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Abstract 
Although General Relativity is the classic example of a physical theory based 
on differential geometry, the momentum tensor is the only part of the field 
equation that is not derived from or interpreted with differential geometry. 
This work extends General Relativity and Einstein-Cartan theory by aug-
menting the Poincaré group with projective (special) conformal transforma-
tions, which are translations at conformal infinity. Momentum becomes a 
part of the differential geometry of spacetime. The Lie algebra of these trans-
formations is represented by vectorfields on an associated Minkowski fiber 
space. Variation of projective conformal scalar curvature generates a 2-index 
tensor that serves as linear momentum in the field equations of General Rela-
tivity. The computation yields a constructive realization of Mach’s principle: 
local inertia is determined by local motion relative to mass at conformal in-
finity in each fiber. The vectorfields have a cellular structure that is similar to 
that of turbulent fluids. 
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1. Introduction 

This work extends General Relativity (GR) and Einstein-Cartan (EC) theory by 
augmenting the structure group with projective (special) conformal transforma-
tions, which are translations at conformal infinity [1]. The Lie algebra of the struc-
ture group is represented by vectorfields on an associated Minkowski affine fiber 
space. Metricity is preserved at the origin of each Minkowski fiber because pro-
jective conformal connection coefficients vanish at the origin of each fiber. 
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Variation of projective conformal scalar curvature generates a 2-index tensor 
that serves as the momentum in the field equations of GR. Momentum gains an 
interpretation as part of the differential geometry of spacetime, whereas gravita-
tional theory normally treats momentum as an exogeneous term without an in-
terpretation in differential geometry.  

The computation yields a constructive realization of Mach’s principle: local in-
ertia is determined by local motion relative to mass at conformal infinity in each 
fiber. 

1.1. The Relation of This Work to General Relativity and  
Einstein-Cartan Theory 

The structure group of GR is the Lorentz group. The structure group of EC is the 
Poincaré group with an affine Minkowski space as the associated fiber. The struc-
ture group of this work is the Poincaré group augmented by including the pro-
jective conformal transformations. 

The basic computations to derive the field equations in this work are analog-
ous to those in GR and EC  

1) Compute the scalar curvature, which in this work contains projective con-
formal terms.  

2) Define action as the integral of scalar curvature. Variation of the action 
with respect to the frame field on spacetime yields the gravitational field equ-
ations. Variation of the projective conformal terms in the action generates a 
2-tensor that enters as the momentum tensor in the field equations of GR and 
EC. 

In GR and EC, the momentum tensor is exogenous to the differential geome-
try: it is not derived from the geometry nor does it have an interpretation in dif-
ferential geometry. In this work, the momentum tensor is derived from the dif-
ferential geometry and is part of the geometry. This difference makes the com-
putations more complicated than in GR or EC. The computations are segregated 
in Appendix, so they do not obscure the simple analogy with GR and EC. The 
computations are performed using computer algebra software, which provides 
a complete and verifiable record of the computations and contains many text 
comments that provide a roadmap through the computations. 

1.2. The Relation of This Work to Conformal Field Theory  

Some sources define the term “Conformal Field Theory” (CFT) as shorthand for 
“Conformal Quantum Field Theory” (CQFT). Other sources include classical 
conformal field theory such as the results herein. Most of the research in CFT to-
day is CQFT: the mathematical structure is usually based on infinite dimensional 
Lie algebras in finite dimensional spacetimes that include holomorphic and me-
romorphic functions. The usual application domains of CFT are phase changes, 
critical points, and boundary effects in materials, and high-energy quantum field 
theory. CFT is usually restricted to massless fields because the global conformal 
structure of CFT is not compatible with mass terms [2] [3]. This work has no such 
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restriction, because the conformal symmetry is local, contained in the connec-
tion form. 

The conformal structure in this work focuses on momentum tensors in clas-
sical gravitational theories. The only algebra is the Poincaré group of EC aug-
mented by classical projective conformal transformations. This approach distills 
a small part of CFT to provide an answer to basic questions in gravitational theory: 
What is the geometric interpretation of momentum in classical gravitational 
theories, and does momentum have an interpretation in differential geome-
try?  

This work is accessible to experts in gravitational theory and differential geo-
metry with no background in CFT. 

The remainder of this article has six parts. 
• Section 2: Affine connections on diffeomorphism bundles. 
• Section 3: Lagrangian and field equations. 
• Section 4: Linear momentum as a Noether current. 
• Section 5: Mach’s principle. 
• Section 6: Flow of projective conformal vectorfields. 
• Section 7: Summary. 
• Appendix: Computer algebra computation of projective conformal action and 

its variation. 

2. Affine Connections on Diffeomorphism Bundles 
2.1. Affine Connections on Linear Minkowski Bundles 
2.1.1. Bundles 
Ξ = smooth spacetime manifold of dimension dim, coordinates {ξμ, μ = 
1…dim}.  

TΞ = tangent bundle of Ξ. TξΞ = tangent fiber over ξ ∈ Ξ. 
X = Minkowski associated fiber with affine coordinates {xi, i = 1…dim}, fixed 

origin point o in each fiber Xξ = fiber over ξ ∈ Ξ. X is a flat affine manifold that 
supports translations, not a vector space. 

TX = linear tangent bundle of the affine space X. TxX = tangent fiber over 
point x ∈ X.  

SO(p, q) = standard orthogonal group acting on X; (p + q = dim). 
gij = Minkowski metric on X with constant components in Minkowski coor-

dinates. 
H = Poincaré structure group Affine(p, q), p + q = dim. Lie(H) = Lie algebra 

of H.  
P = principal fiber bundle with base manifold Ξ and structure group H. 

2.1.2. Connection 1-Forms 
For a base manifold of dimension dim, the structure group H = Affine(p, q) and 
Lie(H) have dimension dim(dim + 1)/2. The basis of Lie(H) can be chosen to 
consist of dim independent infinitesimal translations and dim(dim − 1)/2 inde-
pendent infinitesimal rotations in the associated representation space X = Rdim. 
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ω = affine connection 1-form on P. 
Kμi(ξ) = translational connection coefficients on X and a frame field on Ξ. 

Kμi(ξ) is invertible with inverse Kiμ(ξ). 
Bμij(ξ) = rotational connection coefficients. Metricity requires that the sym-

metric form Bμ(ij) = 0.  
When moving in ξμ direction in spacetime, Bμij(ξ) xj defines a rotation cen-

tered at Kμi(ξ) ∈ X. 
Γμi(ξ, x) = Kμi(ξ) + Bμij(ξ) xj = connection 1-form at ξ ∈ Ξ and x ∈ X, in 

vectorfield form.  
Viewing Γμi(ξ, x) as a vectorfield on X is isomorphic to the conventional view 

in terms of translational and rotational connection coefficients. The vectorfield 
view provides better insight when projective conformal transformations are in-
cluded, and more so when working with general diffeomorphism bundles. (An 
example of a diffeomorphism bundle is one whose associated fiber is a space of 
constant curvature with no preferred origin point.) 

gμν = Kμi(ξ) gij Kνj(ξ) = metric on spacetime Ξ pulled back from X by the 
frame field Kμi(ξ).  

2.2. Affine Connection Augmented by Projective Conformal  
Transformations 

The structure group augmented by projective conformal transformations is de-
note by HC and its Lie algebra as Lie(HC). 

Each projective conformal transformation can be defined as a composition of 
three simpler transformations. 
• A conformal inversion on each Minkowski fiber maps the origin o ∈ X to 

conformal infinity and vice versa.  
• A translation Cμi at origin o ∈ X.  
• A second conformal inversion that maps the origin o ∈ X to conformal infin-

ity and vice versa.  
As a vectorfield, this transformation is a translation at conformal infinity, with-

out introducing points at infinity. 
The connection 1-form Γμi(ξ, x) , including projective conformal transforma-

tions, in coordinate form is: 

 ( ) ( ) ( ) ( )( )i i i k ij i
j k

2
k, x K B x C x 2x xµ µµµΓ ξ = ξ + ξ + ξ δ −  (Apx, A-2) (1) 

In general, each independent vectorfield that is added to Lie(H) adds a term in 
the connection 1-form. 

The geometry discussed in this work is precisely this case: the affine structure 
includes projective conformal transformations and the associated fiber has a pre-
ferred origin point. The connection forms and curvature tensors have only two ex-
plicit indices. 

 ( )i , xµΓ ξ , ( )iR , xµν ξ  (2) 

The model includes a preferred origin point because all local geometry and 
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physics occurs at the point x = 0 ∈ X. For example, the curvature that is relevant 
for gravitation is Rμνi (ξ, x = 0).  

One might ask why the affine fiber space X is retained if all local physics oc-
curs at x = 0. This question has several answers.  
• A linear connection retains the linear fiber space in order to represent rota-

tional transformations. 
• An affine connection retains the affine fiber X to represent the translational 

transformations. 
• In the theory of conformal structure of quantum wave mechanics, the connec-

tion coefficient on the fiber space X contains the physics of the Klein-Gordon 
field in the fiber [4]. This enables the differential geometry to incorporate the 
Klein-Gordon equation. Without the fiber space, the geometry cannot contain 
the physics of the KG field.  

• The theory herein retains the associated Minkowski fiber X to represent the 
projective conformal inversions without introducing any points at conformal 
infinity. The projective conformal vectorfield on fiber contains the informa-
tion needed to model conformal inversion. 

The computational rule for covariant derivatives and curvature in this theory 
is to treat the fiber coordinate x as the third index, or more precisely, the partial 
derivative with respect to x acts as the third explicit index.  

Covariant derivates in Riemannian geometry have the form: 

 ( ) ( ) ( ) ( )i i i j
jx x xµ µ µ∇ ξ = ∂ ξ + Γ ξ ξ  (3) 

whereas in this theory:  

 ( ) ( ) ( )( )i i ix x ,xµ µ µ∇ ξ = ∂ ξ + Γ ξ ξ
 

(4) 

In local bundle coordinates, curvature in Riemannian geometry is: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i k i k
j j j k j k jRµν µ ν ν µ µ ν ν µξ = ∂ Γ ξ − ∂ Γ ξ + Γ ξ Γ ξ − Γ ξ Γ ξ  (5) 

In this theory, the fiber index j: 

 
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
j

j

i i ii
x

j

i
x

j

R ,x ,x ,x ,x ,x

,x ,x

µν µ ν ν νµ

ν

µ

µ

ξ = ∂ Γ ξ − ∂ Γ ξ + ∂ Γ ξ Γ ξ

− ∂ Γ ξ Γ ξ
 

(6) 

The formula in Equation (6) is implemented in Appendix in Section 1 for 
connection coefficients and in Section 2.1 for the full curvature tensor. 

2.3. Curvature Tensor in Coordinate Form 

Local physics uses vectors, connection coefficients, and curvature only at the ori-
gin x = 0 ∈ X. The projective conformal symmetries affect curvature, but not the 
connection coefficients, at x = 0.  

We compute the projective conformal scalar curvature in seven steps. 
Step 1: Compute the full curvature in vectorfield form, denoted full_curv_vect 

in (Apx, c4). It is not displayed because it has 38 terms, it is not formatted for 
viewing, and it is used only to compute full curvature at 0 ∈ X.  
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Step 2: Compute the full curvature in 4-index form denoted full_curvμνji, (in 
(Apx, c5). This is not displayed. 

Step 3: Compute the full curvature at x = 0, denoted full_curv_x0μνji(ξ 0) in 
(Apx, c6). 

Step 4: Compute projective conformal curvature at x = 0, denoted  
proj_conf_cur_x0, in (Apx, d8). 

Step 5: Compute projective conformal Ricci curvature at x = 0, denoted 
proj_conf_riccicurv_x0 in (Apx, d9). 

Step 6: Compute projective conformal scalar curvature at x = 0, denoted 
proj_conf_scalar_curv_x0 in (Apx, d10). 

Step 7: Simplify the projective conformal scalar curvature at x=0 to get a single 
term: 

The result of this computation is: 

 projective conformal scalar curvature at x = 0 is ( ) i
i–2 dim 1 K Cµ µ−  (Apx, d13) 

(7) 

If dim = 4, then 

 projective conformal scalar curvature at x = 0 and dim = 4 is i
i–6K Cµ µ  (8) 

2.4. The Role of Connections and Fiber Bundles in Physical  
Theories 

In field theories based on parallel translation and curvature—hence connections 
on fiber bundles—the fiber space represents a perfectly symmetric vacuum space-
time, whose symmetry is not broken by the presence of matter. For example, GR 
uses a linear Minkowski space X with a fixed origin, and EC uses an affine space 
as the associated fiber. A further extension of the role for the fiber space is that 
the cosmological constant Λ should be viewed as the scalar curvature (times a 
constant) of a fiber that is a space of constant curvature [5]. To add a field that is 
not naturally derived from differential geometry, it is necessary to introduce an 
action term with no differential geometric origin or interpretation whose sole jus-
tification is that it produces the desired field equations. In gravitational theory, 
momentum is the most important case of a field that is introduced via an ad-hoc 
term in the Lagrangian that is not rooted in the geometry, whose sole justifica-
tion is that variation yields desired terms in the field equations. In summary, the 
main argument for using connections on fiber bundles in physics is to separate 
the universal perfect symmetry of spacetime from local fields that break the per-
fect symmetry.  

A common complaint about using connections in physical theories is that the 
principal bundle introduces many “unnecessary” frames that complicate com-
putations. Even this inconvenience is hinting at structure: the vacuum is like an 
idealized version of a perfect single crystal modeled by the fiber; spacetime is like 
a polycrystalline material, where grain boundaries bind the perfect crystals to-
gether into a composite medium, like a geometric connection binds to together the 
high symmetry fibers to create a manifold with broken symmetries. 
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3. Lagrangian and Field Equations 

The Lagrangian in GR, EC and this projective conformal theory is the scalar cur-
vature of the connection. This includes Riemannian curvature, Riemann-Cartan 
curvature (including affine torsion to model intrinsic angular momentum), and 
projective conformal curvature. The terms in these three types of curvature are 
numerous, as are the interaction terms among the three types of curvature. 

The main objective is to focus on the projective conformal terms in the scalar 
curvature. Therefore, the Lagrangian used in the variational computation con-
tains only terms that include some projective conformal curvature. For example, 
consider a satellite in a spacetime that is far from any other source of gravita-
tional curvature. This simplification amounts to assuming that the gravitation-
al field is weak compared to fields arising from the momentum tensor of the 
satellite. This strategy is used to model many isolated objects in GR, for exam-
ple Schwarzschild or Kerr black holes. This assumption greatly simplifies the 
computations.  

The projective conformal terms in the connection and curvature also represent 
mass at infinity or a great distance. However, it is represented by a highly uniform 
vectorfield in local fiber spaces, so it does not represent the particular features of 
nearby matter.  

3.1. The Variation of Action 

The action due to the projective conformal field is 1/2 projective scalar curvature. 

 ( ) ( )i
iaction dim 1 K C det gµ

µ= − −
 

(9)  

If dim = 4, ( )i
iaction 3K C det gµ

µ= − , then 

 ( )( ) ( )j
i j i iaction K 3 K C K C det gµ ν µ µ

νδ δ = − +  (Apx, d20) (10) 

3.2. Express Momentum Piμ in Terms of Conformal Field Ciμ and 
Vice-Versa  

The momentum Piμ can be expressed in term of the conformal field Ciμ.  

 ( ) ( )( ) ( )j
i i j iP dim 1 K K C C 2µ µ ν µ

ν= − − + κ  (Apx, d22) (11) 

If dim = 4, this is: 

 ( )( ) ( )j
i i j iP 3 K K C C 2µ µ ν µ

ν= − + κ  (Apx, d23) (12) 

Given the momentum tensor Piμ, Equation (13) provides a way to specify the 
projective conformal coefficient Ciμ. 

 
( ) ( )( )

( )
i i i

i

dim 1 2K PinvK dim 1 K CinvK 2dim P
C

dim 1 dim

µ µ µ
µ

− κ + − − κ
=

−
 (Apx, d26)(13) 

4. Linear Momentum as a Noether Current 

In physical theories based on fiber bundles, Noether currents are associated with 
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symmetry operations in the structure group of a theory and its Lie algebra.  
GR derives linear momentum as the Noether current of spacetime translations, 

using Lie derivatives in spacetime as the translations. This formulation of momen-
tum is not really a Noether current on a fiber bundle because the symmetry from 
which it is derived is not contained in the structure group.  

EC derives linear momentum as the Noether current of spacetime translations 
and intrinsic angular momentum as the Noether current of translation operators 
in the Poincaré group, which is the structure group. EC includes exchange of in-
trinsic and orbital angular momentum because its linear momentum tensor is 
nonsymmetric. Linear momentum has a geometric interpretation that is basical-
ly the same as in GR, but the translation operator is included in the structure 
group. Intrinsic angular momentum has a geometric interpretation as infinitesim-
al translational holonomy around closed loops in spacetime [6]. 

The projective conformal theory presented here replaces the ad-hoc action term 
for linear momentum with the projective conformal term in the scalar curvature.  
• These terms provide a geometric interpretation of momentum as translations 

at conformal infinity.  
-The factor x2 in Equation (1) ensures that projective conformal curvature 

does not appear in EC.  
-Momentum has been the only term in gravitational field equations that has 

no such interpretation.  

5. Mach’s Principle 
5.1. The History of Mach’s Principle 

In 1883, Ernst Mach published the conjecture now called Mach’s principle [7]. It 
is an imprecise hypothesis that matter at a distance determines local linear iner-
tia and moment of inertia in rotational mechanics. Mach felt that all matter in 
the universe should contribute to the local concept that matter is “not accelerat-
ing” and “not rotating” [8] [9]. 

Early discussions of Mach’s Principle focused on rotational inertia, most clearly 
in the Lense-Thirring effect which is a relativistic correction to the precession of 
a gyroscope near a large rotating mass.  

Mach’s principle guided Einstein in development of GR, as expressed in a let-
ter Einstein wrote to Mach [10]. 

“…inertia originates in a kind of interaction between bodies … If one ro-
tates a heavy shell of matter] relative to the fixed stars about an axis going 
through its center, a Coriolis force arises in the interior of the shell.” 

5.2. A Constructive Realization of Mach’s Principle  

A simple version of Mach’s Principle is that momentum of an object is deter-
mined by motion of local matter relative to mass at conformal infinity. This 
work derives a computational statement of Mach’s Principle: variation of the ac-
tion with respect to the frame field Kμi yields a 2-index tensor in the field equa-
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tions that serves as the momentum tensor in GR. This work derives the rela-
tionship between the momentum tensor Piμ and the projective conformal tensor 
Cμi(Apx, d22). 

6. The Flow of Projective Conformal Vectorfields 

This section introduces a geometric approach to the flow of projective conformal 
vectorfields. Graphs of the integral curves of projective conformal vectorfields show 
that these curves have a cell structure.  

Figure 1 shows the projective conformal vectorfield in 2D in which Cμi is 
pointed in the +xi direction. Changing the direction of C merely rotates the im-
age in3-space. The vectorfield is zero at the origin. 

Figure 2 shows the projective conformal vectorfield in 3D in which Cμi is 
pointed in the +z (upward) direction. The vectorfield forms a flow moving from 
the +z direction to the −z direction. The flow does not rotate about the z axis. 

Both figures show that the tubes formed by the integral curves are compressed 
as the flow lines approach the center of the cell. After leaving the central region 
of the cell, the integral curves cycle back to join the integral curves that are en-
tering the tube at the other end. The direction of C determines the longest axis of 
each tube. This pattern forms finite ellipsoidal or tubular cells that fill the flat 
Minkowski fiber space.  

One speculation about future applications of projective conformal gauge theory 
may be worth mentioning. The similarity between projective conformal vector-
fields and flow vectorfields and flows of turbulent fluids suggests that projective 
conformal geometry may have a role in introducing stochastic behavior into the 
interior structure of momentum fields.  

This cell structure is similar to the cell structure of simple turbulent fluid flows. 
In turbulent flows, the long axis of the cell is the mean direction and magnitude  

 

 
Figure 1. Vectorfield in 2D, C pointing in +x direction. 
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Figure 2. Vectorfield in 3D, C pointing in +z direction. 
 

of the fluid flow; the flow along this line is mostly laminar flow. The width of each 
cell captures the variance of the flow [11]. 

7. Summary 

Although General Relativity is the classic example of a physical theory based on 
differential geometry, the momentum tensor is the only part of the field equa-
tion that is not derived from or interpreted with differential geometry. This work 
extends GR to include projective conformal transformations, which are transla-
tions at conformal infinity. Momentum becomes a part of the differential geome-
try of spacetime. The geometry is a gauge theory for projective conformal trans-
formations. This extension has two effects. 

1) Variation of the projective conformal term in the scalar curvature generates 
a tensor in the field equations that can be interpreted as linear momentum. The 
linear momentum tensor is a part of the differential geometry. Momentum is the 
only term in Einstein’s equations that has lacked an interpretation in terms of dif-
ferential geometry.  

2) This work provides a constructive realization of Mach’s principle: linear mo-
mentum arises from translation relative to an inertial frame at infinity.  
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Appendix: The Computer Algebra Computation of Projective 
Conformal Action and Its Variation 

This Appendix contains a computer algebra computation of the scalar curvature 
of a connection on an associated fiber bundle that includes projective conformal 
transformations. 
• The structure group is the Lorentz group, augmented with projective con-

formal transformations. 
• The associated fiber is a flat affine space with fixed origin point and a Lorent-

zian metric.  
• Coordinates on the fiber are denoted xi with lower case Roman letters as in-

dices. Coordinates on the base space are denoted ξμ with Greek letters and 
indices. 

• The connection coefficients are translational (Kμi), rotational (Bμij), and 
projective conformal (Cμi). Affine connection coefficients normally with in-
dices Γμij, and Bμij, but Macsyma writes these as Γμji and Bμji.  

• The Lagrangian of the theory is the scalar curvature at the fixed origin of the 
associated fiber. 

Computations are performed using Macsyma 2.4.1a [12]. Macsyma’s tensor 
simplification functions are not strong enough to perform all necessary simpli-
fications automatically. In these situations, carefully validated manual simplifi-
cations are used. 

For readers who are not familiar with Macsyma code, many comments are in-
cluded to explain what each command line does, and sometimes what each com-
mand does. 

We use connections on an affine bundle over spacetime, where: 
• Ξ = spacetime manifold with local coordinates {ξμ} (Greek indices). 
• X = Minkowski affine space with Cartesian coordinates {xj} (Roman indices). 
• H = Structure group is a subset of the group of diffeomorphisms of X. 
• L(H) = Lie algebra of the structure group H consists of smooth vectorfields 

on X. 
Initialize. 
a) Turn off frame fields and frame brackets.  
b) Declare “x” constant. Macsyma cannot distinguish xj as a fiber coordinate. 
c) Define contraction properties for the connection coefficients. 
d) Kμi(x) = fundamental 1-form = isomorphism from spacetime vectors to 

vectors on TX; Kiμ = inverse of Kμi and Kiμ are the only isomorphisms between 
spacetime and fiber vectors. 

e) Bμji(ξ, x)= affine rotational connection coefficients. x acts as a continuous 
lower index. Macsyma is programmed to write Bμij as Bμji.  

f) gfij = fiber metric; symmetric, constant in fiber coordinates xj; gf can raise 
and lower (lower case Roman) fiber indices. 

Compute vectorfield representation of GAM:  
• One (Greek) spacetime index. 
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• One (Roman) upper fiber index. 
• One continuous coordinate x as lower fiber index. 

Note: xfl acts like a continuous third index in Gamμi. 
    (loadprint: false, init_itensor(), imetric(g), ratfac:true, declare(x, constant),  
    declare_isymmetry(\b, 3, [anti(2,3)]),  
(c1) declare(gf, constant), define_icontraction(gf), define_icontraction(gf, gf, kdelta),  
    define_icontraction(\k, \k, kdelta), declare_isymmetry(gf, 2, [sym(1,2)]),  
    declare_isymmetry(gf, 2, [sym(1,2)]))$. 

A1. Connection Coefficients 

Define connection coefficients GAM in terms of connection coefficients K, B, C.  
K, B, C are constants in Minkowski fiber coordinates x. 

• Gamμi(ξ,x) = total connection coefficients, expressed as vectorfields on X. 
• Kμi(ξ) = translational connection coefficients (the frame field). 
• Bμji(ξ,x) = rotational connection coefficients on X. In simple affine case (no 

projective conformal term), Bμji(ξ,x) xj is a vectorfield on X.  
• Cμi(ξ,x) = Projective conformal connection coefficients.  
• gfi j = constant Minkowski metric on affine fiber X. 

Compute vectorfield representation of GAM:  
• One (Greek) spacetime index. 
• One (Roman) upper fiber index. 
• One continuous coordinate x as lower fiber index. 

Note: xfl acts lika a continuous third index in Gamμi. 
(loadprint: false, init_itensor(), imetric(g), ratfac:true, declare(x, constant),  

  declare_isymmetry(\b, 3, [anti(2,3)]),  
(c2)  declare(gf, constant), define_icontraction(gf), define_icontraction(gf, gf, kdelta),  
  define_icontraction(\k, \k, kdelta), declare_isymmetry(gf, 2, [sym(1,2)]),  
  declare_isymmetry(gf, 2, [sym(1,2)]))$. 

(d2) ( )i fl i i k i fl i
mu fl k k mu mu muflGam x x kdelta 2x x C K x B= − + +

 
 

Compute 3-index connection coefficient Gamμji = diff(Gamμi xj). 
This is 3-index connection coefficient including projective conformal vectorfield. 
Derivative by xj converts variable xj to the 4th index needed in index 

contraction. 
The main goal of Section 2 below is to compute full curvature in 3-index 

vectorfield form: 

( )i i i i i
j j j jR ,x dGam Gam dGam Gamµν µ ν ν µξ = − . 

 (remcomps(d\gam), ivariation(\gam([mu, @i]), x([@j])),  
(c3)   icontract(ratexpand(%%)), factorsum(%%), components(d\gam([mu, j, @i]), %%), 
       ishow('d\gam([mu, j, @i]) = d\gam([mu, j, @i]))). 

(d3) ( )i i i i %2 i
muj muj muj %2 j mu j mudGam B 2 x C x kdelta C 2x C= − + +  
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A2. Full Curvature 
A2.1. The Vectorfield Form of Full Curvature 

Compute full curvature Rmni(x, x) as a vectorfield on X.  
• The vectorfield form expresses the connection form as an element  

of the Lie algebra of the group of diffeomorshisms of X.  
• Icontract(ratexpand(...)) removes kronecker deltas.  

Ratsimp(..., \c) replaces structure removed by ratexpand. 
  (remcomps(full_curv_vect), \gam([nu, @i], mu) − \gam([mu, @i], nu)  
    + d\gam([mu, j, @i])*\gam([nu,@j]) − d\gam([nu, j, @i])*\gam([mu,@j]), 
(c4)    icontract(rename(ratexpand(%%))), ratsimp(%%, \c), 
    components(full_curv_vect([mu, nu, @i]), %%), 
   ishow('full_curv_vect([mu, nu, @i]) = full_curv_vect([mu, nu, @i])))$. 

A2.2. Full Curvature as 4-Index Tensor 

Compute conventional 4-index version Rmn ji (x, x).  
• Diff(full_curv_vectmni (x, x) converts xj to discrete lower index j. 
• Display is large. It is used only to compute Rmnji at x = 0. So omit display. 
   (remcomps(full_curv),  ivariation(full_curv_vect([mu, nu, @i]), x([@j])), 
(c5)   itenform(%%), collectterms(icontract(ratexpand(%%)), \c),  
   components(full_curv([mu, nu, j, @i]), %%), 
   ishow('full_curv([mu, nu, j, @i]) = full_curv([mu, nu, j, @i])))$. 

Compute full_curv_x0(ξ, x) at x = 0 in X.  
Local physics depends only on tensors at the origin x = 0 in X.  
a) Set variable x = 0 and simplify occurrences of Cμi.  
B) Display Full_curv_x0(ξ, x=0). 

    (remcomps(full_curv_x0), tmp: flush(full_curv([mu, nu, j, @i]), x), ratsimp(%%, \c), 
(c6) components(full_curv_x0([mu, nu, j, @i]), %%),  
    ishow('full_curv_x0([mu, nu, j, @i]) = full_curv_x0([mu, nu, j, @i]))) 

(d6) 

i i i %2 i i
mu nu j nuj,mu mu%2 nuj mu%2 nuj mu nuj

i i i
muj nu muj nu muj nu%2

i %1 i %1 i
j mu%1 nu j mu nu%1 muj,nu

full_curv_x0 B B B 2C K 2K C

2C K 2K C B B

2kdelta C K 2kdelta K C B

= + + ∗ +

− − − ∗

− + −

 

To check vectorfield methods, reconstruct conventional Riemannian curva-
ture. 

   (remcomps(non_conf_curv_x0),  
(c7) map(lambda([zz], if freeof(\c, zz) then zz else 0),  
ratexpand(full_curv_x0([mu, nu, j, @i]))), 

   components(non_conf_curv_x0([mu, nu, j, @i]), %%), 
   ishow('non_conf_curv_x0 = non_conf_curv_x0([mu, nu, j, @i]))) 

(d7) i i %2 %2 i i
nu j,mu mu %2 nu j mu j nu%2 mu j,nunon_conf_curv_x0 B B B B B B= + − −  

A3. Projective Conformal Curvature 

Compute projective conformal curvature at x = 0 by retaining only terms con-
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taining C. 
 (remcomps(projconf_curv_x0),  
 map(lambda([zz], if freeof(\c, zz) then 0 else zz),  
ratexpand(full_curv_x0([mu, nu, j, @i]))),  

(c8) ratsimp((%%), \c), subst(k, %1, %%), map(lambda([zz], collectterms(zz, 
kdelta)), %%), 

 components(projconf_curv_x0([mu, nu, j, @i]), %%), 
 ishow('projconf_curv_x0([mu, nu, j, @i]) = projconf_curv_x0([mu, nu, j, 

@i]))). 

(d8) ( ( )
)

i
mu nu j

i k k i i
j mu nuk muk nu mu nuj mu nu j

i i
muj nu muj nu

projconf_curv_x0

2 kdelta K C C K C K K C

C K K C

  

= ∗ − + +

− −

 

Compute projective conformal Ricci curvature at x = 0. 
a) Factor, then expand proj_conf_curv_x0.  
b) projconf_riccicurv_x0μj = (projconf_curv_x0μνki) (Kiμ)  
 (remcomps(projconf_riccicurv_x0), projconf_curv_x0([mu, nu, j, @i])*\k([i, 

@nu]),  
(c9) ratexpand(%%), factor(%%),   

 components(projconf_riccicurv_x0([mu, j]), %%), 
 ishow('projconf_riccicurv_x0([mu, j]) = projconf_riccicurv_x0([mu, j]))). 

(d9) (
)

mu j

nu i k i k
i j muk nu j mu nuk

i i i i
mu nuj mu nuj muj nu muj nu

projconf_riccicurv_x0

2K kdelta C K kdelta K C

C K K C C K K C

 

= − −

− − + +

 

Compute projective conformal scalar curvature without manual simplifica-
tions. 

  (remcomps(projconf_scalarcurv_x0),  
(c10) projconf_riccicurv_x0([mu, j])*gf([@j, @m])*\k([m, @mu]),  
  components(projconf_scalarcurv_x0([]), %%),  
  ishow('projconf_scalarcurv_x0([]) = projconf_scalarcurv_x0([]))). 

(d10) (
)

mu j

nu jm mu i k i k
i m j muk nu j mu nuk

i i i i
mu nuj mu nuj muj nu muj nu

projconf_scalarcurv_x0

2K gf K kdelta C K kdelta K C

C K K C C K K C

 

= − −

− − + +

 

Simplify projconf_scalarcurv_x0. 
Macsyma cannot do the operations below, so apply manual simplifications of 

tensor indices. 
• Contract spacetime indices with metric gμν and fiber indices with metric gfij.  
• Rename indices while preserving distinction between base and fiber indices. 

The computation is done in six steps. 
Label steps a1, a2, a3, a4, a5, a6. Verify each operation separately. 

• a1: Cμm replaces gfjm * kdeltaji * Kiν * Kνk * Cμk. 
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• a2: Cνi replaces kdeltaji * gfjm * Kmμ * Kμk * Cνk. 
• a3: Kim replaces Kiν gfjm * Kmμ * Kνj. 
• a4: Kmν * Cνm replaces Kiν * gfjm * Kmμ * Kμi * Cνj. 
• a5: Kiμ * Cμi replaces Kiν * gfjm * Kmμ * Kνi * Cμj. 
• a6: dim replaces gfjm * Kmμ * Kmj. 

 block([a1, a2, a3, a4, a5, a6], remcomps(projconf_scalarcurv_x0_test),  
   projconf_riccicurv_x0([mu, j])*gf([@j, @m])*\k([m, @mu]), ratexpand(%%),  
   ratsubst(a1*\c([mu, @m]), gf([@j, @m]) * kdelta([j, @i]) * \k([i, @nu]) * \k([nu, @k])  
     * \c([mu, k]), %%),  
   ratsubst(a2*\c([nu, @i]), kdelta([j, @i]) * gf([@j,@m]) * \k([m, @mu]) * \k([mu, @k])  
     * \c([nu, k]), %%),  
(c11)   ratsubst(a3*\k([i, @mu]), \k([i, @nu])*gf([@j, @m])*\k([m, @mu])*\k([nu, 
j]), %%),  
   ratsubst(a4*\k([m,@nu]) * \c([nu, @m]),  
     \k([i, @nu])*gf([@j, @m])*\k([m, @mu])*\k([mu, @i])*\c([nu, j]), %%),  
   ratsubst(a5*\k([i, @mu])*\c([mu, @i]),  
     \k([i, @nu])*gf([@j, @m])*\k([m, @mu])*\k([nu, @i])*\c([mu, j]), %%),  
   ratsubst(a6*dim, gf([@j,@m])* \k([m, @mu])*\k([mu, j]), %%),   
   components(projconf_scalarcurv_x0_test([]), %%),   
   ishow('projconf_scalarcurv_x0_test([]) = projconf_scalarcurv_x0_test([]))) 

(d11) ( )
( )

nu m nu i mu m
m nu i nu m mu

mu
i mui

projconf_scalarcurv_x0_test

2a4K C 2a2 2a6dim K C 2a1K C

2a3 2a5 K C

= + − −

+ −

 

Compute projconf_scalarcurv, including manual simplifications. 
 (remcomps(projconf_scalarcurv_x0),  

   projconf_riccicurv_x0([mu, j])*gf([@j, @m])*\k([m, @mu]), ratex-
pand(%%), 
   ratsubst(\c([mu, @m]), gf([@j, @m])*kdelta([j, @i]) * \k([i, @nu])* \k([nu, 
@k])  
      *\c([mu, k]), %%), 
   ratsubst(\c([nu, @i]), kdelta([j, @i]) * gf([@j, @m]) * \k([m, @mu]) * 
\k([mu, @k])  
      * \c([nu, k]), %%), 
   ratsubst(\k([i, @mu]), \k([i, @nu])*gf([@j, @m])*\k([m, @mu]) 
(c12)      *\k([nu, j]), %%), 
   ratsubst(\k([m,@nu])* \c([nu, @m]), 
     \k([i, @nu]) * gf([@j, @m]) * \k([m, @mu]) * \k([mu, @i]) * \c([nu, 
j]), %%), 
   ratsubst(\k([i, @mu]) * \c([mu, @i]), 
     \k([i, @nu])*gf([@j, @m])* \k([m, @mu])* \k([nu, @i]) * \c([mu, 
j]), %%), 
   ratsubst(dim, gf([@j,@m])* \k([m, @mu])*\k([mu, j]), %%),  
  components(projconf_scalarcurv_x0([]), %%),  
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   ishow('projconf_scalarcurv_x0([]) = projconf_scalarcurv_x0([]))). 

(d12) ( )nu m nu i mu m
m nu i nu m muprojconf_scalarcurv_x0 2K C 2 2dim K C 2K C= + − −  

Manually simplify the result to −2 (dim − 1) Kiμ Cμi.  
 (remcomps(projconf_scalarcurv_x0),  

(c13)   components(projconf_scalarcurv_x0([]), −2 * (dim − 1) * \k([i, 
@mu]) * \c([mu, @i])),  
 ishow('projconf_scalarcurv_x0 = projconf_scalarcurv_x0([]))). 

(d13) ( ) mu i
i muprojconf_scalarcurv_x0 2 dim 1 K C= − −  

For dim = 4, projconf_scalarcurv_x0 = −6 Kiμ Cμi. 
 (remcomps(projconf_scalarcurv_x0_4d),  

(c14)   subst(dim=4, projconf_scalarcurv_x0([])),  
   components(projconf_scalarcurv_x0_4d([]), %%),  
   ishow('projconf_scalarcurv_x0_4d([]) = projconf_scalarcurv_x0_4d([]))) 

(d14) mu i
i muprojconf_scalarcurv_x0_4d 6K C= −  

A4. The Variation of Projective Conformal Action 

Definitions: 
• projconf_Lagr = 1/2 projconf_scalarcurv_x0.  
• projconf_action = integral(projconf_Lagr*dvolume). 

A4.1. The Variation of Volume Form by Kμi 

Spacetime volume factor = ( )det g  
(c15) (volume_g: sqrt(abs(det(g))), ishow('volume_g = volume_g)) 

(d15) ( )volume_g det g=  

Vary volume factor by spacetime metric gαβ to get δ (sqrt(|det(g)|))/δ gαβ 
(c16) (vary_volume_g: ivariation(volume_g, g([alpha,beta])),  

   ishow('vary_volume_g = vary_volume_g)) 

(d16) 
( )β α

β α
g det g

vary_volume_g
2

=  

Vary spacetime metric gαβ = Kαa gfab Kβb with respect to Kμi to get δ(Kαa 
gfab Kβb)/δKμi.  

Because δ(Kαa gfab Kβb)/δKμi includes a factor 2, variation of action yields 2 
Giμ − 2 k Piμ = 0.  

 (ivariation(\k([alpha, @a])*gf([a, b])*\k([beta, @b]), \k([mu, @i])),  
(c17)   vary_gf: icontract(%%),  
   /* ratsubst(mu, alpha,, %%), ratsubst(nu, beta, %%), */ 
   ishow('vary_gf = vary_gf)) 

(d17) alpha i beta beta i alphavary_gf kdelta K kdelta K  
µ µ= +  

Use chain rule (multiply previous two results) to get δvolume_factor/δKiμ  
 (vary_volume_g * vary_gf,  
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(c18)   vary_volume_gf: icontract(ratexpand(%%)), 
   ishow('vary_volume_gf = vary_volume_gf)) 

(d18) ( ) μ
ivary_volume_gf det g K=  

A4.2. The Variation of projconf_Lagr with Respect to Kμi 

a) Assume Cμi is independent of Kμi.  
b) Set projconf_Lagr = 1/2 projconf_scalarcurv_x0, but with dummy indices. 
 (Macsyma needs contracted dummy indices for some later operations. 
  “a” is a lower dummy index, “b” is upper dummy index on K.)  

c)  Compute δ(projconf_Lagr)/δKμi 

 (remcomps(projconf_\lagr), components(projconf_\lagr([]), −(dim − 1) * 
\k([a, @b]) * \c([b, @a])), 
   remcomps(vary_projconf_\lagr),  
(c19)    block([%a,%b], components(vary_projconf_\lagr([%a, @%b]), 
   icontract(ivariation(projconf_\lagr([]), \k([%b, @%a]))))),  
   ishow('vary_projconf_\lagr([i, @mu]) = vary_projconf_\lagr([i, @mu]))) 

(d19) ( )μ μ
i ivary_projconf_Lagr dim 1 C= − −  

A.4.3. The Variation of projconf_action Wrt Kμi  

a) Define projconf_action = projconf_Lagr * sqrt(|det(g)|) 
b) Compute dprojconf_action/dKmi  
 Notation: KinvP = Kim Pmi, KinvC = Kim Cmi , CinvK = Cim Kmi , PinvK = 
Pim Kmi  
“inv” means preceding variable has upper and lower indices inverted (Greek 
on top). 
 (remcomps(vary_projconf_action),  

   components(vary_projconf_action([i, @mu]),  
(c20)   factor(ratsubst(\kinv\c, \k([a, @b])*\c([b, @a]), vary_projconf_\lagr([i, 
@mu]) * sqrt(abs(det(g))))  
     + projconf_\lagr([]) * vary_volume_gf)),  
    ishow('vary_projconf_action([i, @mu]) = vary_projconf_action([i, @mu]))) 

(d20) ( ) ( ) ( )μ b a μ μ
i a b i ivary_projconf_action dim 1 det g K C K C− − +  

A5. Relation between Momentum Piμ and Conformal Field 

Ciμ  

Einstein’s field equation is Gμ − k Pμ = 0, where  
• (Greek kappa) is the gravitational constant. When dim = 4,  = 8 π G/c4. 
• G = universal gravitational constant. 
• P = momentum tensor. 
With frame fields (lower case Roman indices), the field equation becomes 
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Giμ − k Piμ = 0. 

A5.1. Express Momentum P in Terms of K and C  

Express momentum Piμ in terms of conformal field Ciμ.  
a) Variational principle defines  Piμ = −δprojconf_action/δKiμ.  
b) Divide by another factor of 2 because δg/δK = 2 g. 
 (factor(vary_projconf_action([i, @mu])), 

(c21)   \p_from_\c: (p([i, @mu]) = %%/volume_g/2/kappa),  
   ishow(\p_from_\c)) 

(d21) 
( )( )b a μ μ

a b i iμ
i

dim 1 K C K C
P

2κ

− +
= −  

Manually replace Kab Cba with KinvC. (“a” is lower dummy index and “b” an 
upper dummy index for K). 

(c22) (\p_from_\c: \p([I, @mu]) = −(dim − 1) * (\kinv\c * \k([i, @mu]) + 
\c([I, @mu]))/(2 * kappa) 

 ishow(\p_from_\c)) 

(d22) 
( )( )μ μ

i iμ
i

dim 1 K KinvC C
P

2κ

− +
= −  

A5.2. Express Conformal Field C in Terms of K and P 

Solve equation P_from_C for P in terms of C − except for term KinvC. 
(c23) (almost_\c_from_\p: first(linsolve(\p_from_\c, \c([i, @mu]))), 

  ishow(almost_\c_from_\p)) 

(d23) ( ) μ μ
i iμ

i
dim 1 K KinvC 2P κ

C
dim 1

− +
= −

−
 

Contract equation above with Kμi. then multiply by (dim − 1) 
(c24) trace_\c_from_\p: (dim-1) * \cinv\k = −((dim − 1) * dim * \kinv\c + 

2*\pinv\k * kappa)  
(d24) ( ) ( )dim 1 CinvK 2κ PinvK dim 1 d KinvCim− = − − −   

Solve previous equation for KinvC. 
(c25) \kinv\c_solution: factor(first(linsolve(trace_\c_from_\p, \kinv\c))) 

(d25) 
( )

2κ PinvK dimCinvK CinvKKinvC
dim 1 dim
+ −

= −
−

 

Substitute previous expression for KinvC into C_from_P.  
This yields equation for conformal field C in terms of K and momentum ten-

sor P. 
(c26) (\c_from_\p: ratsimp(subst(\kinv\c_solution, almost_\c_from_\p)), 

   ishow(\c_from_\p)) 

(d26) 
( )
( )

μ μ μ
i i iμ

i
2K κ PinvK dim 1 K CinvK 2dim P κ

C
dim 1 dim

+ − −
=

−
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