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Abstract 
In this paper, we study the existence of standing waves for the nonlinear 
Schrödinger equation with combined power-type nonlinearities and a partial 
harmonic potential. In the L2-supercritical case, we obtain the existence and 
stability of standing waves. Our results are complements to the results of 
Carles and Il’yasov’s artical, where orbital stability of standing waves have 
been studied for the 2D Schrödinger equation with combined nonlinearities 
and harmonic potential. 
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1. Introduction 

In this paper, we study the existence and stability of standing waves for the non-
linear Schrödinger equation with combined power-type nonlinearities and a 
partial harmonic potential  

 ( ) ( )
( ) ( )0

0,  , ,
0, ,

p q N
ti W x t x

x x
ψ ψ ψ µ ψ ψ ψ ψ

ψ ψ

+ ∂ + ∆ − + + = ∈ ×


=

 

 (1.1) 

where ψ  is a complex-valued function of ( ),t x , 0µ > , 3N ≥ ,  
4 4 40 min ,

2
p q

N N d N
 < < < <  − − 

. The external potential W describes the  

electromagnetic trap for the condensate and is usually chosen to be an istropic 
quadratic confinement, i.e.,  
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( ) 2 2

1
,  ,

N

i i i
i

W x a x a
=

= ∈∑   

where 1 2, , , Na a a ∈   represent the corresponding trap frequency in each 
spatial direction. The Gross-Pitaevskii equation with N particle bodies are strict-
ly derived by Gross and Pitaevskii, see [1] [2]. Due to the inclusion of a quadrat-
ic potential, the natural energy space for studying Equation (1.1) is given by the 
following expression  

( ) ( ) ( ){ }21: : d ,N
NX u H W x u x x= ∈ < ∞∫



  

with the norm  

( ) ( )2 2
22 2 2 d .NX L Lu u u W x u x x= ∇ + + ∫  

Different forms of the potential W correspond to different physical meanings. 
In the case 0W = , Equation (1.1) arises in various areas of physics and mathe-
matics. The typical class of nonlinear dispersion equation had been proposed by 
Schrödinger in [3]. When 2 2

1
N

i iiW a x
=

= ∑ , { }\ 0ia ∈ , it is a nonlinear 
Schrödinger equation with harmonic limiting potential and W indicates that the 
external potential is uniformly distributed in all directions of space in a har-
monic form. This type of equations has been studied in [4] [5] [6]. In fact, when 

( ) 2 2
1

N
i iiW x a x

=
= ∑ , ia ∈ , some coefficients of ( )W x  will vanish, the har-

monic potential becomes partial harmonic potential. Then Equation (1.1) does 
not keep invariant by translation. The orbital stability of standing waves for the 
inhomogeneous Gross-Pitaevskii equation has been studied in [7]. 

In [4], Carles and Il’yasov considered the nonlinear Schrödinger equation 
with a harmonic potential in the presence of two combined energy-subcritical 
power nonlinearities. They address the equations of the existence and the orbital 
stability of the set of standing waves by the method of fundamental frequency 
solutions. This method makes it possible to describe accurately the set of fun-
damental frequency standing waves and ground states, and to prove its orbital 
stability. On this basis, this paper converts the harmonic potential into a partial 
harmonic potential. At this time, the compactness disappears, which makes it 
more difficult to discuss the stability of the standing waves for the equation. 
Therefore, we must seek new ways to address the issues raised in this article.  

Equation (1.1) enjoys a class of special solutions, which are called standing 
waves, namely solutions of the form ( ) ( ), ei tt x u xωψ = , where ω∈ , and the 
function u X∈  solves the following elliptic equation  

 ( ) 0.p qu u W x u u u u uω µ−∆ + + − − =  (1.2) 

A possible choice is then to fix w∈ , and to search for solutions to (1.2) as 
critical points of action functional  

 ( ) ( ) 2
2

, : ,
2 Lu E u uµ ω µ
ω

= +  (1.3) 

where the energy ( )E uµ  is defined as  
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 ( ) ( ) ( )2 2 2
22 2 21 1 1d .

2 2 2 2p qN

p q
L L LE u u W x u x x u u

p qµ
µ

+ +
+ += ∇ + − −

+ +∫  (1.4) 

For the Equation (1.1), an important issue is to consider the stability of 
standing waves, which is defined as follows:  

Definition 1.1. A set   is orbitally stable if for any given 0ε > , there ex-
ists 0δ >  such that for any initial data 0ψ  satisfying  

0inf ,Xu
uψ δ

∈
− <


 

the corresponding solution ( )tψ  of (1.1) satisfies  

( )inf ,  0.
Xu

t u tψ ε
∈

− < ∀ ≥


 

Given this definition, for the sake of stability, we require that the solution of 
(1.1) exists globally, at least for initial data 0ψ  close enough to  . In 
L2-supercritical case, according to the local well-posedness theory of NLS, small 
initial data NLS solution exists globally, while for some large initial data, the so-
lution may blow up in finite time. Therefore, it is especially important to pay at-
tention to whether there is a stable standing waves in this case. 

In order to study the orbital stability of standing waves, we apply the idea by 
Cazenave and Lions in [8], consider the following constrained minimization 
problem  

( )
( )

( ): inf ,
u S c

m c E uµ∈
=  

where  

( ) { }2: .LS c u X u c= ∈ =  

However, since the nonlinearities is the L2-supercritical, the energy functional 

is unbounded from below on ( )S c . Indeed, when 4 40
2

p q
N N

< < < <
−

, tak-

ing u X∈  such that 2Lu c= , then we have  

( ) ( ) ( )

( ) ( )

2 2 2

2 2 2

2 2 2 2

2 2 2 222 2 2

1 1 1d
2 2 2 2

d
2 2 2 2

,

N p q

p qN

p q

L L L

Np Nq

p q
L L L

E u u W x u x x u u
p q

u W x u x x u u
p q

λ λ λ λ λ
µ

µ

λ λ µλ λ

+ +

+ +

+ +

−
+ +

= ∇ + − −
+ +

= ∇ + − −
+ +

→ −∞

∫

∫





 (1.5) 

as λ →∞ . Therefore, we cannot study the existence and stability of standing 
waves of Equation (1.1) by considering the global minimization problem. Due to 
this type of problems has been considered in [9] [10] [11] by studying the cor-
responding local minimization problems, we consider the following local mini-
mization problem: for any given 0r > , defining  

 ( )
( ) ( )

( ), : inf ,
u S c B r

m c r E uµ∈ ∩
=  (1.6) 

where  

( ) { }: : ,XB r u X u r= ∈ ≤

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and X⋅ 

 is given by  

 ( ) ( )2
22 2: d .NX Lu u W x u x x= ∇ + ∫ 

 (1.7) 

It can be proved that for any given 0r r>  with some 0 0r > , there exists a 
0rc > , such that ( ) ( ) , rS c B r c c∩ ≠∅ ∀ < . Thus we can obtain the existence of 

a minimizer of ( ),m c r . Denote the set of all minimizers of ( ),m c r  by  

( ) ( ) ( ) ( ) ( ){ }: : , .r c u S c B r E u m c rµ= ∈ ∩ =  

To prove the existence and stability, the key is to show that any minimizing 
sequence is relatively compact. For Equation (1.1), when 1 2 0Na a a ≠ , the  

embedding X ↪ qL  with 22,
2

Nq
N

 ∈  − 
 is compact, the minimization prob-

lem (1.6) can be easily solved. However, when some of coefficients of ( )W x  

vanish, the embedding X ↪ qL  with 22,
2

Nq
N

 ∈  − 
 is not compact. In this  

case, the general method is to apply concentration compactness principle to 
overcome this difficulty. Then we can obtain the compactness of all minimizing 
sequences of (1.6) and prove the existence and stability of standing waves for 
(1.1). Without loss of generality, we assume  

 ( ) { }2 2

1
, \ 0 ,

d

i i i
i

W x a x a
=

= ∈∑   (1.8) 

where 1 d N≤ < . 
According to (1.8), our main results are as follows:  

Theorem 1.2. Let 0µ > , 1 d N≤ < , 4 4 4min ,
2

q
N N d N

 < <  − − 
, all being  

fixed, then there exists 0 0r > , such that for every given 0r r> , there exists rc  
with 0 1rc< < , we have for any ( )0, rc c∈  that 

1) ( ) ( )
2r
rcc S c B  ∅ ≠ ⊂ ∩  

 
 ; 

2) The set ( )r c  is orbitally stable.  
This paper is organized as follows: in Section 2, we given some preliminary 

results, which will be used later. In Section 3, we prove Theorem 1.2. 

2. Preliminaries 

In this section, we recall some preliminary results that will be used later. Firstly, 
let us recall the local well-posedness theory for the Cauchy problem (1.1) estab-
lished in [12].  

Lemma 2.1. Let 3N ≥ , 1 d N≤ < , 4 40
2

p q
N N

< < < <
−

, and 0 Xψ ∈ .  

Then, there exists ( )0 XT T ψ= , such that (1.1) admits a unique solution 
[ ]( )0, ,C T Xψ ∈ . Let 0,T ∗    be the maximal time interval on which the solu-

tion ψ  is well-defined, if T ∗ < ∞ , then ( )
X

tψ →∞  as t T ∗↑ . Moreover, 
for all )0,T T ∗∈  , the solution ( )tψ  satisfies the following conservations of 
mass and energy 
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( ) 22 0 ,LL
tψ ψ=  

and  

( )( ) ( )0 ,E t Eµ µψ ψ=  

where ( )E uµ  is defined by (1.4).  
Lemma 2.2. [13] Define  

( ) ( )( )2

22
0

d 1
inf d d ,N N

N u x
u x W x u x x

=∫
Λ = ∇ +∫ ∫


 

 

and  

( )( )1 22
1 2

2 2
0 1 2

d d d 1
inf d d d d .k kk

k k
x x x k

v x x x
v x W x v x x xλ

=∫
= ∇ +∫ ∫






 

 

Then 0 0λΛ = .  
Lemma 2.3. [14] Let 1N ≥  and ( )0 4 2Nη< < − , then the following sharp 

Gagliardo-Nirenberg inequality  

( ) ( )
2 2 2

2 2 2 2 2 ,N N
GNL L Lu u uη

η η ηη+
+ + −≤ ∇  

holds for any ( )1 Nu H∈  . The sharp constant ( )GN η  is  

( ) ( )
( )

( )
2

4
2 2 4 2 1 ,

4 2

N

GN

L

N
N N Q

η

η

η η
η

η η
+ − − 

=  − −  
  

where Q is defined in Theorem 1.4 by [8].  
Lemma 2.4. [9] Let 0 p< < ∞ , suppose that nf f→  almost everywhere 

and { }nf  is a bounded sequence in pL , then  

( )lim 0.p p p
p p p

n nL L Ln
f f f f

→∞
− − − =  

3. Proof of Theorem 1.2 

In this section, we first establish a local minima structure for ( )E uµ  on ( )S c .  

Lemma 3.1. Let 0µ > , 1 d N≤ < , 4 4 40 min ,
2

p q
N N d N

 < < < <  − − 
, all  

being fixed, then there exists 0 0r > , such that for every given 0r r> , there ex-
ists rc  with 0 1rc< < , we have  

 ( ) , 0,
2
rcS c B c ∩ ≠∅ ∀ > 

 
 (3.1) 

 
( )

( )
( ) ( ) ( )( )

( )
\

2

inf inf , .rrc u S c B r B rcu S c B
E u E u c cµ µ∈ ∩ ∈ ∩  

 

< ∀ <  (3.2) 

Proof. Let 0u X∈  be such that 20 2Lu = , 2 2
0 0Xu r=



. Then for all 0c > , 

letting 0:
2c
cu u= , we have  

2 ,c Lu c=  

and  
2 2 2 2

2 0
0, ,

4 4c X

c r c ru r r= < ∀ >

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namely ( )
2c
rcu S c B  ∈ ∩  

 
. Thus (3.1) is verified. 

To verify (3.2), using the Gagliardo-Nirenberg inequality, we have  

( ) ( )

( ) ( )

2 22 2 22 2
1 2

2

1 1 ,  ,
2 2 2
1 ,  .
2

Np NqNp Nqp q

X X X

X

E u u C c u C c u u S c
p q

E u u u S c

µ

µ

µ + − + −
≥ − − ∀ ∈ + +


 ≤ ∀ ∈

  



 

Denote 1 2
1 2 , 

2 2
C CK K

p q
µ

= =
+ +

, we define the following functions:  

( )

( )

2 22 2 2 2 2
1 2

2

1: , 0,
2
1: .
2

Np Np Nq Nqp q

c

c

f t t K c t K c t t

g t t

+ − + −
= − − >


 =

 

Notice that for any 0r r> , there exists 0 1rc<  , such that for all ( ),t rc r∈  
with rc c< , we have  

 

( )

( )

2 22 2 2 2 2
1 2

4 42 22 2 2 2 2
1 2

442 22 2 2 2 221 2

2 2

1
2

1
2

1
2

3 .
8 2

Np Np Nq Nqp q

c

Np Np Nq Nqp q

Np Nq NqNpp q

c

f t t K c t K c t

t K c t K c t

r c K c rc K c r

rcr c g

+ − + −

− −
+ − + −

−−+ − + −

= − −

 
= − − 

 
 

≥ − − 
 

 > >  
 

 (3.3) 

This implies that  

( )
( )2 2

,

3 inf ,  ,
2 8c c rt rc r

rcg r c f t c c
∈

  < ≤ ∀ < 
 

 

which completes the proof. 

Lemma 3.2. Let 0µ > , 1 d N≤ <  and 4 40 min ,
2

p
N d N

 < <  − − 
. Let  

0r >  and 0rc >  be as Lemma 3.3. Let rc c<  and { }nu  be a minimizing 
sequence of (1.6). Then there exists 0δ >  such that  

 2lim d .p
nn

v x δ+

→∞
>∫  (3.4) 

Proof. If there exists a subsequence, still denoted by { }nv  such that 

2 0pn Lv + →  as n →∞ , then by the interpolation, 0qn Lv →  as n →∞ , for  

all 4 40 min ,
2

q
N d N

 < <  − − 
, ( ) ( )nv S c B r∈ ∩ . We consequently obtain that  

( ) ( ) ( )

( ) ( )

( )

2 2 2
2 2 2 2

2

0

, 1
1 1 1d 1
2 2 2 2

1 ,
2

p qN

n n

p q
n n n n nL L L

n

m c r E v o

v W x v x v v o
p q

c o

µ

µ
+ +
+ +

= +

= ∇ + − − +
+ +

≥ Λ +

∫


(3.5) 
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where 0Λ  is defined by Lemma 2.2. 
On the other hand, since the space ( ) ( ){ }21: , dd

dv H W x v xΣ = ∈ < ∞∫


  is 
compactly embedding in ( )2 dL  , it is standard to show that 0λ  is achieved by 
some ( )1 dv H∈   with 2 d 1d v x =∫ 


. Let ( )1 N dHϕ −∈   satisfy  

( ) 2 2dN d x x cϕ− =∫


, and set  

( ) ( ) ( )1 2 1: , , , , , ,d d Nu x v x x x x xλ
λϕ +=     

where  

( ) ( )2
1 1, , : , , .

N d

d N d Nx x x xλϕ λ ϕ λ λ
−

+ +=   

Then ( )u S cλ ∈  for all 0λ > . It follows that  

 

( )

( ) ( )

( ) ( )

( )

( ) ( )
( )

1

1

2
0

1

2 2
1 2 1

2 2
1 2 1

22
0

1

2 2 2
1 1

2

1 d d
2 2

, , , , , d
2

1 , , , , , d
2

d d
2 2

, , , , d
2

2

N d d N

N

N

N d d N

N

x x d N

p p
d d N

q q
d d N

x x d N

N d p

p p
d d N

N d q

cE u x x

v x x x x x x
p

v x x x x x x
q

cx x

v x x x x x
p

q

λ
µ λ

λ

λ

λ

ϕ

µ ϕ

ϕ

λ ϕ

µλ ϕ

λ

− +

− +

+

+ +

+

+ +

+

+

−

+ +

+

−

Λ
= ∇ +

−
+

−
+

Λ
= ∇ +

−
+

−
+

∫

∫

∫

∫

∫


















 


 




 

( ) ( )2 2
1 1, , , , d ,N

q q
d d Nv x x x x xϕ

+ +

+∫



 

 (3.6) 

for 0λ >  small enough. Notice that ( )u B rλ ∈  for 0λ >  sufficiently small, 
we consequently obtain that  

( ) ( ) 2
0

1, .
2

m c r E u cλ
µ≤ < Λ  

This is a contradiction with (3.8). This completes the proof. 

Lemma 3.3. Let 0µ > , 1 d N≤ <  and 4 4 40 min ,
2

p q
N N d N

 < < < <  − − 
. 

Let 0r >  and 0rc >  be as Lemma 3.1. Then for any 2 10 rc c c< < < , we have  

 ( ) ( ) ( )1 2 1 2, , , .m c r m c r m c c r< + −  (3.7) 

Proof. We first prove the following strict monotonicity:  

 ( ) ( ) { }, , ,  0 min 1, .rtm s r sm t r t s c< ∀ < < <  (3.8) 

Indeed, let ( ) ( )nv S t B r⊂ ∩  satisfy ( ) ( ),nE v m t rµ → . Then by Lemma 3.2, 
there exists a 1 0δ >  such that  

2
1lim d .p

nn
v x δ+

→∞
>∫  

Let :n n
su v
t

= , we have ( ) ( ) ( )
2n
rsu S s B S s B r ∈ ∩ ⊂ ∩ 

 
. Then we get  
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( ) ( )

( ) ( )

( )

( )

2 22

2 2

2 2 2 2

2 2
2 22 2

, lim

1 1 1lim d
2 2 2 2

1lim lim lim
2 2

,

p qN

p q

nn

p q
n n n nL LLn

p q

p q
n n nL Ln n n

m s r E u

u x W x u x u u
p q

s s s s sE v v v
t p t t q t t

s m t r
t p

µ

µ

µ

µ

µ

+ +

+ +

→∞

+ +

→∞

+ +

+ +

→∞ →∞ →∞

≤

 
= ∇ + − − + + 

   
          = − − − −          + +       
   

≤ −
+

∫


( )

( )

2 2
2 2

1 1
1 1

2 2

, ,

p q

n
s s s s o
t t q t t

s m t r
t

δ δ
+ +   

          − − − +          +       
   

<

 (3.9) 

which implies (3.11). Then for all 2 10 rc c c< < < , we get  

 

( ) ( ) ( )

( ) ( )

( ) ( )

2 1 2
1 1 1

1 1

2 1 1 2 1
2 1 2

1 2 1 1 2

2 1 2

, , ,

, ,

, , .

c c cm c r m c r m c r
c c
c c c c cm c r m c c r
c c c c c
m c r m c c r

−
= +

−
< + −

−

< + −

 (3.10) 

Proof of Theorem 1.2. Let nu  be a minimizing sequence of ( ),m c r , name-
ly  

( ) ( )


2, , , .n n nL XE u m c r u c u rµ → = ≤  

Applying Lemma 3.2, there exist { }nz ⊂   and { }\ 0u X∈ , such that  

  in ,nv u X  

where :n nv u= . We first prove 2Lu c= . If not, denote 21 : Lc c u> =  and 

22 : n Lc v u= − . Appling Brezis-Lieb Lemma, we have  

( )2 2 2 1 ,n n nL L Lv v u u o= − + +  

and  

( )1 .n n nX X Xv v u u o= − + +
  

 

Then we see that ( ) ( )1u S c B r∈ ∩ , ( ) ( )2nv u S c B r− ∈ ∩ . Choosing a sub-
sequence of { }nv  (still denote by nv ) such that ( )2 1c c c −→ − , we deduce that  

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1

2
1 1

1

1 1

, 1

1

, , 1

, , 1

, , 1 ,

n n

n n

n

n

n

m c r E v o

E v u E u o

m c r m c r o
c m c c r m c r o

c c
m c c r m c r o

µ

µ µ

= +

= − + +

≥ + +

≥ − + +
−

= − + +

 (3.11) 

which is a contradiction with Lemma 3.3. Therefore 2Lu c=  and nv u→  
strongly in 2L . Then by using the interpolation, we get that nv u→  strongly in 

sL  for all )2,2s ∗∈  . We then deduce from the weak convergence in X that 
( ) ( ) ( )lim inf ,nn

E u E v m c rµ µ→∞
≤ = . On the other hand, due to  
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lim inf nX Xn
u v r

→∞
≤ ≤

 

, we have ( ) ( ),E u m c rµ ≥ . We consequently obtain  
( ) ( ),E u m c rµ =  and then lim n X Xn

v u
→∞

=
 

. Thus, we deduce that nv u→  
strongly in X, namely nu u→  strongly in X and ( )ru c∈ . 

Next we prove that ( )r c  is orbitally stable by contradiction. We assume 
that there exist 0 0ε >  and a sequence of initial data { },0n Xψ ⊂  such that  

 
( ) ,0lim inf 0,

r
n Xn u c

uψ
→∞ ∈

− =


 (3.12) 

and there exist a sequence { }nt ⊂   such that the maximal solution ( )n tψ  
with ( ) ,00n nψ ψ=  satisfies that  

 
( )

( ) 0inf .
r

n n Xu c
t uψ ε

∈
− ≥


 (3.13) 

Without restriction, we can assume ( ),0n S cψ ∈  such that { },0nψ  is a mini-
mizing sequence of (1.6). According to Lemma 3.1, when n is sufficiently large,  

we have ( ),0 2n
rcS c Bψ  ∈ ∩  

 
, which together with ( )( ) ( ),0n nE t Eµ µψ ψ=  and 

( ) 2 2,0n nL L
t cψ ψ= = , implies that ( ) ( ) ( )n nt S c B rψ ∈ ∩  is a minimizing se-

quence for (1.6). Then we have ( ) ( )
2n n
rct S c Bψ  ∈ ∩  

 
 by Lemma 3.1. This  

shows that ( )n tψ  is globally large for sufficiently large n. Due to the compact-
ness of all minimizing sequence of (1.6), a contradiction to (3.16) is obtained. 
Theorem 1.2 has been proven.  

4. Conclusion 

In recent years, the nonlinear Schrödinger equation have been studied by many 
experts. This paper mainly adds a nonlinear term and a partial harmonic poten-
tial on this basis. In particular, the addition of nonlinear terms poses significant 
computational challenges, as the equations lose their compactness and transla-
tion invariance due to the presence of partial harmonic potentials. To solve the 
difficulty, we were inspired by the [8], the compactness of the minimization se-
quence is obtained by establishing the minimalization problem and using the 
concentration compactness principle, thus proving the stability of the standing 
waves for the equation in L2-supercritical case.  
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