H-bounded set and η µ≤ . let { }:i i Iρ τ ′Ψ = ∈ ⊂  be an 
α -RF of 1X . Since µ  is H-bounded set, then there exists  

{ } ( ): 1,2, , 2i i mρ ΨΨ = = ∈� �  such that Ψ�  is an almost α - R F∗  of µ , thus 
there exists ( )γ β α∗∈  such that Ψ�  is an almost γ - R F∗  of µ . Hence  

xγ µ∀ ∈ , λ∃ ∈Ψ�  such that ( )int xR
γ

λ ∗∈ . Since η µ≤ , then xγ η µ∀ ∈ ≤ ,  

λ∃ ∈Ψ�  such that ( )int xR
γ

λ ∗∈ . Hence Ψ�  is an almost γ - R F∗  of η  and  
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so Ψ�  is an almost α - R F∗  of η . Thus η  is H-bounded set. 
(iii) Let µ  be an H-compact set and η µ≤ . let τ ′Ψ ⊂  be an α -RF of 

1X  and so α -RF of µ . Since µ  is H-compact set, then there exists 
( )2 ΨΨ ∈�  such that Ψ�  is an almost α - R F∗  of µ , since η µ≤ , then Ψ�  

is an almost α - R F∗  of η . Thus η  is H-bounded set. 
Theorem 3.4: Let ( ),XL τ  be an L-ts, ( )M Lα ∈  and XLµ∈ . Then µ  is 

H-bounded iff for each molecular α -net S contained in µ  has θ -cluster 
point in 1X  with height α . 

Proof. Let µ  be an H-bounded set and ( ){ }:S S n n D= ∈  be an molecular 
α -net in µ . If S does not have any θ -cluster point in 1X  with height α . 
Then for all ( )Xx M Lα ∈ , xα  is not θ -cluster point of S and so there exists  

x xR
α

λ ∈  and xn D∈  such that ( ) ( )int xS n λ∈  for every n D∈  and xn n≥ .  

Put ( ){ }: andx x X M Lλ αΨ = ∈ ∈ , then Ψ  is an α -RF of 1X . According to  

the hypothesis, Ψ  has a finite family { } ( ): 1,2, , 2ix
i kλ ΨΨ = = ∈� �  such that  

Ψ�  is an almost α - R F∗  of µ , that is for some ( )γ β α∗∈  and each  

yγ µ∈  there exists 
ixλ ∈Ψ�  ( i k≤ ) such that ( )int

ix yR
γ

λ ∗∈ . Put 
1 i

k

xi
λ λ

=
= ∧ , 

for each yγ µ∈ , we have ( ) ( )
1 1
int int int

i i

k k

x xi i
λ λ λ

= =

 ∧ = ∧ = 
 

, thus ( )int yR
γ

λ ∗∈ . 

Since D is a directed set, then there is n D∈�  such that 
ixn n≥� , 1,2, ,i k= �  

and ( ) ( )int
ixS n λ∈ , 1,2, ,i k= �  whenever n n≥ �  and so ( ) ( )intS n λ∈ .  

This shows that for each yγ µ∈ , ( )( )S n γ∨ ≥/  whenever n n≥ � . This contra-
dicts the hypothesis that S is a molecular α -net. Therefore, S has at least a θ
-cluster point in 1X  with height α . 

Conversely, assume that each molecular α -net S contained in µ  has an θ
-cluster point in 1X  with height α  and Ψ  is an α -RF of 1X . If for each 

( )2 ΨΨ ∈�  such that Ψ�  is not almost α - R F∗  of µ , that is, for each 
( )γ β α∗∈  there exists ( ) ( ) ( ), 2γ β α Ψ∗Ψ ∈ ×�  there exists molecule  

( ),x γ µΨ ∈
�

 such that for each λ∈Ψ� , ( )
( ),

int xR
γ

λ
Ψ

∉
�

. Put ( ) ( )2D β α Ψ∗= ×  

and defined the order as follows: ( ) ( )1 2
1 2, ,γ γΨ ≥ Ψ� �  iff 1 2γ γ≥  and 1 2Ψ ⊃ Ψ� � . 

Then ( ) ( ) ( ){ }, , : ,S S x Dγ γ µ γΨ Ψ= = ∈ Ψ ∈
� � �  is an molecular α -net in µ . 

Since Ψ  is an α -RF of 1X , then there exists ρ ∈Ψ  such that yR
α

ρ ∈  and 

h e n c e  ( )int xR
α

ρ ∗∈ .  B e c a u s e  { } ( )2ρ Ψ∈ .  W e  t a k e  a n y  ( )1γ β α∗∈ , 

( ) ( ), intx γ ρΨ ∈
�

 whenever ( ) ( )1, ,γ γ ρΨ ≥� . Therefore ( ) ( ), intS γ ρΨ ∈
�

, which  

contradicts to the hypothesis. Therefore there exists ( )2 ΨΨ ∈�  such that Ψ�  is 
almost α - R F∗  of µ  and hence µ  is H-bounded. 

Theorem 3.5: If ( ),XL τ  fully stratified and 12
2

LT -space, then XLµ∈  is 
H-compact set iff µ  is θ -closed and H-bounded set. 

Proof. If XLµ∈  is H-compact set, then by Theorem 2.12 we have µ  is θ
-closed and by Theorem 3.3 (i) we have µ  is H-bounded. Conversely, let µ  
be an θ -closed and H-bounded set and let S be an α -net in µ . Since µ  is 
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H-bounded, then by Theorem 3.4 we have S has θ -cluster point, say xα  in 
1X  with height α . By Theorem 2.20, then there is a subnet T of S such that T 
θ -converges to xα  and so ( ).x clα θ µ∈  by Theorem 2.19. Since µ  is θ
-closed, then ( ).clµ θ µ=  and so xα µ∈ , then by Theorem 2.21 we have µ  
is H-compact set. 

Theorem 3.6: If ( ),XL τ  is 2LR -space, then XLµ∈  is H-bounded set iff 
( ).clθ µ  is H-bounded set. 

Proof. If ( ).clθ µ  is H-bounded set, then µ  is H-bounded set by Theorem  

3.3 (ii). Conversely, suppose that µ  is H-bounded and { }:
jx j JηΨ = ∈  is an 

α -RF of 1X . Then for each x X∈  there is 
jxη ∈Ψ  such that 

jx xR
α

η ∈ . 

Since ( ),XL τ  is 2LR -space, then there is xR
α

λ ∈  there is 
jx xR

α
λ ∈  and 

there is 
jxρ τ ′∈  such that 1

j jx x Xλ ρ∨ =  and. 0
j jx x Xρ η∧ = . Then the fami-

ly ( ){ }:
j

X
x x M Lαλ ∈  is an α -RF of 1X . Since µ  is H-bounded, then exists 

finite subset J�  of J such that { }:
jx j Jλ ∈ �  is an almost α - R F∗  of µ . 

Since 1
j jx x Xλ ρ∨ = , 

jxxα λ∉ , then 
jxxα ρ∈ . Since 0

j jx x Xρ η∧ = , then 

{ }:
jx j Jη ∈ �  is an almost α - R F∗  of 

jxρ . Therefore 
jxµ ρ≤  for J J∈ � . 

Since 
jxρ τ ′∈ , and ( ),XL τ  is 2LR -space, then by Theorem 2.13, we have 

( ) ( ).
j jx xcl clρ θ ρ=  and so { }:

jx j Jη ∈ �  is an almost α - R F∗  of ( ).
jxclθ ρ  

and since ( ) ( ). .
jxcl clθ µ θ ρ≤ , then { }:

jx j Jη ∈ �  is an almost α - R F∗  of  

( ).clθ µ . Hence ( ).clθ µ  is H-bounded set. 

Theorem 3.7: If ( ),XL τ  is 3LT -space, then XLµ∈  is H-bounded set iff 

µ  is L-subset of H-compact set. 

Proof. If µ  is H-bounded, then by Theorem 3.6 and corollary 2.14, we have 
( ).clθ µ  is θ -closed and H-bounded set, hence by Theorem 3.5, we have 
( ).clθ µ  is H-compact set. Conversely, If µ  is L-subset of H-compact set, then 

by Theorem 3.3 (iii), we have µ  is H-bounded set. 
Definition 3.8: Let ( ),XL τ  be an L-ts and ( )Xx M Lα ∈ . If XLµ∈  is 

closed and H-bounded set, then µ  is called HB-remoted neighborhood of xα   
(HBR-nbd, for short) of xα  if xα µ∉ . The set of all HBR-nbds of xα  is de-
noted by xHBR

α
 

We note that x xHBR R
α α
⊆ , ( )Xx M Lα∀ ∈  

The following example shows that the converse is not true in general 
Example 3.9: Let { }X x= , [ ]0,1L = , and let { }3 .70 , , ,1X Xx xτ = . Then 

( ),XL τ  is L-ts. We have { }
1 .3 .70 , ,x XR x x= . Now, we show that .7

Xx L∈  is not 
H-bounded set. 

Let { }.7 ,1Xx τ ′Ψ = ⊆ , then Ψ  is .8-RF of 1X . But for each  

( ) ( ].8 0,2γ β ∗∈ = , any finite subfamily ( )2 ΨΨ ∈�  is not almost γ - R F∗  of 

.7x . Thus Ψ�  is not almost .8 - R F∗  of .7x . Thus .7x  is not H-bounded set  
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and so .7 xx HBR
α

∉ . Hence 
.7 .7x xR HBR⊆/ . 

Definition 3.10: Let ( ),XL τ  be an L-ts and XLµ∈ . Then ( )Xx M Lα ∈  is 

called an H-bounded adherent point of µ  and write ( ).x HB clα µ∈  iff  

µ λ≤/  for each xHBR
α

λ ∈ . If ( ).HB clµ µ= , then µ  is called HB-closed  

L-subset. The family of all HB-closed L-subsets is denoted by ( ),XHBC L τ  and 
its complement is called the family of all HB-open L-subsets and denoted by 

( ),XHBO L τ . 
Theorem 3.11: Let ( ),XL τ  be an L-ts and let XLµ∈ . Then the following 

statements are true: 
(i) ( ) ( ).cl HB clµ µ µ≤ ≤ . 

(ii) If XLη∈  and µ η≤  then ( ) ( ). .HB cl HB clµ η≤ . 

(iii) ( )( ) ( ). . .HB cl HB cl HB clµ µ= . 

(iv) ( ) ( ){ }. : . , ,X XHB cl L HBC Lµ η η τ µ η= ∧ ∈ ∈ ≤ . 

Proof. (i) Let ( )Xx M Lα ∈  such that ( ).x HB clα µ∉ , then there exists  
xHBR
α

λ ∈  such that µ λ≤ . Since x xHBR R
α α
⊆  and so xR

α
λ ∈  and hence  

( )x clα µ∉ . Thus ( ) ( ).cl HB clµ µ≤ . 
(ii) Let ( )Xx M Lα ∈  such that ( ).x HB clα η∉ , then there exists xHBR

α
λ ∈   

such that η λ≤ . Since µ η≤ , then µ λ≤  and so ( ).x HB clα µ∉ . Thus 
( ) ( ).HBcl HB clµ η≤ . 

(iii) Suppose ( )Xx M Lα ∈  such that ( )( ). .x HB cl HB clα µ∈ . According to  
Definition 3.10, we have ( ).HB cl µ λ≤/  for each xHBR

α
λ ∈ . Hence, there ex-

ists ( )Xy M Lγ ∈  such that ( ).y HB clγ µ∈  with yγ λ∉  and so µ λ≤/ , that is,  

( ).x HB clα µ∈ . This shows that ( )( ) ( ). . .HB cl HB cl HB clµ µ≤ . On the other 
hand, ( ).HB clµ µ≤  follows from (i) and so ( ) ( )( ). . .HB cl HB cl HB clµ µ≤ . 
Therefore, ( )( ) ( ). . .HB cl HB cl HB clµ µ= . 

(iv) On account of (i) and (iii). ( ).HB cl µ  is an HB-closed set containing µ ,  

and so ( ) ( ){ }. : . , ,X XHB cl L HBC Lµ η η τ µ η≥ ∧ ∈ ∈ ≤ . Conversely, in case  

( )Xx M Lα ∈  sand ( ).x HB clα µ∈ , then µ λ≤/  for each xHBR
α

λ ∈ . Hence, if  

η  is an HB-closed set containing µ , then η λ≤/ , and then 
( ).x HB clα η η∈ = .  

This implies that ( ) ( ){ }. : . , ,X XHB cl L HBC Lµ η η τ µ η≤ ∧ ∈ ∈ ≤ . Hence 

( ) ( ){ }. : . , ,X XHB cl L HBC Lµ η η τ µ η= ∧ ∈ ∈ ≤  

From Theorem 3.11, one can see that every HB-closed L-subset is a closed 
L-subset, but the inverse is not true since every closed L-subset is not 
H-bounded set in general as the following example shows. 

Example 3.12: By Example 3.9, let XLη∈  be an L-subset, where .7xη = , 
then η  is closed L-subset because { }.7 .30 , , ,1X Xx xτ ′ = . But .7

Xx L∈  is not 
H-bounded set. 

Theorem 3.13: Let ( ),XL τ  be an L-ts. The following statements hold: 
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(i) ( )0 ,1 ,X
X X HBC L τ∈ . 

(ii) If ( )1 2, , , ,X
n HBC Lµ µ µ τ∈� , then ( )

1
,

n
X

ii
HBC Lµ τ

=
∨ ∈ . 

(iii) If { } ( ): ,X
i i I HBC Lµ τ∈ ⊆ , then ( ),X

ii I
HBC Lµ τ

∈
∧ ∈ . 

(iv) Every H-bounded and closed set is HB-closed. 
(v) XLµ∈  is HB-closed iff there exists xHBR

α
λ ∈  such that µ λ≤  for  

each ( )Xx M Lα ∈  with xα µ∉  
Proof. (i) Obvious. 
(ii) Let ( )1 2, , , ,X

n HBC Lµ µ µ τ∈�  and ( )Xx M Lα ∈  such that  

1
.

n

ii
x HB clα µ

=

 ∈ ∨ 
 

, then for each xHBR
α

λ ∈  we have 
1

n

ii
µ λ

=
∨ ≤/  and so iµ λ≤/   

for some 1,2, ,i n= � . Hence ( ). ix HB clα µ∈  for some 1,2, ,i n= � . Since iµ  
is HB-closed set, then ( ). i iHB cl µ µ≤  for some 1,2, ,i n= �  and so ixα µ∈   

for some 1,2, ,i n= �  and hence 
1

n

ii
xα µ

=
∈ ∨ . Thus 

1 1
.

n n

i ii i
HB cl µ µ

= =

 ∨ ≤ ∨ 
 

 (∗ ) 

Conversely, since ( ).i iHB clµ µ≤  then 
1 1

.
n n

i ii i
HB clµ µ

= =

 ∨ ≤ ∨ 
 

 ( ∗ ∗ ). Hence 

from (∗ ) and (∗ ∗ ) we have 
1 1

.
n n

i ii i
HB cl µ µ

= =

 ∨ = ∨ 
 

. Thus ( )
1

,
n

X
ii

HBC Lµ τ
=
∨ ∈ . 

(iii) Let ( )1 2, , , ,X
n HBC Lµ µ µ τ∈�  and ( )Xx M Lα ∈  such that  

( ). ii I
x HB clα µ

∈
∈ ∧ , then for each xHBR

α
λ ∈  we have ii I

µ λ
∈
∧ ≤/  and so iµ λ≤/   

for each i I∈ . Hence ( ). ix HB clα µ∈  for each i I∈ . Since iµ  is HB-closed 
set, then ( ). i iHB cl µ µ≤  for each i I∈  and so ixα µ∈  for each i I∈  and  

hence ii I
xα µ

∈
∈ ∧ . Thus ( ). i ii I i I

HB cl µ µ
∈ ∈
∧ ≤ ∧  (∗ ). 

Conversely, since ( ).i iHB clµ µ≤  then ( ).i ii I i I
HB clµ µ

∈ ∈
∧ ≤ ∧  ( ∗ ∗ ). Hence 

from (∗ ) and (∗ ∗ ) we have ( ). i ii I i I
HB cl µ µ

∈ ∈
∧ = ∧ . Thus ( ),X

ii I
HBC Lµ τ

∈
∧ ∈ . 

(iv) Let XLµ∈  be an H-bounded and closed set and let ( )Xx M Lα ∈  such  
that xα µ∉ , since µ  is H-bounded and closed set, then xHBR

α
µ ∈ , since  

µ µ≤  then ( ).x HB clα µ∉  and so ( ).HB cl µ µ≤ . Therefore µ  is HB-closed 
set. 

(v) Suppose that µ  is HB-closed set, ( )Xx M Lα ∈  and xα µ∉ . By Defini-

tion 3.9, there exists xHBR
α

λ ∈  with µ λ≤ . Conversely, provided that the 

condition is satisfied. If µ  is not HB-closed set, then there exists ( )Xx M Lα ∈  

such that ( ).x HB clα µ∈  and xα µ∉ . Hence µ λ≤/  for each xHBR
α

λ ∈ . It  

conflicts with the hypothesis, and so µ  is HB-closed set. 
Theorem 3.14: Let ( ),XL τ  be an L-ts and XLµ∈ . Then ( ),XHBC Lµ τ∈  

iff xHBR
α

µ ∈  for each xα µ∉ . 

Proof. It follows directly from Theorem 3.13 (v). 
Theorem 3.15: Let ( ),XL τ  be an L-ts and XLµ∈ . Then the mapping 

. : X XHB cl L L→  is called closure operator of HB-boundedness iff it satisfies: 
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(i) ( ). 0 0X XHB cl = . 
(ii) ( ).HB clµ µ≤ . 
(iii) ( ) ( ) ( ). . .HB cl HB cl HB clµ η µ η∨ = ∨ . 
(iv) ( )( ) ( ). . .HB cl HB cl HB clµ µ= . 
A closure operator of HB-boundedness .HB cl  generates L-topology .HB clτ  

on XL  as: ( ){ }. : .X
HB cl L HB clτ µ µ µ′ ′= ∈ = . 

Proof. It follows directly from Theorems 3.11 and 3.13. 
Theorem 3.16: Let ( ),XL τ  be an L-ts. Then: 
(i) HBτ τ≤ . 
(ii) If ( ),XL τ  is H-bounded space, then HBτ τ= . 
Proof. (i) Let HBµ τ∈ , then ( ).HB cl µ µ′ ′≤ . Since ( ) ( ).cl HB clµ µ′ ′≤ , 

hence 
( )cl µ µ′ ′≤  and so µ τ∈ . 

(ii) We note that HBτ τ≤  from (i). Now, let µ τ∈  then µ τ′ ′∈ . Since 1X  
is H-bounded and 1Xµ′ ≤ , then µ′  is H-bounded (By Theorem 3.3 (ii)) and 
by Theorem 3.13 (iv) we have µ′  is HB-closed set and so HBµ τ′∈ . Thus 

HBτ τ= . 
Definition 3.17. Let ( ),XL τ  be an L-ts, XLµ∈  and 

( ) ( ){ }.int : , ,X XHB L HBO Lµ ρ ρ τ ρ µ= ∨ ∈ ∈ ≤ . We say that ( ).intHB µ  is 
the HB-interior of µ . 

The following Theorem shows the relationships between HB-closure operator 
and HB-interior operator. 

Theorem 3.18: Let ( ),XL τ  be an L-ts and XLµ∈ . Then the following are 
true: 

(i) µ  is HB-open iff ( ).intHBµ µ= . 

(ii) ( )( ) ( ). .intHB cl HBµ µ′ ′=  and ( )( ) ( ).int .HB HB clµ µ′ ′= . 

(iii) ( ) ( )( ). .intHB cl HBµ µ ′′=  and ( ) ( )( ).int .HB HB clµ µ ′′= . 

(iv) ( ) ( ).int intHB µ µ µ≤ ≤ . 
(v) If XLη∈  and µ η≤  then ( ) ( ). int . intHB HBµ η≤ . 
(vi) ( )( ) ( ). int . int . intHB HB HBµ µ= . 
Proof. (i) Let XLµ∈  be an HB-open set, then  

( ) ( ){ }. int : , ,X XHB L HBO Lµ ρ ρ τ ρ µ µ= ∨ ∈ ∈ ≤ =  and so ( ). intHBµ µ= . 

Conversely, let ( ). intHBµ µ= , since  

( ) ( ){ }. int : , ,X XHB L HBO Lµ ρ ρ τ ρ µ= ∨ ∈ ∈ ≤ . Therefore µ  is HB-open set. 

(ii) It follows directly from Definition 3.17 and Theorem 3.11 (iv). 
(iii) It follows directly from (ii) 
(iv) It follows directly from (ii) and Theorems 3.11 (i) 
(v) It follows directly from (ii) and Theorem 3.11 (ii) 
(vi) It follows directly from (ii) and Theorem 3.11 (iii) 
Theorem 3.19: Let ( ),XL τ  be an L-ts. The following statements hold:: 
(i) ( )0 ,1 ,X

X X HBO L τ∈ . 
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(ii) If ( )1 2, , , ,X
n HBO Lµ µ µ τ∈� , then ( )

1
,

n
X

ii
HBO Lµ τ

=
∧ ∈ . 

(iii) If { } ( ): ,X
i i I HBO Lµ τ∈ ⊆ , then ( ),X

ii I
HBO Lµ τ

∈
∨ ∈ . 

Definition 3.20: Let ( ),XL τ  be an L-ts and S be a molecular net in XL . 
Then ( )Xx M Lα ∈  is called 

(i) limit point of S [13], (or S converges to xα ) in symbol S xα→  if for  
every xR

α
µ ∈  there is n D∈  such for each m D∈  and m n≥  we have  

( )S m µ∉ . The union of all limit points of S is denoted by ( )lim S . 
(ii) H-bounded limit point of S, (or S HB-converges to xα ) in symbol  
HB

S xα→  if for every xHBR
α

µ ∈  there is an n D∈  such that m D∈  and  

m n≥ , we have ( )S m µ∉ . The union of all HB-limit points of S is denoted by 
( ). limHB S . 

Theorem 3.21: Suppose that S is a molecular net in ( ),XL τ , XLµ∈  and 

( )Xx M Lα ∈ . Then the following statements hold: 

(i) If S xα→ , then 
HB

S xα→ . 

(ii) ( ). limx HB Sα ∈  iff 
HB

S xα→ . 

(iii) ( ) ( )lim .limS HB S≤ . 
(iv) ( )..x HB clα µ∈  (resp. ( ).x clα µ∈ ), iff there exists a molecular net S in 

µ  such that S is HB-converges (resp. converges) to xα . 
(v) ( ). limHB S  is HB-closed set in XL . 
Proof. (i) Let S xα→  and let xHBR

α
λ ∈ . Since x xHBR R

α α
⊆ , then 

xR
α

λ ∈  Since S xα→ , then for every xR
α

µ ∈  there is n D∈  such for each 

m D∈  and m n≥ , we have ( )S m λ∉ . Thus 
HB

S xα→ . 

(ii) Let ( ). limx HB Sα ∈  and let xHBR
α

λ ∈ . Since xα λ∉ , then  

( ). limHB S λ∉ . Therefore there exists ( )Xy M Lγ ∈  such that  

( ). limy HB Sγ ∈  and yγ λ∉ . Then yHBR
γ

λ ∈  and so there is n D∈  much  

for each m D∈  and m n≥  we have ( )S m λ∉ , but since xHBR
α

λ ∈  so 
HB

S xα→ . Conversely, let 
HB

S xα→ , then by Definition 3.20 (ii) we have  

( ). limx HB Sα ∈  
(iii) Let ( )limx Sα ∈  and let xHBR

α
η ∈ . Since x xHBR R

α α
⊆ , then xR

α
η ∈ . 

And since ( )limx Sα ∈ , then for each xR
α

λ ∈  there is n D∈  such for each  

m D∈  and m n≥ , we have ( )S m λ∉  and so ( )S m η∉ . Hence  
( ). limx HB Sα ∈ . So ( ) ( )lim .limS HB S≤ . 

(iv) Let ( )Xx M Lα ∈  such that ( ).x HB clα µ∈ , then µ λ≤/  for each
  

xHBR
α

λ ∈ . Since µ λ≤/ , then there exists ( ) ( ), M Lα µ λ ∈  such that 

( ),xα µ λ µ∈  with ( ),xα µ λ λ∉ . Since the pair ( ),xHBR
α
≥  is a directed set and so 

we can define a molecular net
 ( ): X

xS HBR M L
α
→  as follows ( ) ( ),S xα µ λλ =

 
for each xHBR

α
λ ∈  Hence S is a molecular net in µ . Now let xHBR

α
η ∈   
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such that λ η≤ , so we have there exists ( ) ( ),S xα µ ηη η= ∉  and so  
( ) ( ),S xα µ ηη λ= ∉ . Hence S is HB-converges to xα . 
Conversely, let S be a molecular net in µ  such that S is HB-converges to xα   

then for each xHBR
α

λ ∈
 

there is n D∈  such for each m D∈  and m n≥ ,  

we have ( )S m λ∉ . Since ( )S n µ∈  for each n D∈ , m D∈ . So ( )S m µ∈   
and ( )S mµ λ≥ >  hence µ λ≤/  for each

 xHBR
α

λ ∈ . This means that  

( ).x HB clα µ∈ . 
(v) Let ( )( ). . limx HB cl HB Sα ∈ , then ( ). limHB S λ≤/  for each xHBR

α
λ ∈  

and then there exists ( )Xy M Lγ ∈  such that ( ). limy HB Sγ ∈  and yγ λ∉ . 

Then for each yHBR
γ

µ ∈ , there is n D∈  much for each m D∈  and m n≥   

we have ( )S m µ∉  and so ( )S m λ∉ . Hence ( ). limx HB Sα ∈ . Thus  

( )( ) ( ). . lim .limHB cl HB S HB S≤  and so ( ). limHB S  is HB-closed set. 

Definition 3.22: Let ( ),XL τ  be an L-ts and I be an ideal in XL . Then 

( )Xx M Lα ∈  is called: 
(i) limit point of I [18], (or I converges to xα ) in symbol I xα→  if xR I

α
⊆ . 

The union of all limit points of I is denoted by ( )lim I . 

(ii) H-bounded limit point of I, (or I HB-converges to xα ) in symbol 
HB

I xα→  
if xHBR I

α
⊆ . The union of all HB-limit points of I is denoted by ( ). limHB I . 

Theorem 3.23: Suppose that I is an ideal in ( ),XL τ , XLµ∈  and 

( )Xx M Lα ∈ . Then the following statements hold: 

(i) If I xα→ , then 
HB

I xα→ . 

(ii) ( ). limx HB Iα ∈  iff 
HB

I xα→ . 

(iii) ( ) ( )lim .limI HB I≤ . 

(iv) ( )..x HB clα µ∈  iff there exists an ideal I in XL  such that 
HB

I xα→  and 
Iµ∉  

(v) ( ). limHB I  is HB-closed set in XL . 
Proof. (i) Let I xα→  then xR I

α
⊆ . Since x xHBR R

α α
⊆ , then xHBR I

α
⊆ . 

Thus 
HB

I xα→ . 
(ii) Let ( ). limx HB Iα ∈  and let xHBR

α
λ ∈ . Since xα λ∉  and  

( ). limx HB Iα ∈ , then ( ). limHB I λ∉ . Therefore there exists ( )Xy M Lγ ∈   
such that ( ). limy HB Iγ ∈  and yγ λ∉ . Then yHBR

γ
λ ∈  and so  

x yHBR HBR I
α γ
⊆ ⊆  hence xHBR I

α
⊆ . Thus 

HB
I xα→ . Conversely, let 

HB
I xα→ , 

then by Definition 3.22 (ii) we have ( ). limx HB Iα ∈ . 

(iii) Let ( )limx Iα ∈  and let xHBR
α

η ∈ . since ( )limx Iα ∈ , so for each 

xR
α

λ ∈ , Iλ ∈  and since xHBR
α

η ∈  so xR
α

η ∈ . Hence ( ). limx HB Iα ∈ . So 

( ) ( )lim .limI HB I≤ . 

(iv) Let ( )Xx M Lα ∈  such that ( ).x HB clα µ∈ . The family  
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{ }:X
xI L HBR
α

ρ λ ρ λ= ∈ ∃ ∈ ∋ ≤  is an ideal in XL . Now we show that Iµ∉ . 

Since ( ).x HB clα µ∈ , then for each xHBR
α

λ ∈ , µ λ≤/ . So By definition of I 

we have Iµ∉ . Finally, we show that 
HB

I xα→ . Let xHBR
α

λ ∈ , since λ λ≤ , 

then Iλ ∈ . So xHBR I
α
⊆ . Thus 

HB
I xα→ . 

Conversely, let I be an ideal in XL  such that 
HB

I xα→  and Iµ∉ . Then for 
each xHBR

α
λ ∈ , Iλ ∈ . Since Iλ ∈ , Iµ∉ , then µ λ≤/  and so  

( )..x HB clα µ∈ . 
(v) Let ( )( ).. . limx HB cl HB Iα ∈ , then ( ). limHB I λ≤/  for each xHBR

α
λ ∈  

and then there exists ( )Xy M Lγ ∈  such that ( ). limy HB Iγ ∈  and yγ λ∉ . 

Since yHBR
γ

λ ∈  and 
HB

I yγ→  then Iη∈  for each xHBR
α

η ∈ . Since yγ λ∉   
then Iλ ∈ . But xHBR

α
λ ∈  and so ( ). limx HB Iα ∈ . Thus  

( )( ) ( ).. . lim .limHB cl HB I HB I≤  and so ( ). limHB I  is HB-closed set. 

4. HB-Continuous Mappings in L-Topological Space 

In this section we first define HB-continuous mappings in L-topological space 
and then investigate some of its characterizations, 

Definition 4.1: An L-mapping ( ) ( ): , ,X Y
Lf L Lτ → ∆  is called : 

(i) HB-continuous at ( )Xx M Lα ∈  if ( )1
L xf R

α
η− ∈  for each ( )Lf xHBR

α
η ∈  

(ii) HB-continuous if ( )1
Lf η τ− ∈  for each XLη∈  is closed and H-bounded. 

Theorem 4.2: Let ( ) ( ): , ,X Y
Lf L Lτ → ∆  be an L-continuous mapping. Then 

the following properties are equivalent : 
(i) Lf  is HB-continuous. 
(ii) Lf  is HB-continuous at xα  for each ( )Xx M Lα ∈ . 
(iii) If η∈∆  and η′  is H-bounded, then ( )1

Lf η τ− ∈ . 
(iv) If YLη∈  is H-bounded, then ( )1

Lf η τ− ′∈ . 
Proof. (i)⇒ (ii): Let ( ) ( ): , ,X Y

Lf L Lτ → ∆  be an HB-continuous and  

( )Xx M Lα ∈ , ( )Lf xHBR
α

η ∈  then ( )1
Lf η τ− ′∈ . Since ( )Lf xα η∉ , then  

( )1
Lx fα η−∉  

And so ( )1
L xf R

α
η− ∈ . Thus Lf  is HB-continuous at xα  for each  

( )Xx M Lα ∈ . 
(ii)⇒ (i): Let Lf  be an HB-continuous at xα  for each ( )Xx M Lα ∈ . If Lf  

is not HB-continuous, then there is YLη∈  is H-bounded and closed such that 
( )1

Lf η τ− ′∉ , i.e.,
 ( )( ) ( )1 1

L Lcl f fη η− −≤/ . Then there exists ( )Xx M Lα ∈  such 
that ( )( )1

Lx cl fα η−∈  and ( )1
Lx fα η−∉  implies that ( )Lf xα η∉ , since η  is  

closed and H-bounded, then ( )Lf xHBR
α

η ∈ . But ( )1
L xf R

α
η− ∉ , this contradic-

tion. Thus Lf  is HB-continuous mapping. 

(i)⇒ (iii): Let ( ) ( ): , ,X Y
Lf L Lτ → ∆  be an HB-continuous and η∈∆  such 

that η′  is H-bounded and so η′  is H-bounded and closed. By (i), we have 
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( )1
Lf η τ− ′ ′∈ . Since ( ) ( )( )1 1

L Lf fη η− − ′′ = , then ( )1
Lf η τ− ∈ . 

(iii)⇒ (i): Let YLη∈  be an H-bounded and closed, then η′∈∆ . By (iii), we 
have ( )1

Lf η τ− ′ ∈ , thus ( ) ( )( )1 1
L Lf fη η− − ′′= , then ( )1

Lf η τ− ′∈ . Hence Lf  is 
HB-continuous mapping. 

(iv) ⇒ (iii): Let η∈∆  and η′  be an H-bounded. By (iv), we have 
( )1

Lf η τ− ′∈ . Thus ( ) ( )( )1 1
L Lf fη η τ− − ′′= ∈ . 

(iv) ⇒ (ii): Let ( )Lf xHBR
α

η ∈  and ( )Xx M Lα ∈ . Then η  is closed and 

H-bounded set, ( )Lf xα η∉  and so ( )1
Lx fα η−∉ . By (iv), we have ( )1

Lf η τ− ′∈  
and ( )1

Lx fα η−∉  hence ( )1
L xf R

α
η− ∈ . Thus Lf  is HB-continuous mapping 

at xα  for each ( )Xx M Lα ∈ . 

(iv) ⇒ (i): Let YLη∈  be a closed and H-bounded set. By (iv), we have 
( )1

Lf η τ− ′∈ . Thus Lf  is HB-continuous mapping. 
Theorem 4.3: Let ( ) ( ): , ,X Y

Lf L Lτ → ∆  be an L-surjective mapping. Then 
the following conditions are equivalent: 

(i) Lf  is HB-continuous mapping. 
(ii) For each XLµ∈ , ( )( ) ( )( ).L Lf cl HB cl fµ µ≤ , 
(iii) For each YLη∈ , ( )( ) ( )( )1 1 .L Lcl f f HB clη η− −≤ , 

(iv) For each YLη∈ , ( )( ) ( )( )1 1. int intL Lf HB fη η− −≤ , 

(v) For each HB-open L-subset ρ  in YL , then ( )1
Lf ρ−  is open L-subset in 

XL , 
(vi) For each HB-closed L-subset λ  in YL , then ( )1

Lf λ−  is closed L-subset 
in XL . 

Proof. (i)⇒ (ii): Let XLµ∈  and ( )Xx M Lα ∈  such that ( )x clα µ∈ . Then  
( ) ( )( )L Lf x f clα µ∈ . Let ( )Lf xHBR

α
η ∈ . So by (i) and by Theorem 4.3, we have 

( )1
L xf R

α
η− ∈ . Since ( )x clα µ∈ , then ( )1

Lfµ η−≤/ . Since Lf  is L-surjective 

then ( )Lf µ η≤/  and ( )Lf xHBR
α

η ∈  so ( ) ( )( ).L Lf x HB cl fα µ∈ . Hence 

( )( ) ( )( ).L Lf cl HB cl fµ µ≤ . 

(ii)⇒ (iii): Let YLη∈ . Then ( )1 X
Lf Lη− ∈ . By (ii) we have  

( )( )( ) ( )( )( ) ( )1 1. .L L L Lf cl f HB cl f f HB clη η η− −≤ ≤ . So  

( )( )( ) ( )1 .L Lf cl f HB clη η− ≤ . Thus ( )( )( ) ( )( )1 1 1 .L L L Lf f cl f f HB clη η− − −≤ . Since 

( )( ) ( )( )( )1 1 1
L L L Lcl f f f cl fη η− − −≤ , then ( )( ) ( )( )1 1 .L Lcl f f HB clη η− −≤ . 

(iii) ⇒ (iv): Let YLη∈ . By (iii), we have ( )( ) ( )( )1 1 .L Lcl f f HB clη η− −′ ′≤  

Since ( )( ) ( )( )( )1 1intL Lcl f fη η− − ′′ =  and ( )( ) ( )( )( )1 1. . intL Lf HB cl f HBη η− − ′′ = . 

So ( )( )( ) ( )( )( )1 1int . intL Lf f HBη η− −′ ′≤ . Thus ( )( ) ( )( )1 1. int intL Lf HB fη η− −≤ . 

(iv)⇒ (v): Let ρ  be an HB-open L-subset in YL . Then  
( ) ( )( )1 1 . intL Lf f HBρ ρ− −=  and by (iv), we have  

( )( ) ( )( )1 1. int intL Lf HB fρ ρ− −≤ , so ( ) ( )( )1 1intL Lf fρ ρ− −≤ . Thus ( )1
Lf ρ τ− ∈ . 
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(v) ⇒ (vi): Let λ  be an HB-closed L-subset in YL . By (v), we have 

( )1
Lf λ τ− ′ ∈ . Then ( )( ) ( )1 1

L Lf fλ λ τ− −′ ′= ∈  and so ( )1
Lf λ τ− ′∈ . 

(vi)⇒ (i): Let YLη∈  be an closed and H-bounded set, then η  is HB-closed 
L-subset in YL . By (vi), we have ( )1

Lf η τ− ′∈ . Thus Lf  is HB-continuous 
mapping. 

Theorem 4.4: If ( ) ( ): , ,X Y
Lf L Lτ → ∆  is HB-continuous mapping, then  

( ) ( )
( )( ): , ,f XX

L f Xf L Lτ → ∆  is HB-continuous mapping. 

Proof. Let ( )f Xη∈∆  such that ( )1 \f X η  is H-bounded set, then ( )1 \f X η  is  

H-bounded and closed in ( )
( )( ),f X

f XL ∆ . Therefore ( )( )1 \ 1 \Y f Xρ η= ∈∆  and  

ρ′  is H-bounded in ( ),YL ∆ . Since ( ) ( ): , ,X Y
Lf L Lτ → ∆  is HB-continuous 

mapping, the by Theorem 4.2 (iii), we have ( )1
Lf ρ τ− ∈ , thus  

( ) ( )( )( ) ( )( )( ) ( )( ) ( )1 1 1 1 11 \ 1 \ 1 \ 1 \ 1 \ 1 \L L Y X L X X L Lf X f Xf f f f fρ η η η η− − − − −= = = = .  

Hence ( )1
Lf η τ− ∈  consequently, ( ) ( )

( )( ): , ,f XX
L f Xf L Lτ → ∆  is  

HB-continuous mapping. 
Theorem 4.5: If ( ) ( ): , ,X Y

Lf L Lτ → ∆  is HB-continuous mapping and  
A X⊆  then ( ) ( ): , ,A Y

L AAf L Lτ → ∆  is HB-continuous mapping. 

Proof. Let YLη∈  be an H-bounded and closed set. Since  

( ) ( ): , ,X Y
Lf L Lτ → ∆  is HB-continuous mapping, then ( )1

Lf η τ− ′∈  and since  

( ) ( ) ( )1 1 1L L A AAf fη η τ
− − ′= ∧ ∈ . Hence L Af  is HB-continuous mapping. 

Theorem 4.6: Every ( ) ( ): , ,X Y
Lf L Lτ → ∆  L-continuous mapping is HB- 

continuous mapping. 
Proof. Let ( ) ( ): , ,X Y

Lf L Lτ → ∆  be an L-continuous and let YLη∈  be an 
closed and H-bounded set, then ( )1

Lf η τ− ′∈ . Thus Lf  is HB-continuous map-
ping. 

The following example shows that the converse is not true in general. 
Example 4.7: Let { }:jI j J∈  be the usual interval base of the relative 

L-topology on [ ]0,1L I= =  induced by the set of real numbers. Define a 
L-topology τ  on [ ]0,1  generated by the base consisting of, 0X , 1X  and 

( ){ }: and 0,1
kj

I j J k∈ ∈  where 

( )
:

0 :Kj

k x I
I x

x I
∈

=  ∉
 

Let ∆  be the L-topology on I such that the complements of any number of 
∆  is countable L-subset in I (i.e., the support of the L-subset is countable). Let 

( ) ( ): , ,X Y
Lf L Lτ → ∆  be a function defined by ( )f x x= , for all x I∈ . Then it 

can be see that Lf  is HB-continuous but not L-continuous mapping. 
Theorem 4.8: A mapping ( ) ( ): , ,X Y

L HBf L Lτ → ∆  is L-continuous mapping 
iff it is HB-continuous mapping. 

Proof. Since HB′ ′∆ ≤ ∆ , then necessity is evident. Now, we suppose that Lf  
is HB-continuous and HBη ′∈∆ . Then by Theorem 4.3 (iii) we have 

( ) ( )( ) ( )( )1 1 1.L L Lf f HB cl cl fη η η− − −= ≥  and so ( )1
Lf η τ− ′∈ . Thus Lf  is 
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L-continuous mapping. 
Theorem 4.9: Let ( ) ( ): , ,X Y

Lf L Lτ → ∆  be an L-mapping and ( ),YL ∆  is 
H-bounded space. Then Lf  is L-continuous mapping iff Lf  is HB-continuous 
mapping. 

Proof. By Theorem 4.6 we need only to investigate the sufficiency. Let η ′∈∆ . 
Since ( ),YL ∆  is H-bounded space then by Theorem 3.2(ii), we have η  is 
H-bounded set and so η  is HB-closed L-subset. By HB-continuity of Lf , we 
have ( )1

Lf η τ− ′∈ . Hence Lf  is L-continuous mapping. 
Theorem 4.10: If Lf  is HB-continuous, then Lf  is H-continuous mapping. 
Proof. Follows from the fact that every H-compact set is H-bounded set. 
Theorem 4.11: Let ( ) ( ): , ,X Y

Lf L Lτ → ∆  be an L-mapping and ( ),YL ∆  be 

3LT -space. Then Lf  is H-continuous iff Lf  is HB-continuous mapping. 
Proof. Let Lf  be an HB-continuous mapping and let YLη∈  be a closed 

and H-compact, then by Theorem 3.3 (i), we have η  is H-bounded and closed. 
Since Lf  is HB-continuous then ( )1

Lf η τ− ′∈ . Thus Lf  is H-continuous. 
Conversely, let Lf  be an H-continuous and let YLη∈  be a closed and 

H-bounded. Then η  is H-compact and closed. Since Lf  is H-continuous, 
then ( )1

Lf η τ− ′∈ . Thus Lf  is HB-continuous mapping. 
Remark 4.12: For an L-mapping ( ) ( ): , ,X Y

Lf L Lτ → ∆ , we obtain the fol-
lowing implications: 

L-continuity  HB-continuity  H-continuity. 
None of these implications are reversible. However, if it ( ),YL ∆  is 

H-bounded (resp. 3LT -) space, then Theorem 4.10 (resp. Theorem 4.12) im-
plies that the concepts of L-continuity (resp. HB-continuity) and H-continuity 
are equivalent. 

Theorem 4.13: If ( ) ( )1 2: , ,X Y
Lf L Lτ τ→  is L-continuous and  

( ) ( )2 3: , ,Y Z
Lg L Lτ τ→  is HB-continuous, then ( ) ( )1 3: , ,X Z

L Lg f L Lτ τ→�  is 
HB-continuous. 

Proof. Let YLη∈  be a closed and almost N-compact. Since Lg  is HB-con- 
tinuous, then ( )1

2Lg η τ− ′∈  and since Lf  is L-continuous, then  
( )( )1 1

1L Lf g η τ− − ′∈  Hence L Lg f�  HB-continuous mapping. 
Theorem 4.14: If ( ),XL τ  and ( ),YL ∆  are L-ts's and 1 1 1X A B= ∨  such  

that 1 ,1A B τ ′∈  and ( ) ( ): , ,X Y
Lf L Lτ → ∆  is L-mapping and ,L LA Bf f  are  

HB-continuous mappings, then Lf  is HB-continuous mapping. 
Proof. Let YLη∈  be an N-almost bounded and closed then 

( ) ( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )

1 1 1 1

1 1 1

1 1

1 1 1

L L L A L BA B

L A B L X L

f f f f

f f f

η η η η

η η η

− − − −

− − −

∨ = ∧ ∨ ∧

= ∧ ∨ = ∧ =
 

Hence ( )1
Lf η τ− ′∈ . Thus Lf  is HB-continuous mapping. 

Theorem 4.15: If ( ) ( ): , ,X Y
Lf L Lτ → ∆  is HB-continuous mapping, injec-

tive, ( ),YL ∆  is 1LT -space and H-bounded, then ( ),XL τ  is 1LT -space. 
Proof. Let ( ), Xx y M Lα γ ∈  such that x y≠ . Since Lf  is injective 

L-mapping, then ( ) ( ) ( ), Y
L Lf x f y M Lα γ ∈  and ( ) ( )f x f y≠ . Since ( ),YL ∆  

⇒ ⇒
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is 1LT -space, then ( ) ( ),L Lf x f yα γ  are closed L-subsets in ( ),YL ∆ . Since 

( ),YL ∆  is H-bounded, then ( ) ( ),L Lf x f yα γ  
are H-bounded L-subsets. Since 

( ) ( ): , ,X Y
Lf L Lτ → ∆  is HB-continuous mapping, then ( )( )1 ,L Lf f x xα α

− =  
and ( )( )1 ,L Lf f y yγ γ

− =  are closed L-subsets in ( ),XL τ . Hence ( ),XL τ  is 

1LT -space. 

5. Characterizations of HB-Continuous Mappings in  
L-Topological Space 

Theorem 5.1: Let ( ) ( ): , ,X Y
Lf L Lτ → ∆  be an HB-continuous mapping and  

be a fully stratified 12
2

LT -space and 2LR -space. If ( )1L Xf  is contained in  

some H-compact set of YL , then Lf  is L-continuous mapping. 
Proof. Let YLη∈  be an H-compact set containing ( )1L Xf  and let ρ ′∈∆ .  

Since η  is B-compact in ( ),YL ∆  which is fully stratified 12
2

LT -space and  

2LR -space, so η ′∈∆  and η  is H-bounded by Theorem 3.3 (ii). Thus 
η ρ ′∧ ∈∆ . Hence by Theorem 3.3 (iii), we have YLη ρ∧ ∈  is H-bounded. 
Thus YLη ρ∧ ∈  is closed and H-bounded. By HB-continuity of Lf , then we 
have ( )1

Lf η ρ τ− ′∧ ∈ . But,  
( ) ( ) ( ) ( ) ( )1 1 1 1 11L L L L X Lf f f f fη ρ η ρ ρ ρ− − − − −∧ = ∧ = ∧ = . So ( )1

Lf ρ τ− ′∈ . Hence 

Lf  is L-continuous mapping. 
Theorem 5.2: If ( ) ( ): , ,X Y

Lf L Lτ → ∆  is L-closed and L-almost continuous 
mapping, then ( ) ( )1 : , ,Y X

Lf L L τ− ∆ →  is HB-continuous mapping. 
Proof. Let XLη∈  be an H-bounded and closed. Since Lf  is L-almost con-

tinuous mapping, then by Theorem 3.2 we have is H-bounded in YL . Since Lf  
is L-closed mapping, then ( )Lf η ′∈∆ . Hence by Theorem 4.3, we have 1

Lf −  is 
HB-continuous mapping. 

Theorem 5.3: Let ( ),XL τ  be an L-ts and ( ),YL ∆  be a fully stratified 12
2

LT
 

-space and 2LR -space. If ( ) ( ): , ,X Y
Lf L Lτ → ∆  is a bijective and L-almost 

continuous mapping, then ( ) ( )1 : , ,Y X
Lf L L τ− ∆ →  is HB-continuous mapping. 

Proof. Let XLη∈  be an H-compact. Since Lf  is L-almost continuous 
mapping, then by Theorem 2.10, ( )Lf η  is H-compact. Since ( ),YL ∆  is fully 
stratified 12

2

LT -space and 2LR -space, then ( )Lf η ′∈∆  and ( )Lf η  is 
H-bounded. Hence by Theorem 4.2, we have 1

Lf −  is HB-continuous mapping. 
Corollary 5.4: Let ( ),XL τ  be an H-compact space and ( ),YL ∆  be a fully  

stratified 12
2

LT -space and 2LR -space. If ( ) ( ): , ,X Y
Lf L Lτ → ∆  is a bijective  

and L-almost continuous mapping, then Lf  is a homeomorphism. 
Proof. Follows from Theorem 5.1 and 5.3. 
Theorem 5.5: Let ( ) ( ): , ,X Y

Lf L Lτ → ∆  be a surjective L-mapping, then the 
following conditions are equivalent : 

(i) Lf  is HB-continuous mapping. 
(ii) For each ( )Xx M Lα ∈  and each molecular net S in XL ,  

https://doi.org/10.4236/apm.2024.145019


Najah A. Alharbi 
 

 

DOI: 10.4236/apm.2024.145019 351 Advances in Pure Mathematics 
 

( ) ( )HB
L Lf S f xα→  at S xα→ . 
(iii) ( )( ) ( )( )lim .limL Lf S HB f S≤  for each S in XL . 
Proof: (i)⇒ (ii): Let ( )Xx M Lα ∈  and ( ){ }:S S n n D= ∈  be an molecular  

net in XL  which converges to xα . Let ( )Lf xHBR
α

η ∈ , by (i), we have  

( )1
L xf R

α
η− ∈ . Since S xα→  then there is an n D∈  for all m D∈ , m n≥   

such that ( ) ( )1
LS m f η−≤/  and so ( )( ) ( )1

L L Lf S m f f η η−≤ =/ . Thus  
( )( )Lf S m η≤/ . Hence ( ) ( )HB

L Lf S f xα→  . 
(ii)⇒ (iii): Let S be a molecular net in XL  and let ( )( )limLy f Sα ∈ , then 

there exists ( )limx Sα ∈  such that ( )Ly f xα α= . By (ii) we have 
( ) ( )( ). limL Lf x HB f Sα ∈ . Thus ( )( ) ( )( )lim .limL Lf S HB f S≤  for each S in  

XL . 
(iii) ⇒ (i): Let YLη∈  be an HB-closed and ( )Xx M Lα ∈  such that 

( )( )1
Lx cl fα η−∈ . By Theorem 2.19, we have molecular net S in ( )1

Lf η−  which  
converges to xα . Thus ( )limx Sα ∈  and so ( ) ( )( )limL Lf x f Sα ∈ . By (iii),  

( ) ( )( ) ( )( )lim .limL L Lf x f S HB f Sα ∈ ≤  and so ( ) ( )HB
L Lf S f xα→ . On the 

other hand, since S is molecular net in ( )1
Lf η− , then for each n D∈ , 

( ) ( )1
LS n f η−∈  and so ( )( ) ( )( )1

L L Lf S n f f η η−≤ = . Hence ( )( )Lf S n η≤  for 
each n D∈ . Thus ( )Lf S  is molecular net in η . So we have  

( ) ( )HB
L Lf S f xα→  and ( )Lf S  is molecular net in η  and so  
( ) ( ).Lf x HB clα η∈ . But since η  is HB-closed L-subset, so ( ).HB clη η= . 

Thus ( )Lf xα η∈ . Hence ( )1
Lx fα η−∈ . So ( )( ) ( )1 1

L Lcl f fη η− −≤ . Hence 
( )1

Lf η τ− ′∈ . Then Lf  is HB-continuous mapping. 
Theorem 5.6: If ( ) ( ): , ,X Y

Lf L Lτ → ∆  is a surjective L-mapping. Then the 
following conditions are equivalent: 

(i) Lf  is HB-continuous mapping. 
(ii) For each ( )Xx M Lα ∈  and each L-ideal I in XL , then  
( ) ( )HB

L Lf I f xα→  if I xα→ . 
(iii) ( )( ) ( )( )lim .limL Lf I HB f I≤  for each I in XL . 
Proof: (i)⇒ (ii): Let ( )Xx M Lα ∈  and I xα→ . Let ( )Lf xHBR

α
η ∈ , by (i) , 

we have ( )1
L xf R

α
η− ∈ . Since I xα→  then ( )1

Lf Iη− ∈ . Since ( )1
Lx fα η−∉ , 

then ( )Lf xα η∉ , so ( )Lf Iη∈ . Hence ( ) ( )
L Lf xHBR f I

α
⊆ . Thus  

( ) ( )HB
L Lf I f xα→ . 

(ii)⇒ (iii): Let I be an L-ideal in XL  and let ( )( )limLy f Iα ∈ , then there ex-

ists ( )limx Iα ∈  such that ( )Ly f xα α= . By (ii) we have  

( ) ( )HB
L Lf I f xα→ . So ( ) ( )( ). limL Ly f x HB f Iα α= ∈ . Hence  

( )( ) ( )( )lim .limL Lf I HB f I≤  for each I in XL . 

(iii) ⇒ (i): Let YLη∈  be an HB-closed set and ( )Xx M Lα ∈  such that 

( )( )1
Lx cl fα η−∈ . By Theorem 2.23, there exists L-ideal I which converges to xα  

such that ( )1
Lf Iη− ∉ . Moreover, ( ) { }:Y

Lf I Lρ η ρ≤ ∈ ≤/  if Iλ ∈  with  
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η λ≤ , then there exists Iµ∈  satisfy xα µ∉  such that ( )Lf xα λ∉ . Since 

η λ≤ ,  then ( )Lf xα η∉ .  This show that xα µ∈  if ( )Lf xα η∈ .  Thus 

( )1
Lf η µ− ≤ . So ( )1

Lf Iη− ∈ , a contradiction. Hence ( )Lf Iη∉ . On the other 

hand, by (iii), ( ) ( )( ) ( )( )lim .limL L Lf x f I HB f Iα ∈ ≤ . Thus  

( ) ( )HB
L Lf I f xα→  and so ( ) ( ).Lf x HB clα η∈ . But since η  is HB-closed 

L-subset, so ( ).HB clη η= . Thus ( )Lf xα η∈ . Hence ( )1
Lx fα η−∈ . So 

( )( ) ( )1 1
L Lcl f fη η− −≤ . Hence ( )1

Lf η τ− ′∈ . Then Lf  is HB-continuous map-
ping. 
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