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Abstract 
In this article we consider the asymptotic behavior of extreme distribution 
with the extreme value index 0γ > . The rates of uniform convergence for 
Fréchet distribution are constructed under the second-order regular variation 
condition. 
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1. Introduction 

The central limit theory focuses on the extreme behavior of sample partial sums, 
but in nature and human society, there are also a class of extreme risk events, 
such as floods, earthquakes, precipitation and economic crises. Although these 
events are rare, once they occur, they will bring significant losses to society. 
Therefore, studying the laws of extreme value occurrence is extremely important. 
Extreme value theory emerged in this context, as an important branch of proba-
bility theory, mainly focusing on the tail behavior of extreme value distributions. 
In recent years, the application range of extreme value theory has been very ex-
tensive. For example, predicting the probability of extreme events such as the 
above, estimating the percentile of extreme value distribution, and applying it to 
fields such as financial risk management, see de Haan and Ferreira (2006) [1]. 

Let { }, 1nX n ≥  be independent, identically distributed (iid) random variables 
with common distribution function  

( ) [ ]1 , .F x P X x x R= ≤ ∈  
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Denote the extreme value by  

1
,

n

n i
i

M X
=

= ∨  

and suppose there exist normalizing constants 0na >  and nb R∈  such that  

n n

n

M b
a
−

 

has a nondegenerate limit distribution as n →∞ , i.e.  

 [ ] ( ).n n nP M a x b G x≤ + →  (1.1) 

Fisher and Tippett (1928) [2], Gnedenko (1943) [3] proposed the extreme 
value distribution ( )G x  takes the form of  

 ( ) ( ) ( ){ }1exp 1 , ,1 0,G x G x x R xγ
γ γ γ γ−= = − + ∈ + ≥  (1.2) 

where the parameter γ  in (1.2) is called the extreme value index. This also 
means that F is in the domain of attraction of extreme value distribution. 

Under the special case of the extreme value index 0γ > , the extreme value 
distribution can be written as  

 ( ) ( ) { }1 1

0, 0,

exp , 0,

x
G x x

x xγ γ−

<= Φ =  − ≥
 (1.3) 

which is also called the Fréchet distribution, and the convergence in (1.1) can be 
rewritten as  

 [ ] ( )1 .n nP M a x xγ≤ →Φ  (1.4) 

Based on theoretical studies, many scholars focus on the first-order asymptot-
ic analysis in extreme events. But with the widespread application of extreme 
value theory, several authors discovered the first-order asymptotic results ob-
tained by using the limits of extreme value distributions are relatively rough, and 
often requires a more accurate approximate representation. It is necessary to 
know the further expansion of first-order convergence. Therefore, research on 
the convergence rate of first-order asymptotic result in extreme value theory has 
attracted the attention of many scholars. de Haan and Peng (1997) [4] considers 
the convergence rate of two-dimensional extreme value distribution. In the re-
search on the convergence speed of one-dimensional extreme value distribution, 
de Haan and Resnick (1996) [5] established the rates of convergence of the dis-
tribution of the extreme order statistics to its limit distribution under the 
second-order von Mises condition with Rγ ∈ . Cheng and Jiang (2001) [6] fo-
cuses on the rates of the uniform convergence for distributions of extreme values 
( ( )n

n nF a x b+  to ( )G xγ ) under the condition of generalized regular variation 
of second-order. For the speed at which the extreme value distribution con-
verges to its limit distribution in special distributions, Liao et al. (2014) [7] de-
rived the asymptotic behavior of the distribution of the maxima for samples ob-
eying skew-normal distribution. Peng et al. (2010) [8] established the limiting 
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distribution of the extremes and the associated convergence rates for the mixed 
exponential distributions. Chen and Huang (2014) [9] construsted the exact 
uniform convergence rate of the asymmetric normal distribution of the maxi-
mum and minimum to its extreme value limit. Chen and Feng (2014) [10] con-
sidered the rates of convergence of extremes for short-tailed symmetric distribu-
tion under power normalization. Chen et al. (2012) [11] studied the rates of 
convergence of extremes for general error distribution under power normaliza-
tion. 

The second-order asymptotic result can provide a more accurate approximate 
expression, and it can characterize the speed of first-order convergence, which 
can provide a better guidance for the prediction, risk management, and control 
of extreme events, see Lin (2012) [12], Mao and Hu (2013) [13]. The focus of 
this paper is on rates of convergence in (1.4). We set out to explain our condi-
tion. For a nondecreasing function f, define the left-continuous inverse of f is  

( ) ( ){ }inf : .f t x f x t← = ≥  

Let ( )1 logf F ←= − . Necessary and sufficient condition for the convergence 
for (1.4) is that f is regulary varying, i.e.  

 ( )
( )

lim
t

f tx
x

f t
γ

→∞
=  (1.5) 

holds for 0x >  and 0γ > , written as ( )f RV γ∈ . Regarding regular varia-
tion refer to Resnick (1987) [14]. So in order to get the convergence rate of (1.4), 
we need to require a rate of convergence condition in (1.5). The condition as 
follows. 

Supppose the second-order regular variation condition  

 ( ) ( )
( ) ( )lim

t

f tx f t x
x

B t

γ

κ
→∞

−
=  (1.6) 

holds for all 0x > , where B has constant sign near infinity and satisfying 
( )lim 0t B t→∞ = . The function ( )xκ  should not be a multiple of xγ . By 

Theorem B.3.1 of de Haan and Ferreira (2006) [1], We know that B RVρ∈  
and ( ) ( )1x x xγ ρκ ρ= −  for 0ρ ≤ . 

For convenience, let ( ) { }0 exp e xG x −= −  and its derivative ( ) ( )0 0 e xG x G x −′ = , 
define  

( ) ( ) ( )( ) ( )
( ) ( ) ( )

1
0 0

1
0

log log ;

log
nJ x G f nx f n G x

J x x G x xγ

γ

γ κ

−

− −

= −

′=
 

and ( ):na f n= . Moreover, for any function g on ( )0,∞ , denote  
( ) ( )limtg g t→∞∞ =  and ( ) ( )00 limtg g t→=  if the limits exist. 
In the following, we will provide the rates of convergence in (1.4) under the 

second-order regular variation condition (1.6). The rest of the paper is organized 
as follows. In Section 2, we present the auxiliary lemmas. Theorem and its proof 
are given in Section 3. 
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2. Lemmas 

Before presenting the main conclusion, we first provide the following lemmas. 
Recall that a measureable function f on R+  is said to be generalized regular va-
rying with prameter Rγ ∈  and auxiliary a, denote ( ),f GR aγ∈ , if  

 ( ) ( )
( )

1lim , .
n

f tx f t x x R
a t

γ

γ
+

→∞

− −
= ∈  (2.1) 

Define  

( )

( )
( ) ( )( )

( ) ( )

*

0

, 0;

, 0;

1 d , 0
t

f t

f f ta t

f t f u u
t

γ γ

γ γ

γ

>

− ∞ − <= 


− = ∫
 

and  

( ) ( )
( )

.n
f nx

p x x
f n

γ= −  

Lemma 2.1 (cf. de Haan (1970) [15]). if ( )f RV γ∈ , for any , 0ξ δ ≥ , there 
exists a ( )0 0 , 0t t ξ δ= ≥  such that  

 ( ) { } ( )
( ) ( ) { } 01 min , 1 max , , , .

f tx
x x x x t tx t

f t
γ δ γ δ γ δ γ δξ ξ+ − + −− < < + ∀ ≥  (2.2) 

Lemma 2.2 (Cheng and Jiang (2001) [6], Proposition 1.2). If ( ),f GR aγ∈ , 
then ( ) ( )* ~a t a t  as n →∞  and for all , 0ξ δ > , there exists ( )0 0 , 1t t ξ δ= ≥  
such that,  

 
( ) ( )

( ) { } 0*
1 max , , ,

f tx f t x x x t tx t
a t

γ
γ δ γ δξ

γ
+ −− −

− ≤ ∀ ≥  (2.3) 

holds for 0,t tx t≥ .  
Lemma 2.3 (de Haan and Ferreira (2006) [1], Theorem 2.3.9). If f satisfies 

the second-order condition (1.6), then for all , 0ξ δ ≥ , there exists ( )0 0 , 1t t ξ δ= ≥  
such that  

 

( )
( )
( ) ( ) { }max ,

f tx
x

f t
x x x x

B t

γ

γ ρ δ δκ ξ + −

−
− ≤  (2.4) 

holds for 0,t tx t≥ , where  

( )

( )
( )

( )
( )

0
1

lim
1 , 0;

d
1 , 0.

s

t

s f s

t f t
B t

s f s s

t f t

γ

γ

γ

γ

ρ ρ

ρ

−

→∞
−

−

−

  
  − <
    = 

 − =


∫
 

Proof.  
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( )
( )
( ) ( )

( )
( )

( )

( ) ( ) ( )
( ) ( )

1
1

1 .

f tx f tx
x x

f t f t xx x
B t B t

tx f tx t f t xx
t f t B t

γ γ
ρ

γ

γ γ ρ
γ

γ

κ
ρ

ρ

−

− −

−

− −
−

− = −

− −
= −

 

Obviously, ( ) ( ) ( )( ),t f t GR t f t B tγ γρ− −∈ , then by Lemma 2.2 the lemma is 
complete.  

Lemma 2.4. Suppose f satisfies the second-order regular variation condition 
(1.6), then  

 
[ ]

( ) ( )( ) ( ) ( ) ( )( )1 1
0

,
lim sup log 0,

n n
nn x

x G x B n p x xγ

α β
κ− + −

→∞ ∈
− =  (2.5) 

 
[ ]

( ) ( )1 2 2

,
lim sup 0,

n n
nn x

B n x p xγ

α β

− −

→∞ ∈
=  (2.6) 

where ( )21 logn B nα = − , ( )21n B nβ = .  
Proof. Note that ( )B t RVρ∈  and ( )2

2B t RV ρ∈  with 0ρ ≤ . From (2.2) in 
Lemma 2.1 there exists a constant 0 0C >  and an integer 0 0n >  such that 

( )2 2 1
0B n C n ρ−≥  for all 0n n≥ . Hence ( ) 1

02 1 log lognn n n Cα ρ
−

≥ − − + →∞    
as n →∞ . This implies that (2.4) holds for all [ ],n nx α β∈ . Therefore, for any 

( )0,1δ ∈ , we have 

[ ]

( ) ( )( ) ( ) ( ) ( )( )

[ ]

( ) ( ) { }

( ) { }

1 1
0

,

1 1

,

1 1 1

sup log

sup exp max ,

sup exp max , .

n n

n n

n
x

x

x R

x G x B n p x x

x x x x

x x x

γ

α β

γ γ ρ δ γ ρ δ

α β

ρ δ ρ δ

κ

ξ

ξ
+

− + −

∈

− + − + + + −

∈

− − + − −

∈

−

≤ −

= − < ∞

 

Hence (2.5) holds. For (2.6), choosing ( )0,1 4δ ∈ ,  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )

( )
[ ]

{ } ( ) ( )

1 2 2 2 2 2

22 1

22 1 2 2

2 2 2 2 2 2

,

1 2

2 2

2 sup max , 2

.
n n

n n

n

n

x

n n

B n x p x x B n B n p x

x B n B n p x x x

x B n B n p x x x B n x

B n x x x B n x

Q Q

γ γ

γ

γ γ

ρ δ ρ δ γ

α β

κ κ

κ κ

ξ κ

− − − −

− −

− − −

+ − −

∈

=

= − +

≤ − +

≤ +

= +

 

The first part ( ) ( )( ) ( )( ){ }2 2 4 42
1 2 max 1 log , 0nQ B n B n B n

ρ δ ρ δ
ξ

− − −
≤ − →  as 

n →∞ . Similarly, the second part [ ] ( ) ( )( )2

2 ,sup 2 1 0
n nn xQ B n xρ

α β ρ∈= − →  as 

n →∞ . The lemma is proved.  
Lemma 2.5. If f satisfies the second-order regular variation condition (1.6), 

then  

[ ]
( ) ( ) ( )1

0,
lim sup 0.nn x

B n J x J x−

→∞ ∈ ∞
− =  

Proof. We only prove this lemma for the case that ( )B n  is positive, the 
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proof of another case is similar.  

( ) ( )
( ) ( )

( ) ( )( )
0 0

0 1

1 log log

ˆlog ,

n

n n n

f nx
J x G G x

f n

q x G x q x

γ

θ

 
= −  

 

′= +

 

where ( ) ( ) ( )1 log lognq x f nx f n xγ −= −  and ( )1̂ 0,1nθ ∈ . Note that for some 
( )2̂ 0,1nθ ∈ ,  

( ) ( ) ( )( ) 11
2̂1 .n n n nq x x p x x p xγ γγ θ

−
− − −= +  

Therefore,  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1
0 1

1 1
0 1

1 1
0 1 0

1 1
0

1 2 3

ˆlog

ˆlog

ˆlog log

log
.

n n n n

n n n n

n n n

n

n n n

B n J x J x B n q x G x q x J x

B n q x x p x G x q x

B n x p x G x q x G x

B n x p x G x J x
E E E

γ

γ

γ

θ

γ θ

γ θ

γ

− −

− − −

− − −

− − −

′− = + −

′≤ − +

′ ′+ + −

′+ −

= + +

 

By Lemma 2.4, we know that  

[ ]
( )

[ ]
( ) ( ) ( )( )( )

[ ]

( ) ( ) ( ) ( )( )( )

1 1
3 0

, ,

11 1
0

,

sup sup log

sup log

0.

n n n n

n n

n n
x x

n
x

E x x G x B n p x x

x G x B n p x x

γ

α β α β

γ

α β

γ κ

γ κ

− − −

∈ ∈

− +− −

∈

′= −

= −

→

 

Letting ( ) ( ){ }0 0max sup log ,sup logx R x RM G x G x∈ ∈′ ′′= , we have from (2.6) that  

[ ] [ ]
( ) ( ) ( )( )

[ ]
( ) ( ) ( )( )

11 1
1 2

, ,

11 1 2 2
2

,

ˆsup ( ) sup 1 1

ˆsup 1

0.

n n n n

n n

n n n n
x x

n n n
x

E x M B n x p x x p x

M B n x p x x p x

γ γ

α β α β

γ γ

α β

γ θ

γ θ

−
− − − −

∈ ∈

−
− − − −

∈

 ≤ + −  

≤ +

→

 

For the second part ( )2nE x , by mean value theorem and also from (2.6),  

[ ]
( )

[ ]
( ) ( ) ( )( ) ( )

[ ]
( ) ( ) ( )( )

1 1
2 0 3 1 1

, ,

12 1 2 2
2

,

ˆ ˆ ˆsup sup log

ˆsup 1

0.

n n n n

n n

n n n n n n n
x x

n n n
x

E x B n x p x G x q x q x

M B n x p x x p x

γ

α β α β

γ γ

α β

γ θ θ θ

γ θ

− − −

∈ ∈

−
− − − −

∈

′′= +

≤ +

→

 

So we obtain  
 

[ ]
( ) ( ) ( )1

,
lim sup 0.

n n
nn x

B n J x J x
α β

−

→∞ ∈
− =  (2.7) 

It remains to deal with the parts of the integral near ±∞ . For nx β≥ ,  

[ ]
( ) ( )

( )
[ ]

( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

1

,

1 1
0 0

,

1 1
0 0

1 1 1
0 0 0

sup

sup 1 log 1 log

1 log 1 log

log log 2 1 log .

n

n

n
x

x

n n

n n n

B n J x

B n G f nx f n G x

B n G f n f n G

B n G f n f n G B n G

β

β
γ

γ β β

γ β β β

−

∈ ∞

− −

∈ ∞

− −

− − −

≤ − + −

≤ − + −

≤ − + −
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Noting ( ) 0J ∞ = , the first part goes to zero by (2.7). The second part goes to 
zero because of ( ) ( )2

01 log ~nG B nβ−  and ( ) 0B n →  as n →∞ . So we have 

[ ] ( ) ( ) ( )1
,lim sup 0

nn nx B n J x J xβ
−

→∞ ∈ ∞ − = . Similarly, for nx α≤ , 

[ ]
( ) ( )

( )
[ ]

( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )

1

0,

1 1
0 0

0,

1 1 1
0 0 0

sup

sup log log

log log 2 log

0.

n

n

n
x

x

n n n

B n J x

B n G f nx f n G x

B n G f n f n G B n G

α

α
γ

γ α α α

−

∈

− −

∈

− − −

≤ +

≤ − +

→

 

Combing ( )0 0J =  we have [ ] ( ) ( ) ( )1
0,lim sup 0

nn nx B n J x J xα
−

→∞ ∈ − = . The 
proof of the lemma is completed.  

3. Theorem and Its Proof 

Theorem 3.1. If f satisfies the second-order regular variation condition (1.6), 
then  

 
( ) ( )

( ) ( )1 1lim
n

n

n

F a x x
J x

B n
γ γ

→∞

−Φ
= −  (3.1) 

holds uniformly on 0x > .  
Proof. Let ( ) ( ) 1

logn nz x n F a x
−

 = −  , equivalently, ( ) ( )( )0 logn
n nF a x G z x= . 

So we have  

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )( ) ( ) ( )( )( )
( ) ( )

1 1
1/

1 1
0 0

1 2

: 

log 1 log

.

n
n n

n n n

n n

K x B n F a x x J x

B n G z x G x J z x J x J z x

K x K x

γ
γ

γγ

−

−

= −Φ +

= − + + −

= +

 

In order to show (3.1), we need only to prove  

 
( )

( )
0 1

lim sup 0 for 1,2;
n

nin F a x
K x i

→∞ < <
= =  (3.2) 

 
( )

( )
0

lim sup 0;
n

nn F a x
K x

→∞ =
=  (3.3) 

 
( )

( )
1

lim sup 0.
n

nn F a x
K x

→∞ =
=  (3.4) 

If ( )0 1nF a x< < , according to the definition of the f, for any 0δ >  we have  

( )( ) ( )( )
.n n

n n

f nz x f nz x
x

a a
δ+

≤ ≤  

Hence  

( ) ( )( ) ( )( )( )( ) ( )( )( )
( ) ( ) ( )( ) ( )( )( )( ) ( )( )( )

1
0 0

1
1 0 0

log 1 log

log 1 log .

n n n n

n n n n n

B n G z x G f nz x a J z x

K x B n G z x G f nz x a J z x

γ δ

γ

−

−

− + +

≤ ≤ − +
 

Then by Lemma 2.5, we can obtain ( ) ( )10 1lim sup 0
nn nF a x K x→∞ < < = . It is ob-

vious that ( ) 1
nz x x γ→ . Since ( )J x  is continuous on ( )0,∞  and  

( ) ( )0 0J J= ∞ = , we can also obtain ( ) ( )20 1lim sup 0
nn nF a x K x→∞ < < = . 
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For the situation of ( ) 0nF a x = , we have ( )0 nx f a≤ . The left of (3.1) is  

( )
( ) ( )

( )
( ) ( )( )

( )
( ) ( ) ( )( )

1 1 1
1 1

0 0

1

0

lim sup lim sup 0

lim sup 0 0

0.

n n

n

nn nF a x F a x

nn F a x

B n x B n a f

B n J J

γ γ
− − −

→∞ →∞= =

−

→∞ =

Φ ≤ Φ

= −

→

 

Note that ( )lim 0 0n nf a→∞ → . For any δ , there exists 0n  such that  
( )0 nx f a δ≤ ≤  for all 0n n≥ . Therefore,  

( )
( ) ( )1 1

0
lim sup lim sup 0

n
n nF a x x

J x J xγ γ

δ→∞ →∞= ≤
≤ =  

by letting 0δ → . Then,  

( )
( ) ( ) ( )( ) ( )

( )
( ) ( )

( )
( )

1 1
1

0

1 1
1

0 0

lim sup

lim sup lim sup

0.

n

n n

n
nn F a x

n nF a x F a x

B n F a x x J x

B n x J x

γ
γ

γ
γ

−

→∞ =

−

→∞ →∞= =

−Φ +

≤ Φ +

→

 

If ( ) 1nF a x = , then ( ) nx f a≥ ∞ . The left of (3.1) is 

( )
( ) ( )( )

( )
( ) ( )( )( )

( )
( ) ( ) ( )( )( )

( )
( ) ( ) ( )

1 1
1 1

1 1

1
0 1

1

1

1

lim sup 1 lim sup 1

lim sup log

lim sup 0.

n n

n

n

nn nF a x F a x

nn F a x

nn F a x

B n x B n f a

B n G f a

B n J J

γ γ

γ

− −

→∞ →∞= =

−

→∞ =

−

→∞ =

−Φ ≤ −Φ ∞

≤ ∞ −Φ ∞

= ∞ − ∞ →

 

For sufficiently large number 0M , there exists 0n  such that ( ) 0nx f a M≥ ∞ ≥  
for all 0n n≥ . Hence 

( )
( ) ( )

0

1 1

1
lim sup lim sup 0

n
n nF a x x M

J x J xγ γ

→∞ →∞= ≥
≤ =  

by letting 0M →∞ . Furthermore,  

( )
( ) ( ) ( )( ) ( )1 1

1
1

lim sup 0.
n

n
nn F a x

B n F a x x J x γ
γ

−

→∞ =
−Φ + →  

So we prove this theorem.  
Remark 3.1. Uniform limit in Theorem 3.1 gives an Edgeworth expansion as 

follows:  

( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( )

1 1
1 1 1 1

1 log logn
nF a x x B n x x x

o B n

γ

γ γ γ γκ
γ

+ −= Φ + − Φ Φ − Φ

+
 

holds uniformly on 0x > . 
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