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License (CC BY 4.0). In this paper, we investigate the existence of a random attractor for the following
hitp://creativecommons.org/licenses/by/4.0/ g, i plate equations with linear memory and multiplicative noise on bounded
onom |
domain:
Uy +aU +A%u+ [ u(s)A% (u(t)—u(t—s))ds+ f (u) = g (x)+cuo t
u(x,t)=uy(x), u (xt)=u(x), xeU,t<0, (1.1)
ou
|FU = % = 0, t > 0

where  and ¢>0 are positive constants and 4(s)>0 for every seR",
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Uis an open bounded set of R® with smooth boundary U, u=u (X,t) isa
real function on U x[0,+%), geH;(U)nH?(U) is a given external force
and W (X,t) is an independent two-sided real-valued wiener process on prob-
ability space (Q,F,P), where

Q:{a):(a)l,a)z,---,a)m)eC(R,Rm):a)(O)zo},
is endowed with compact-open topology, P is the corresponding wiener meas-

ure, and F is the P -completion of Borel o-algebra on Q. We identify a)(t)
with (W, (t), W, (t),-, W, (t)), ze

o(t)=(W,(t),W, (), W, (t)),teR.
Then, define the time shift (6, )le[R on Q by:
Go()=w(-+t)-a(t), teR,0eQ.
The following conditions are necessary to obtain our main results.
(h,) The memory kernel 4 isassumed to satisfy the following conditions:
{,ue Cl(R*)le(R*),y(s)z O,,u'(S)SO ,VseR",
1'(s)+6u(s)<0,vseR", and for some 5 >0,

and

[ (s)ds <o

(h,) The nonlinear term f e C* (R) with f (0) =0 and satisfies the follow-

ing conditions:

|f'(u)|sCl(1+|u|4), VueR, (1.2)
F(u)=[ f(s)ds>C,(juf -1), VueR, (1.3)

and
uf (u)2C,(F(s)-1),VueR, (1.4)

where C,C,,C, >0 are constants.

Following Dafermos [1], we introduce a new variable 7 defined by:
n(tx,s)=u(t,x)-u(t-s,x), (1.5)

andlet R,, =L, (R+, Hg (U )) be a Hilbert space of H{ (U ) -valued function

on R* with the inner product:

(.1, ),,,2 = J:#(S)(Am(s)-ATh (S))ds’ Vi, €R,,. (1.6)

Set Z = (u, Ut,ﬂ)T , E=HZ(U)xL*(U )xR,,. Then, the system (1.1) is
equivalent to the following initial value problem in the Hilbert space E:

Z,=L(Z)+N(Z,t,W(t)), xeU, t>0,
) 1.7)
Zy = (U (X),uy (X), 7, (x.5)), (x,5) €U xR",
where
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u(t,x)=n(t,x,s)=n(t,x,0), xedU, seR*,t =0,

u(tx) =y (x), U (t.x) =ty (x), xeU, (1.8)
17(0,%,8)=7,(x,5)=u(0,x)—u(-s,x), (x,s)eU xR",
L(Z)=| -A*u—au —[" u(s)A*n(s)ds |, (1.9)
Uy =775
0
N(Z,LW (1)) = _g(u)+f(x)+cuOW , (1.10)
0
R P O C R CIALH Y o
U eHZ(U)n(s)e H: (BT, HZ (U)).m(0)=0]

The stochastic plate equation is one of the fundamental stochastic partial dif-
ferential equations (SPDEs) of hyperbolic type, which have been explored in [2]
[3] [4] [5]. The behavior of its solutions is significantly different from those of
solutions to other SPDEs.

Problem (1.1) models transversal vibration of the extensible elastic plate in a
historical space, which is established based on the framework of elastic vibration
by Woinowsky-Krieger [6] and Berger [7]. It can also be regarded as an elastop-
lastic flow equation with some kind of memory effect [1]. When x=c¢=0, then
(1.1) reduces to determined autonomous damped plate equation.

In recent years, there have many results on the dynamics of a variety of sys-
tems related to Equation (1.1). The hyperbolic equations with memory have been
studied in [8]-[15] and references therein. For instance, Khanmamedov [16]
and Yue and Zhong [2] proved the existence of global attractors for plate equa-
tions with critical exponent, [17]-[22] obtained the nonlinear damped, and Ma et
al. [23] [24] [25] [26] [27] obtained the strongly damped. The existence of ran-
dom attractors for such system in a bounded domain has been studied in [28].
Furthermore, long-time dynamics of a plate equation with memory and time delay
is considered by Feng in [29], under suitable assumptions on real numbers g4
and 4, , the quasi-stability property of the system is established and obtained the
existence of global attractor, which has finite fractal dimension, and proved the ex-
istence of exponential attractors, defined in bounded domain Q= R"(n>1)
with a sufficiently smooth boundary €. Shen and Ma in [30] obtained the
existence of random attractors for weakly dissipative plate equations with mem-
ory and additive noise by defining the energy functionals and using the compact-
ness translation theorem.

Crauel ef al [31] [32] [33] studied the random attractors for stochastic dy-
namical system. Recently, many authors have established the existence of random

attractors for other equations (see [34]-[45]). In Equation (1.1), there are fewer
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results and most previous authors have concentrated on the deterministic case,
but there is no result of random attractors for Equation (1.1).

To prove the existence of random dynamical system (RDS) for short, the key
step is to establish the compactness of the system. For our system (1.7), there are
two essential difficulties in proving the compactness. Firstly, the critical growth
condition (1.2) of fcan be overcome by using the decomposition of solution and
more accurate calculation. Secondly, the memory kernel itself, because there is
no compact embedding in the history space, we introduce a new variable and de-
fine an extended Hilbert space, as well as combine with the compactness trans-
form theorem.

The rest of the paper is organized as follows. In Section 2, we give the exis-
tence and uniqueness of the solutions. In Section 3, we devote to uniform esti-
mates and the existence of bounded absorbing sets for the solutions and pullback
compactness. In Section 4, the compactness of the random dynamical system is
established by the decomposition of solution of the random differential equation
into two parts. In Section 5, we prove the asymptotic compactness of the solu-

tions, existence and uniqueness of a random attractor in £.

2. Preliminaries and Abstract Results

As mentioned in the introduction, our main purpose is to prove the dynamics of
stochastic partial differential equations with multiplicative noise. For that mat-
ter, first, we recall some basic concepts related to random attractors for stochas-
tic dynamical systems (see [9] [31] [32] [46] [47] [48] [49]), which are important
for getting our main results. Let (Q, F,P) be a probability space and (X,d)
be a polish space with the Borel o-algebra B ( X ) . The distance between X e X
and Bc X is denoted by d (X, B). If BcX and Cc X, the Hausdorff
semi-distance from Bto Cis denoted by d(B,C)=sup,,d(x,C).

Definition 2.1. (Q, F.P,(6, )te]R) is called a metric dynamical system if
0:RxQ—->Q is (B(R)X F, f) -measurable, 6, is the identity on Q,
0,.,=0600, forall s;teR and P=P forall teR.

Definition 2.2. A mapping ®(t,7,0,X):R* xRxQx X — X is called con-
tinuous cocycle on X over R and (Q,f,P,(t?t)teR), if for all 7eR,weQ
and t,5€R", the following conditions are satisfied:

1) O(t,7,0,X):R"xRxQxX > X is a (B<R+)x.7-",B(R)) measurable
mapping.

2) CD(O, r,@,X) isidentity on X.

3) O(t+5,7,0,X)=D(t,7+5,6,0,X) o D(S,7,0,X).

4) (D(t,z',a), X)Z X — X is continuous.

Definition 2.3. Let 2* be the collection of all subsets of X; a set valued
mapping (7,0)> D(tw): RxQ+> 2" is called measurable with respect to
F inQif D(t, a)) is a (usually closed) nonempty subset of X and the mapping
weQ—d (X , B(z’, a))) is (.7:, B(R)) -measurable for every fixed xe X and
7eR.Let B= B(t,a)) € D(t,a)) 7eR,weQ iscalled arandom set.
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Definition 2.4. A random bounded set B = {B (z’, a)) teRwe Q} €D of X
is called tempered with respect to {Q(I)}teﬂ ,if for p-ae weQ,

lime™" d(B(6.))=0,v 5>0,

where
d(B) =sup|x],

Definition 2.5. Let D be a collection of random subset of X and
K= {K (r.0):1eR,0cQ}eD, then Kis called an absorbing set of ® €D if
forall 7eR,0eQ and BeD,thereexists, T =T(7,0,B)>0 such that:

(D(t 7,0 0, B(T,H_ta)))g K(r,0),Vt>T.

Definition 2.6. Let D be a collection of random subset of X, the @ is said to
be D -pullback asymptotically compact in Xif for p-a.e weQ,

[o(t,.0.,0.%)

n=

X, €B(0, ) with {B()| eD.

has a convergent subsequence in X when t +> oo and
1

Definition 2.7. Let D be a collection of random subset of X and
A= {A(r,a)) teRwe Q} €D, then A iscalleda D -random attractor (or
D -pullback attractor) for @, if the following conditions are satisfied: for all
teR",7eR and weQ,

1) A(r,®) is compact, and de(X,A(a))) is measurable for every
xeX.

2) A(z,®) isinvariant, that is:
<D(t,r,a),A(r,a))):A(r+t,9ta)),Vt21.
3) A(r,w) attracts every setin D, that is for every
B={ (r,w):reR,weQ}eD,
limd, (CD(t,r,H_ta), B(T,B_ta))),A(r,a))) =0.

t>o
where d, isthe Hausdorff semi-distance given by:

d, (Y,Z)=supin£||y—z||x forany Y e X and Z € X.
yey 2€

Remark 2.8. Let (Q,f ,]P) be a probability space with wiener measure P,
the wiener shift (6,) . is defined by:

bo(t)=o(t+s)-o(s).t,seR,

teR

then (Q, F,P,(6, )leR) is an ergodic metric dynamical system.

Lemma 2.9. [31] [32] Let D be a neighborhood-closed collection of (z’, a)) -
parameterized families of nonempty subsets of X and ® be a continuous cocycle
on X over R and (Q,]:,IP’,(@t )te]R)' Then, @ has a pullback D -attractor A
in D if and only if @ is pullback D -asymptotically compact in Xand ® has a
closed, F -measurable pullback D -absorbing set K € D, the unique pullback
D -attractor A =A(7,) is given:
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A(r,a)):ﬂrzo [ZrCD(t,r—t,Qta),K(r—t,&ta))),reR,a)eQ.

In this article, we will take D as the collection of all tempered random sub-
sets.

Lemma 2.10. [50] For any k>0 and any ¢eHg(U)nL*(U), the follow-
ing equality holds:

-, (|¢|k ¢)A¢dx =(k +1)(k—izj2 [

Lemma 2.11. [9] Let X,, X, X, be three Banach spaces such that X, <
X & X, the first injection being compact. Let Y Li (Rﬂ X) satisfy the

k+2 2
Vg 2| dx.

following hypotheses:
1) ¥is bounded in L2 (R, X, )" Hj, (R, X,).
2) sup,.y I](S)"X <K,, VseR" forsome K,>0.
Then, Yrelatively compact in Li (R+, X ) .

3. Existence and Uniqueness of Solutions

From now on, assume that conditions (h,) - (h,) hold, the space £ and the prob-
ability space (Q,]—" ,]P’,(@t )leR) are defined in Section 1. Let A=A’ with Neu-

mann boundary condition on U; D(A)=H"*(U)nHJ(U). We can define the
powers A" of Afor veR. Thespace V,, = D(A;J is the Hilbert space with
the following inner product and norm, respectively:

(uv),, = [A;u, A;vj, Julz, = (A;u, A;uj.

The injection V, < V, is compact if v, >v,. Then, by the generalized

Poincaré inequality, there holds:

Ju

"2 2

where 4, >0 is the first eigenvalue of A. In particular, V, =L*(U),

2
vy !

1 1
V,=Hg(U), V,=HZ(U), and (A“U,A“VJ:(VU,VV), vu,veHg(U). The
inner product and norm in L*(U) is denoted by (--),||,andin HZ(U) is
denoted by ((,)),""2, respectively. By (h,), the space R ,, = Li (R+,V2V) is

a Hilbert space of V,, -valued function on R" with the inner product and norm,

respectively:
(7.71) .5, =fowﬂ(s)(Azﬂ(S)’Azm(S)JdS, V1,11 €V, (3.1)
v 2
) o v
"77";1,21/ :(77’77);1,2\/ :,[0 'LI(S) AZU(S) dS, (3.2)
andon R ,, , the linear operator —0; has domain:
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D(-8,)={neH}(R"V,,):n(0)=0},
H;(R*,VZV):{n:q(s),asqe Li(R*,VZV)},

which generates a right-translation semigroup (see [1] [9] [13] [15] [51]).

Then, Equation (1.1) can be transformed into the following system:

Uy + et +A%U+ [ u(s)An(s)ds+ f (u)=g(x)+cuo d(;/:/ : (33)

e =-1s + U,

with the initial-boundary conditions:

u(x,0)=u,(x),
u, (x,0)=u,(x), xeU, (3.4)
76 (%,8) = U (X) = Ug (X,~5), ¥V xeU,seR".

The symbol Cand C;(i=1,2,--) are positive constants, which may change
from line to line.

In this section, we show the existence, uniqueness and continuous dependence
of (mild) solution of initial problem (1.7) in E, which generates a continuous
RDS on EFover R and (Q,F,P,(Ht )te]R)' For our purpose, we convert the
problem (1.7) into a deterministic system with random parameters but without
noise terms.

Due to Ornstein-Uhlenbeck process deducing by the Brownian motion, which
holds the It6 differential equation:

dz +azdt =dw (t), (3.5)

and hence, the solution is given by:
2(60)=-af e (do)(s)ds, teR (3.6)

It is known from [48] [49], the random variable |Z (a))| is tempered and there
is a 6, -invariant set Qc Q of full P measure such that for every weQ,

t> z(6o) is continuous in fand:

lime ™ Z(H_ta))| =0, Va>0,0eQ. (3.7)

too

Equation (3.6) has a random fixed point in the sense of random dynamical sys-
tems generating a stationary solution known as the stationary Ornstein-Uhlenbeck
process (see [31] [32] [36] [52] for more details).

For convenience, in the following, we write Q as Q. Next, we need to trans-
form the stochastic system into deterministic with a random parameter, then

show that it generates a random dynamical system.

Let:
w(t, @, x)=U, (t,@,x)+eu(t, o, x)-cu(t,o,x)z(6),t >0, (3.8)
u u 010
o= =T, |u |=T,Z, T,=l¢ 1 0], (3.9)
n n 0 01
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|c| < min

a* A

where

M| 1+
&= 20 >0,k=”"Lﬂ>0,

2 2\2 o
3+ 2ak+1+\/[3+ 2ak+0/;) — 240k

ﬂ,l(> 0) is the smallest eigenvalue of operator 4 with Neumann boundary
condition on U.

In this paper, we assume that:

1 (e ), [1(x G, ol ta)
, e | A C, LANER C, a* A
i

1662+«

(1652 + a)oz (®)

o h

2
+

_1+(2R6(w)+2)\/2+\/(1+ 2R, (o)A +2y7 )
A A
168” +a
_1+(2R6(a))+2)\/z+\/(1+2R6 (w)\/ZJFZ\/Z)Z . (1652 +0‘)°’3
%, 104 az\/z

16£% +

(3.10)

where 0,0, >0,0,(®),R(0)>0.
By (3.8) and (1.1), we can obtain the following random evolution equation:
U +eu—w=cuz(6m),
W, —&(a—g)u+Au+(a—s)w+ [ u(s) Ap(s)ds+ f (u)
=g(x)-cz(60)(w-2cu+cuz (o)),
n +1 +eu—w=cuz(6w).

(3.11)

Then, the problem (3.11) is equivalent to the following determined system with

random parameter in E:

¢'+H(9)=Q(p,00,t),
; (3.12)
9, (@)= (up,uy +eu, —cuyz(w),n,) 120,
where
eu—w
H(p)= —s(a—s)u+Au+(a—g)W+J:y(s)A77(S)dS =-T.HT,(v), (3.13)
EU—WH+1,
cuz (6,w)
Q(p.00.t) =| —cz(Ow)(w—2su+cuz(6o))- f(u)+g(x)|.  (3.14)
cuz(bw)
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In line with [9] [53], we know that the operator L in (1.9) is the infinitesimal
generator of C,-semigroup e of contractions on Efor t>0. Since
-H=T,LT ,,and T, is an isomorphism of E, the operator —H also gene-
rates a C,-semigroup €
the embedding relation HZ(U) < L°(U), itis easy to check

Q(go,t,a))i E — E is locally Lipschitz continuous with respect to ¢, by the

of contractions on E. By the assumptions (h,) and

classical semigroup theory concerning the (local) existence and uniqueness solu-
tion of evolution differential equation [53], we have the following theorem.
Theorem 3.1. Assume that (h,) - (h;) hold. Then, for each w e Q and for
any ¢, € E, there exists T >0 such that (3.12) has a unique mild function
o(n0,0)) € C([O,T); E) such that ¢(0,m,¢,)=¢(0) satisfies the integral eq-

uation:
p(t,o,0)) =g (0)+ J; efH(H)Q(ng(s, .9, ), 0,0, S)ds. (3.15)

Moreover, go(t,a), qoo) is jointly continuous in ¢, and measurablein ®.

From Theorem 3.1, we know that for P-a.s. each @ € (2, then the following
results hold forall T >0:

DIf g(w)eE then ¢(.w,¢,)eC([0.T);E).

2) (p(t, w, goo) is jointly continuous into fand measurablein @ .

3) The solution mapping of (3.12) satisfies the properties of Random Dynam-
ical System.

We notice that a unique solution q)(-, w, (po) of (3.12) can define a continuous
random dynamical system over R and (Q,}_ P.(6 )tER). Hence, the solution
mapping:

D(t,0): RxQxE - E, 120,

@(0,@) = (Ug, Vo7, )T - (u (tw),v(t,®),n(t, a)))T =o(t,0),
generates a random dynamical system. Moreover,

D(t,w):9(0, a))+(0,gz(a)),0)T - o(t, a))+(0, 52(015()),0)T . (3.17)

(3.16)

We also define the following transformation:

v, =U, i, =U, +&U, (3.18)
similar to (3.12), we get that:
v'+Hy =Q(y.t,0)

T T (3-19)
Wo(@)=(Ug, Vg, 77) = (Up Uy +8Ug,770)
where
u
v=|V/ (3.20)
n
eu—v
H(y)=|-e(a—e)u+Au+(a—¢)v+n (3.21)
U=V +1),
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and
0
Qv o,t)=| cvz(Gw)— f (u)+g(x) |.
0
It is easy to see that:
Y(tw,Z,) =R, P(Lo)R, 4, Z, > Z(t0,Z,), (3.22)
and
‘I’(t,a),l//o):TgYng v, o v(toy,), (3.23)

are continuous RDS over R and (Q, F.P.(6, )teR) associated with system (3.7)
and (3.15) respectively.

We introduce the isomorphism T,Y = (u,ut,n)T, Y = (u,v,n)T € E , which has
inverse isomorphism T Y = (u ,V—eu, 77)T , it follows that (49, v ) with mapping:

Y =T.0(to)T, =¥(0) (3.24)

is a random dynamical system from above discussion, we show that the two RDS

are equivalent.

4. Random Absorbing Set

In this section, we will show the existence of a random absorbing set for the RDS
gp(t, o, 9, (a))),t >0 in the space E.
Lemma 4.1. Suppose that (h,) - (h,) hold. Then, there exists a closed tempered

absorbing ball B (w)eD(E) of E centered at 0 with random radius
M, (@) >0 such that for any bounded non-random set B e D(E), there exists

a deterministic tg (@) >0, such that the solution (p('[,@_ta),(oo (H_ta))) of (3.12)

.
with initial value (u0 Uy + Uy —CUpZ (@), 770) € B satisfies, for P-as. weQ,

"go(t, 0.,.0,9, (tha)))"i <M, (o), Vixty (o), (4.1)
that is,
q)(t, 0. o, B(Qta))) c By (@), Vt>t, ().

Proof. Taking the inner product (,) of (3.12) with

o(r) =<U(|’),W(l’),77r )T , we have:

1d, .
Sl +(H(0.0)). =(Q(e.60.1).0) .

E

Similar to the proof of Lemma 2 in [54], we have:
(H(9).0), =eful; ~((w.u)) +(a—&) W] —&(a—e)(uw)+(Au,w)
ro(um),, +([; u(s) An(s)dsw)-(wn), , + (), (43)

=&l + (@) —&(a—z)(uw)+&(un),, +(n.7)

"2 :
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Then, by using (h,), we find that:

0
2(un),, = =ke* Jul; =l (4.4)

(n5.1), ||77||,, - (4.5)

Applying (4.3)-(4.5), Holder inequality, Young inequality and Poincaré in-
equality, we obtain that:

(H(p).p), 2 elt-ke)luf ()l + 2ol , ~e(a—e)(uw)

> 5 (1-ke)|ul; + (&) +

S~ ol o

4 20,2 \/Z 2

£ o a 1

I+ )+l + S+ -k o
3

{55 b,

It follows from a simple computation that:

g(%— kgj(%—%‘gj - ’if . (4.7)
Hence, combining (4.6) and (4.7), we find that:
(H(0.9)), = 5 (Jul} +wl’ )+ —||’7|L, o’ (48)
Let us estimate the right hand side of (4.2):
(Q(e.00.1),0) :((cuz(&ta)),u))—(cwz(&ta)),w)+(205uz(9ta)),w)
—(czuzz(eta)),w)—( f(u),w)+(g(x),w)+(cuz(6w).n)

(4.6)

#2'(4,9)
By the Cauchy-Schwartz inequality, we find that:
((cuz(@w ) |c|| 2(6,0) |||u||2 (4.10)
(cwz(Q0),w |c|| (G) |||w|| , (4.11)
8s%|c 6’(0
oo ) EC
2 (60)|(uw f' (G (I + [l ). (4.13)
(90w)= 2o () 5wl (4.14)
c
(e(o)),, < TN o) @19

Then, we estimate nonlinear term (4.9), by (h,) and the Holder inequality, we
get that:
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(f(u),w)=(f(u),u +eu—cuz(fo))
d (4.16)

=5l F(u)dx+e(f(u),u)-cz(o)(f(u)u).
Applying (1.2)-(1.4), we have:
z(60)(1 (u) )

<C |c||z Go) ” (|u2+|u|6)dx

< Sloe(@], (F(4)+C.) e (oo 1)
C,lc Hw
< Soa(a] ] F 0)0x+ ez (0] 'w— D
&(f(u).u)=eC, F(u)dx—sC,|Ul. (4.18)

Thus, due to (4.16)-(4.18), we obtain that:
(F ()W) 2 F (u)=oCF (u) +2C, |U|—&|c||z(c9ta))|lf(u)
(4.19)

C 9
0 ee(ge)- S ”WL

where If(u):jU F(u)dx.

Collecting (4.2), (4.8), (4.19) and (4.9)-(4.15), we show that:
£ o a ~
2 i (II(/’IIE +2F (u))+ 2 (ol + Wl )+l + Sl + £CoF ()
C lcl|z(6.0) ¢ |z(00)
<Sietaof o) Ty &H@wl TR oy

Clcl[z(6e)| 3lc]z(60) 852|C|2|Z(t9ta))|2 CZ|Z((9ta))|2 )
+[ \/Z + 5 + 0!\/2 + T [lul,

<€ 0]+ S, ]de(00) + 2o

choose & =min {s,g,gg}. Due to o]} = (||u||§ +w]? +||77||iz) , then we have

the following equivalent system:

Sl +2F (0)+ o (0 +2F (1)

2C N . 9
SC—21|C||Z(910))|F(U)+|C||Z(6’[a))|||77||:2+[2|c||z(9[w)| Jz( w| J” ;

2|2 2 2
+[2C1|C”Z(9tw)|+3|c||z(@w)|+l6g " |2(6o)| L |2(00)

A
o e L o

+2C,|U|+2C, U ||c]|z(8)| +g||g )
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where
2¢,[d[z(g@)] 1667 |cf* [2(G.0)[
t,6w)= +3|c||z(b@)+ ————=———"—
G e
, .
AL ),
That is,
d ~ -
ol +2F ()« p(t.00) e +2F (u) .
<20, U] +26,fe(6) + o (4
So, applying Gronwall’s Lemma to (4.21), we have:
"(p(t,a),(po (a)))"2 +2F (u)
<e B gy (@) + 2F (uy))+ 26, U Il e B 2 (00) ds (422)
o 2l Haof e s
Substitiuting @ by 6w, from (4.22), we have:
"(p(t,&_ta),(po 6. a) "2 +2|f (u)
< g oAt ( (6.,) || +2F (up) )+2C |U||(:|J't et Oir o)|ds
+(2c3|u|+;||g I )It g ettt (4.23)

0
< g lrlsdeo)ds ( 2(0,0)|ds

0, (0, 0)[} +2F (u )+2c U] [ & et
o 2ol 2 g e e

Since |Z (Hta))| is stationary and ergodic, it follows from (3.2) and the ergodic

theorem that:

tILn; j |z (6,0) |dr_ (| (H,a))|):%, (4.24)
1 1
tim=[[2(6) dr=E([2(60) )= (4.25)

From (4.24) and (4.25), we know that there exists Tl(a)) >0 such that for
any t>T, (a)) ,

[°|z(8.0)|dr <—=t, ji|z(¢9ra))|2dr<it. (4.26)

N

Next, we need to obtain that for any s<-T,

ghorlr)ir (3% (4.27)

Indeed, by (4.26), we have:
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2112 2 2 2
J.;{G—[M‘Fﬂcnz(@a))“leg |C| |Z(9rw)| +C |Z(9Tw)| +%|c||z(6’ra))|J:|dT
2

Ny o 7
>os—|c| s Ic| 6 s—|c|2 8* s—|c|2 L s—|c| 2C, s
\/ Jra a4, 20[2, C,\ra
_ 165 +a| | 2C, C, |C|S+0'S.
I PR WA

In order to obtain (4.27), for any s <-T,, there holds:

16 +a [ CIJ|C|_E<O'
PN WY L

Solving this quadratic inequality, we find that:
2 2
o(16e” +a
i (eeg) Jl(zcsc] ol +a)

\/E C, C, a
o <at G A WA VA

Since |Z(6’ta))| is tempered, it follows from (4.27) that the following integral

is bounded:

R (0) =2, U] Fro

Z(Ha) |dS

o rcaon (4.28)
+(zc3|u|+;||g of jf ple0 g
According to (1.3)-(1.5), we have:
C||u||l C|U|<_[ )dx<—jf Judx +|U|
< (1+|uf" |juldx+ U]
Csfu( ) (4.29)

1
<o ([l [ o)

<c(jul+ulr)
It follows from theorem 3.1 and ¢, (6’ a))e B ( a)) that:
. 7]_! (7.6, 0)dr 2
fim e 4 o (0,0)]] +2F (4y) | =0 (4.30)

Combining with (4.27)-(4.30), there exits t ( )>T such that for all
t>t; (),

"go(t,&ta), ?, (cﬁ[ta)))nzE <C(1+R (@) =M, (o).

Then, we complete the proof. [

5. Decomposition of Solutions

In order to obtain regularity estimates later, as in [52], we decompose the equa-

tions (3.3). At first, we will give the following decomposition on nonlinearity
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f(u)=f,(u)+f,(u) and f,f, eC'(R) satisfies the following conditions:
1.|f1(s)|§C(|s|+|s|5), VseR,
2.f,(s)-s20, VseR, (5.1)
3.3k 21,kF (s)-C<sf(s), VseR,
and
L|f(s)<C(1+[s]"), 1,(0)=0, ¥seR, p<4,
2.3k, 21,k,F,(s)-C <sf,(s), VseR, (5.2)
3.6, (Isf 1)< Ry (s), VseR,

where F (s)= I; f,(r)dr,(i=12), C,C,>0 are constants.

We decompose the solution ¢ = (U,W,77)T of the system (3.12) into the two

parts:
P=0 +oy,
where ¢ :(UL,WLJ]L) N =(UN Wy ,77N) solve the following equations, re-
spectively:
(/7|’_+H((/7L)+Q1((/7L)=0,
: (5.3)
¢ (0,0) = (U, Uy +&ly,7)
and
¢l,\l+H(¢N)+Q2(¢1¢L):Q~2(¢10ta))! (5.4)
oy (0,0) = (0,~cuyz(@),0)', '
where
0 0
Ql((/’L): fl(uL) ) Qz((on(PL): f(u)_ fl(uL) )
0 0
5.5
cuyz(Gw) (53)
Q, (@) =| —cz(6,0)(wy —2zuy +cuyz(6»))+g(X) |-
cuyz(Go)

To prove the existence of a compact random attractor for the random dy-
namical system @, we need to get the solutions of systems (5.3) and (5.4), which
one decays exponentially and another is bounded in higher regular space. In or-
der to get the regularity estimate, we will prove some priori estimates for the so-
lutions of systems (5.3) on U x [0,00] as follows.

Lemma 5.1. For any P-ae. ®€Q, 120, there exists M,(@)>0 such that
the solution ¢, = (UL YW, )T of (5.3) with initial data
0. (0,0)= (U, Uy + Uy, 17,)" =0, (6,0)+(0,0U52(6.,@),0)" € B, (6,)

satisfies:

"(pL (t,@_tw,goL (o, t9_ta)))||2E <M, (o). (5.6)
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Proof. Taking the inner product (,) of (5.3) with ¢ =(U|_,WL,77L )T , we

show that:

E

1d
Ea"@_”é +(H (§DL)1§DL )E +(Q1 (@L)v(oL):Ol (5-7)
Similar to the proof of (4.8), we obtain that:
£ a o
(Hlo) o), 2 Sl o) S+ 59

Now, we estimate the third term of (5.7). According to (5.1),, we get:
d

(fl(ut)’wt):aju Fl(uL)dx+g_fU f, (u)-u dx 5o
d .
2l Fl(uL)dx+kla;_[U F (s)dx—&C|U].
Thus, it follows from (5.7)-(5.10) and (5.3) that:
d = -
a¥m¢m§+za(m))+aLm¢J§+25(ug)gzgcuq, (5.10)
where o, =min {g,g, klg} . By Gronwall’s Lemma to (5.10), we have:
. ~ 2sCU
lo |2 +2F (u, ) < e (||(pL (o, w)||i +2F, (U, ))+ga—||. (5.11)
According to (5.1), we have:
1 C 1 5 C
o<, F(u)dxsg.[U f (u)udx+k—l|U|sk—ljU (1+|u| )|u|dx+k—|U| -
C C ‘
SE@pmHLM%g+Epgc@”wqﬁ
Combining (5.11)-(5.12) with ¢, (0,6.,@) € B, (6.,@), we get:
"(pL (t, 00,9, (0, 940)))"2
2¢CU
sevwgﬂxaemwﬁ+zc@4+pmg)%iill (5.13)

=M, (o).

So, the proof is completed. []

Lemma 5.2. For any P-a.e. ®€Q, 120, there exists M,(@)>0,0,(®)>0
such that the solution ¢, = (u_,W_,7, )T of (5.3) with initial data
oL (0,0) = (g, U, + &g, 77, )T €B,(0,w) satisfies:

"(pL (t.0. 0,0, (0, g-fa)))”i <M, (@)e ™" t>0. (5.14)

Proof. We consider (5.1), (5.7) and similar to Lemma 5.1, we conclude that:
0< R (u) < C(Juf +lulfe, ) (5.15)

Applying interpolation inequality, we have:
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Juc e <l |- oo < oo (Rl -Ju s )

1 1
<ol Sl + ol )5l + o).

Hence, combining (5.15)-(5.16) with Lemma 5.1, we find that there exists
M, (@) >0, such that:

(5.16)

||UL||§ 2 1(u|_)- (5.17)

Due to (5.7)-(5.8), (5.1), and (5.17), we can obtain the following result:

d ~ & o & ~
L lonle 28 00)) + S (o o)+ S o+ i

(o))

<0,

that is,

d ~ .
a("ﬂ [t +2F, () + 0 (@) o 2 +2F (u.)) <0, (5.18)

where al(a))zmin{£ o __¢ }

2'2" 4M, (o)
By applying Gronwall’s inequality to (5.18), it yields:

lo. (10,00, (0.0.0))[. <(l (0.0.0) + i (ug) e "

<(lo. 0.8 0) +C (0] +]ulf e .19
=M, (a’)eial(w)l-

Then, the proof is completed. [J
Next, we estimate the component ¢, in (5.4).
Lemma 5.3. For any P-ae. ®€Q,t>0, there exists o,(®)>0 such that
. T il sses
the solution ¢, = (UN Wy 77y ) of (5.4) with initial data
oy (0,0)=(0,~cuyz(6,0,0),7, )T €By(®) satisfies:
2

2 2

Lty v v o2(®)
Azuy| +[AZu| +|A%n ] <e 2 'R(6.0), (5.20)
w2
where
v=min{%,47Tp},v0s p <4, (5.21)

and P(6,®) isincreasing function.
Proof. By (4.1), (5.6) and ¢, = @ — @, , there exists a random variable
R;(@)>0 such that:

max{”(o(r,Q_ta),qJ(O,Q_ta)))"E ,“goN ((r,&_ta), Py (O,H_ta))))“E} <R (®), r>-t.(522)

Taking the inner product of (,) of (5.4) with (AV(DN VAW, Ay )T, we

find that:

E
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4

1d Ao,

2dt
= (g (x), A"wy )—(cz(ﬁta))wN , AW, )+(250uN 2(6w), A'w, ) (5.23)
—( f(u)—f,(u ), A'wy )—(0222 (Bw)uy, A'w, )
+((cuN 2(Gw), A'uy ))+(cuN 2(Qw), A'n )sz

+<H(¢N)vAV¢N )E

In later calculations, we will use the following embedding relations:

10 10 10 10p 10
H 2v & |54 , H 2-2v [N L1+4V, H 2+2v [N Ll_AV, LlO O 44 (ﬁ < 10] (524)
—4av

Similar to the proof of (4.8), we deduce that:

(H(CDN)’AV?’N)EZE{ J"'%

Next, we will deal with the right-hand side of (5.23). Using (4.5)-(4.10) and
(5.21), we get:

2 2 2

Ay, | +]|A2w, A2w, o A2p, (5.25)

2 "2

v 2
((cuNz(Hta)),A”uN))s|c||z(9ta>)| Ay |l (5.26)

2

v 2
(cwyz(60), A'wy ) <|cl|z(B.0)|| AWy | . (5.27)

8e?|cl* |2 (00)|| v | v P
(ZCf:uNz(@ta)),AVWN)S% A2y, 2+% Azw, |, (5.28)
flz(go) (| » | v P

(czusz(@w),AVwN)s%{ . XITN 2+ A2w,, J (5.29)

v 2 4 2
(g(x),AVWN)sé A2g(x) +% Arw, |, (5.30)

. cllz@)(ls [ 1 [

(cuyz(Go), A"y )ﬂ’2 SW AZu, 2+ A2, N (5.31)

For the nonlinear term, we have:
(f(u)— fl(uL),AVWN):(fz(uL),AVWN)+(f(u)— f(uL),AVWN)
:(fz(uL), A" (uy, +&uy —cuNz(Hta))))
+(f(u)— f(u), A (uy, +e&uy —cuNz(HtaJ))).
Firstly, we deal with the term:

(10 A o0
d (5.32)
= a( f,(u, ), Auy )+g( f,(u. ), A'uy )_( £ (u, ), AUy ),

by (5.2),, (5.24) and Lemma 5.1, we have:
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uuAu)

(f

<C

(1+|uL )|uLt||A uN|dx

1+4v 4-4v
10

o) Lol o] (gt o
(v )

AV

2 (U
<C AfuN

2
2

v
2

Acuy|

2

<R, (@)+<

and

‘( fz(uL),cAVuNz(eta)))‘

<cldz(g)|[, (2+]u|” lu.

A'uy |dx
44y 1+4v

_10 10
L+dv dx] (5.34)

10

SC|C||Z(‘9t“’)|[Iu (1+|UL|p)m dxj 10 .(jU|UL|2 dX)Z'UU|AV”N

<clelfz(ao)|(+fucf; )-fu.

v
2
AZUy
2

v 2
2

Acuyll .

2

o)l (o) +£

Secondly, we consider the following term:
(f(u)—f(u ),AVuNt+gAVu )
= L1 F () A0 e (1)~ 1 (1), A'uy )
—(f'(u)u, = £ (u)u, A'uy) (5.35)
=a(f(u)—f(uL),AVuN)+g(f(u)—f(uL),AVuN)
—(f'(u)uu—f’(uL)uu,Aqu)—(f’(u)uNl,Aqu).

According to (1.2), (5.24), Lemma 4.1, 5.1 and
Wy (t,@,X) =Uy, (t,@,X)+euy (t,@,X)—cuyz(6,w), we obtain that:

‘(f’(u)uLt —f(u,)uy, A'uy)

<cJ, |uLt|~|uN|-(1+|u|3 +|uL|3)

<o uf o] o

10 10
1+4vy dx]
<R, (o)

AVuN|dx

3

[IU (1+|u|3 +|uL|3 )E dx]10 (5.36)

1-4v

10 10
1-4v dX

AUy

v 2

2
Azuyll
2
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‘(f’(u)uNt,Aqu)

<G|, |uNt|-(1+|u|4)|A”uN |dx

5-4y 4 1+4v

o 10 14y
SCI(J‘U|UM|51(‘J‘" dxj 10 (J‘U (1+|u|4)7 delo .(J’U|AVUN 1+li)deJ 0 (5.37)
(o) ( p, J
2

<C c” aw|ij|@+m|+mL)pupr

<C||A2uy, A2u | <Ry(w)|A?u,

2

and

(f(u ),cA"u z(ea)))‘

4
10

ﬁ =
<cpetaol] o o) [l ) ]|
1+4v
(.[u |AVUN

10 0 (5.38)
1+4v dxj
<Clel[z(0.0)

v v
2 2
Azuy (| A2uy

(1l + )
2
2

id
2

Azuyll .

2

o)lcl|z(8)|

In addition, by (1.2), (5.2),, (5.24) and Lemma 5.1, we find that:

‘( f,(u ), A'uy )

<CJ Ju|-(1+lu | )| A"uy|ax

4-4v 1+4v

1 10
coli o (< u) " {LpaiFe]” o
<cluf ] {ioul)
2
SR?(”) A%UN '
2
and
(f (u)= f(u).A"uy )
<C (1l + o) Ay ax
SCUU|“N|5“‘V‘3'XJ '[JU(1+|U|4+|UL|4)“ dx] -[MAVuN de]
< | (1l ) Ao

2

DOI: 10.4236/jamp.2024.124092 1511 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2024.124092

M. Y. A. Bakhet et al.

2
<Ry (w)[A%uy (5.40)

2

Thus, combining with (5.23)-(5.40), we can show that:

2
v

%{ A2g, +2(f (u)—f (u.), Auy )J

[ OB A B ey | e

E

2

[ At +2(f(U)—fl(UL),AV“N)J+R9(a’)+20|0|2|2|2+C||9||f’
that is,
a2 I
a[ A2gp, E+2(f (u)-f,(u.), Auy )]
_pl(t,etw)[ Ang +2(f(u)—f1(uL),AVuN)] (5.42)
E
<R (@)+2C[cfjz|+C[g;
where
1+2R 2
p100) =, o) IR B g 1O oy
Let

2

+2(f(u)— fl(uL),AVuN).

E

AE(”N

Y(t)=

By Gronwall’s inequality to (5.42), we have:

Y (1) <%y (0) 4 2¢ o je“’”g’”

#(Ro(@)+Cla () e

Similar to the proof of Lemma 4.1, we have:

€w| ds

Y (1,0,,0(0,0,0))

<"ty (0,0 0,0(0,0.,0) )+2<:|c|2 [0 gle(rons
+(Ro(o)ela (o )"

Due to (4.26) again, there exists o, (a)) >0 such that:

2(6,0) ds (5.44)

0 _o2(@)
ehalrdods 070 (5.45)

where csatisfies (4.10). Thus, it follows from (5.39)-(5.40) and (5.43)-(5.46) that:
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2 2 2

1+v

2
Az uy

o2(@)

<e 2 R(6,0) (5.46)
= 1\ @), .

4 v
2 2
+(|A%Uy |l +[|A% 7,

.2

where P(6,®) isincreasing function. Then, the proof is finished. [J
Lemma 5.4. Assume that (h,) holds. For any >0, there exists C, and
M, (@), such that P-as U, (S)=u,(s)+U,(s),
. (s)],.,, <K, (@), v-t<s<o, (5.47)

J{ el ds <e(r,—5)+C, v -t<p <r, <0. (5.48)

2+2v

Proof. Combining (5.14), (5.20) with the technique used in [55], we can finish
the proof. [

Lemma 5.5. Assume that (h;) - (h,) and (5.1)-(5.2) hold. There exists a ran-
dom radius M, (a)) such that for P-a.e. @ € Q, the solution
Py (t,@fta),(oN (0,6[((0)) of (5.4) satisfies:

2 2 2

1+v

2
A2 uy

v

2
A2uy,

4

+ A2 <M, (o), (5.49)

w2

where v isgivenin (5.21).
Proof. Taking the inner product of (-, ) of (5.4) with

(M@, AWy, A", ), we find that:

2E+z[f(u)_ fl(uL),A;uNH+(H(¢),¢)E +g[f (u)- fl(uL),A;uNJ

E

4

AE(”N

1
EE[
—([ f/(u)— £/ (u ) Ju,, A%uN J—( (U, )y, A%uN J—( f,(u)u,, A%uN J
= (g (x), A"wy )—(cz(&la))wN AWy )+(2gcuN 2(6,0), A'w, ) (5.50)
—(CZZZ(QQ))UN,A"WN )+((cuNz(0ta)),AVuN ))
+(cuNz(¢9ta)), A'n, )v,Z —( f(u)- fl(uL),cAVuNz(Hta)))

First, we deal with the nonlinearity in (5.50). Applying (5.1), (5.6), (5.22) and

Holder’s inequality, we have:
( f/(u)u, — f'(u, )u, Auy )

scju|ul+u2|-|uN|-(1+|u|3+|uL|3)

A”uN|dx

: 10 % 10 %
<C(J, . axf (-[u Ju = dx} {.[u (L [f +u [)? dx}
10 % 10 iy 1
(IU de) +C(.[u|ul|m dX] ’ .(.[U|UN|2 dX)E (5.51)
10 2
= 10
Lot o] (¢

|
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10 10
1+4v dX

4
A'uy

1+v 2

4
Az ull [|[A%uy
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(f/(u )uye Auy)

<C, IU|uNt|~(l+|uL|4)
10 5;3‘, 10 %
£C1(IU|uNt|M dxj [J'U (1+|uL|4)4 de UU

i

AVuN|dx
1+4v

_10 10
Lrdv dxj (5.52)

v
A'uy

v

v v v
< C||A%uy, AZwy AZwy AZw,

(2]

2

<R, (o)

2

v

v v 2
A2w, A2w | +Ry, (@)[A2w,

<R, ()

[04
+_
4

(5 (u)u, A'uy)

SCfU|u1+u2|-(1+|u|p)

2

AVuN|dx

4-4y 5+4v

1 10
=C (-[U |ul|10 dx)ﬁ [Iu (1+|u|p )m dX] 10 [J.u Auy % dX] )

44y 144y
3 S T o\
+C(IU |U2|2 dx)2 : IU (1+|U|P)4_4v dX] [J‘U AVUN 1+4v dXJ 10
2 v
SC{”“Z"” peu | (1 ule ) Ao,
1+v v
SC[HUZHZ AT ]'(“ Juf; ) A%, (5.53)
2
b v
< Rw(w)[nuznz %, ] W,
2

By (5.26)-(5.31), (5.34), (5.38) and (5.50)-(5.53), we obtain that:

%Y(t)+(p3 (@.60)- Ry (o)|u,]; )Y(t)
, (5.54)
+2C|c[* |z(9ta))|2 +Rys (@),

gi AZg
a

where

. {8 6}
0'3:m|n E,E y

2

AE(”N

Y(t)=

+2[f(u)— fl(uL),A;uNj

E

166 2 (gof - 2% +1+2C 2

o’ \/Z |C||Z(‘9tw)|

By Gronwall’s inequality to (5.54), we get that:

ps(@.00)=0;
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~[§[Pa(s.60)-Rua (@)ur(s Hz)

2
Y(t)<e )+2C |c|j o et tor-Ru(ola e 0,0) ds
+ ( Rls (w) +C ||g || )j (7.0,0)-Ryg (e HUQ Hz)drds (555)
_qt ®)— o) ~
=e -[O(p3(s'05 ) R14( )HUZ(S)HZ)[‘SY (0) + M4 (a))i
where

7,0,0) Ry (@)u (7))

2
M4 (a)) _ 2C|C| J‘; e’ﬁ(ﬂs( ( )z)dr Z

+(Rel) g (of e 1R

Ha) |2ds

Forany >0 suchthat i< — 95 s 5o small,
2R, (o)
eISRl4(“’)““2(T)“2 <e4 o8 eR16( ).

Next, similar to the proof of Lemma 4.1, we know that:

0'3

ghom(réo)s o ° (5.56)

where csatisfies (4.10).

Hence, combining (5.39)-(5.40) with tempered |Z (Hta))| , we obtain that:

2 2 2

1+v

Azu

v

+ AEUN

<6 2V (0)+ M, (0) <M, ().

.2

v
2
+ (| A%Uy,

Then, the proof is completed. [

6. Random Attractors

In this section, we establish the existence of a D -random attractor for the
random dynamical system ® associated with system (3.12) on R®, that is, by
Lemma 4.1, ® has a closed random absorbing set in D, which along with the
D -pullback asymptotic compactness and then implies the existence of a unique
D -random attractor. Next, due to decomposition of solutions, we shall prove the
D -pullback asymptotic compactness of ® (see [56] [57]).

Since weQ,t>0, we get:

nN(té’ @, P, Qa),s)

_{ v (L0, (0.@))-u (t $,0.0,¢,(0.,,0)), s<t,  (6.1)
- (t.6.0.0,(0,0)), t<

t+s

N (15,000, (0.,,0)), 0<s<t, 62)

o 40,010,0,0).5) o

Denote I§(a)) as:

I_5>(a)) - Uwo(afw)eB(efw) Utzo M (t,Hfta),(po (Qta)),s), seR",0eQ120,(6.3)

—

is the solution of (3.12), where ¢ = (u, W,I])T . Next, it follows from Lemma 5.5
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and (6.1)-(6.2) that:
2
ﬂ~2v+2} (6.4)

max{"f?Ns (t.0.0.0, (6?,160)18)";2V i (6.6.0.05(0.0).5)|
<M, (@), V520,

which implies B(®) is bounded in L (R",V,,.,)NHZ(R",V,,). Also, by
Lemmas 4.1, 5.5 and (6.2), there holds:

Any (t.0,0,0, (t97ta)),s)||2 <2M, (). (6.5)

sup ||A77(s)||2 =sup sup

neB(w),s20 > gn(0_10)eB(0 1)

By (h,) and (6.5), forany 71 € Ig(a)) , we find that:
2 +o0 2 +o0

[r)l,.. = I, #(s)an(s)] ds < 2R (@) []
which shows that B (a)) c Li (R+, Hg (U )) is bounded. It follows from Lemma
2.11 that the set I.5>(a)) is relatively compact in Lf, (Rﬂ HS (U )) . Next, we in-

vestigate the main result about the existence of a random attractor for Random

2M
e %ds < % (6.6)

Dynamical System .

Lemma 6.1. Assume that (h,) - (h,) hold. Then, for any t>0,0€Q, the RDS
@ associated with (3.12) possesses a uniformly D (E) -attracting set A(@)c E
and possesses a D (E) -random attractor A(w)c A(@)N By (o).

Proof For any t1>0,0€Q, as Lemma 5.5, let B, (@) be the closed ball in

Vy.2, XV,, of radius /Mg (o) . Set:

A(®)=B,(0)xB(®). (6.7)
Then, A(w)e®(E). Because V,,,, xV,, o HZ(U)xL*(U) is compact,
and B, (@) is compactin HZ(U)xL?(U). At the same time, B(®) is com-

pactin R ,,then A(a)) is compact in E. Next, we prove the following attrac-

n2>

tion property of A(a)) : for every B (a)) € @(E) ,
lim de (@(t,60..@,B(0,)),A(@))=0. (6.8)
Indeed, firstly, according to Lemma 4.1, there exists closed, tempered and mea-
surable absorbing set By (®) suchthat Be®(E), forany tg(w)>0,
(a(t,Qtw,B(Qta)))g By (@), Vt>t, (). (6.9)
Moreover, let:

B(o)= U @(1.0,0)B,(0 ).

t>t(w,By)

Assume that t>t; (@) and t,=t-t,(o»)> tg (@)>0. Making use of the
property 3) of @ and (6.9), we deduce that:

go(t, 0o, B(Qtw)) = go(to +15 (co),&fto*ls(w)a), B(Qlo*ts(a})a)))

c go(to,ato o, B, (4940(0)) < B, ().

Forany t>t,(@)+ty (@), choose
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o(t,0.,0.0,(0,0))€p(t,0,0,B(0,0)), where (0, »)eB(6 ). Due to
(6.10) and Lemma 5.1, we have:

Py (t, 0..0,0, (0, 9_ta))) = (p(’[, 0.,0,0, (H_ta))) -, (t, 00,90, H_ta))) eA(o).

So, according to Lemma 5.2, we find that for t>ty (@) +t, (@),

inf llo(t.0..0, (H_ta)))—l//“z s “‘PL (L0 o0 (0"940)))“25 <M, (w)e ),

yer(o)

that is,

dist(¢(t,0.,0)B(0,@),A(@)) -0, t —+oo

Thus, (6.8) holds. Therefore, applying Lemma 2.11 and Theorem 4.1, we ob-
tain that the RDS @ possesses a @(E) -pullback random attractors
A(w)c A(w)N B, (o).

Then, the proof is completed. [J
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