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m In this paper, we intend to consider the following Klein-Gordon equation coupled
with Born-Infeld theory:

—Au+V (x)u—(2w+¢)gu = f (u), inR?

(1.1)
Ag+ AP =dn(w+p)u?, inR%,

where >0, w>0, u and ¢ are unknowns, V:R® >R is a potential
function and fsatisfies some superlinear conditions. The Born-Infeld electro-
magnetic theory [1] [2] was first put up as a nonlinear correction of the Maxwell
theory to solve the infiniteness issue in the classical electrodynamics of point par-
ticles (see [3]). The fundamental concept was to change classical theory simply,
so that it adhered to the notion of finiteness and did not have physical quantities
of infinities. Due to its importance in the theory of superstrings and membranes,

Born-Infeld nonlinear electromagnetism has attracted a lot of attention from theo-
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retical physicists and mathematicians (see [4] [5]). For more physical applica-
tions, please refer to [6] [7].

In recent years, some researchers considered the Klein-Gordon equation coupled
with Born-Infeld theory by using variational methods. We recall some of them
as follows.

In [8], d’Avenia and Pisani studied the following kind of Klein-Gordon equa-
tion coupled with Born-Infeld theory:

—Au +(m2 —Wz)u—(2a)+¢)¢u =[u"u, inR?,

(1.2)
Ap+ AP =4dn(w+¢)u?, inR®,

when pe(4,6) and 0<w<m, they obtained some existing results of infi-

nitely many radially symmetric solutions for system (1.2). After this, Mugnai [6]

covered the range 2< p<4 provided 0<w<|m| g—l. Replacing |u|p_2u

" u ol

by |u u+ |u U, where 2":=6 is Sobolev exponentin R?, Teng and Zhang

[9] studied the following Klein-Gordon equation coupled with Born-Infeld theory
with critical Sobolev exponent:
—Au +(m2 —wz)u —(20+¢)gpu = |u|p72 u +|u|2*72 u, inR®

Ag+ pAp=4n(w+¢)u?, inR®,

(1.3)

they admits a nontrivial solution for problem (1.3) when m>w >0 or

Chen and Li [10] added a perturbation h(X) to the nonlinear term of prob-

i

lem (1.3) and removed the term |u “u, by using critical point theory, they

obtained two different solutions, under one of the following conditions:
1) [m>®>0, 4<p<6;2) §—1|m|>w>o, 2<p<4

In [11], Chen and Song considered the case of nonlinear terms with concave
and convex, and got the existence of multiple solutions for the following problem:
{—Au +a(X)u—(20+¢)gu= /1k(x)|u|in u+g (x)|u|”’2 ., inR?,

A+ A= 4n(w+g)u%, inR®, 14

where 1<q<2<p<6, a k and gsatisfy some appropriate assumptions.
In [12], He, Li, Chen and O’Regan investigated the following kind of Klein-
Gordon equation coupled with Born-Infeld theory:

|2*’2 u, inR?

—Au +<m2 —Wz)u—(2w+¢)¢u = ufu)” " u+u
Ag+ BAp=4n(w+¢)u?, inR°,

(1.5)

they showed that problem (1.5) has at least a nontrivial radial ground-state solu-
tion, under one of the following conditions:
1) pe(4,6) and m>w>0 for u>0;
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2) pe (3,4] and m>w>0 for sufficientlarge 4 >0;

3) pe (2,3] and 1/( p—2)(4— p)|m| > >0 for sufficient large 4 >0.

Wen, Tang and Chen [13] studied the following kind of Klein-Gordon equa-
tion coupled with Born-Infeld theory:

{—Au +V (x)u—(20+¢)gu = f (x,u), inR®

(1.6)
Ag+ BAp=4n(w+¢)u?, inR®,

they obtained infinitely many solutions and a least energy solution for problem
(1.6) under different assumptions on Vand £ In [14], Zhang and Liu proved the

existence of infinitely many sign-changing solutions to the problem (1.2), when
|m|>a)>0, 4<p<6 or §—1|m|>a)>0, 2< p<4. Other related studies

on the Klein-Gordon equation or Klein-Gordon-Maxwell equation can be seen
n [15]-[28].

Motivated by the above works, in this paper, to certify the boundedness of Pa-
lais-Smale sequence for case of 2 <U <6, we use Pohozaev identity of (1.1). By
applying the ideas employed by Ref. [12], we find a Palais-Smale sequence {Un}
of energy functional of problem (1.1) at level c;, where ¢, >0 is mountain
pass level defined later by (1.1). Then, the boundedness of {Un} can be certified
by some delicate analyses. By using critical point theory and the method of Ne-
hari manifold, we obtain two existing results of infinitely many high-energy radial
solutions and a ground-state solution (which is the solution with the smallest
energy among all the solutions) for the system (1.1) and we have improved the
range of @, which improve and generalize some related results in the litera-
ture.

In this paper, we make the following assumptions:

(V1) VeC (R3,R) is a radial function, which satisfies V, =inf _,V (x)>0.
And there is a constant >0 such that:

lim meas({XGR3 :|x—y|sr,V(x)sM}):O,v M >0,

ly|>+0

where meas(-) denotes the Lebesgue measure.
(V2) (VV(X),X)ZO for all xeR® and there exists 496[0,1) such that

(VV(X),X)S 29|2 forall xeR® \{0}.
X

(F1) lim w:O

t|—>o0 5
I t|

(F2) lim (1) 0.

MHOW =
(F3) There exists g >2 such that f(t)t>uF(t)>0 for all teR, where
F(t):=], f(s)ds.

(F4) f(—t):—f(t),forall teR.

Now, we present two main results:
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Theorem 1.1. Assume that (V1), (V2), (F1) - (F4) hold. If the following con-
dition holds:

1) ,ue[3,6);0r2) ye(2,3) and a)e(O,.l(,u—Z)(4—,u)V0/(3—;1)),tben,

problem (1.1) possesses infinitely many solutions
{(un!¢n )} c Ex D:'Z (RS) satistying:

%j(|w|2 +[v(x)—(2w+¢)¢]u2)dx

R3
L Vg ax—L [ x| F(u)dx—>ee.
87‘C R3 1671: ]R3 ]R3
Theorem 1.2. Assume that (V1), (V2), (F1) - (F3) hold. If the following con-
dition holds.

1) pe[3,6);0r2) pe(2,3) and we(0,1l(y—2)(4—,u)vo/(S—y)),then,

the problem (1.1) has a ground-state solution.

Remark 1.3. We consider the variable potential V and generalized nonlinear-
ity f; which brings some difficulties such as the proof of boundedness of Pa-
lais-Smale sequence ((PS)-sequence for short). To conquer the boundedness of
(PS)-sequence, we use some analytical methods. Besides, when € [3, 6) , we do
not need any restriction on ® , and when i €(2,3), we get a more delicate range
for @ . Hence, Theorem 1.1 and Theorem 1.2 can be seen as improvements of
the relative results in the literature. To the best of our knowledge, similar results
for this kind of Klein- Gordon equation coupled with Born-Infeld theory by us-
ing analytical methods in this paper can not be found.

The rest of this paper is organized as follows: in Section 2, some preliminaries
are given; in Section 3, we give out the proofs of Theorem 1.1 and Theorem 1.2.

We denote C, as different positive constants.

2. Preliminaries

Henceforth, the following notations will be used.

( , > denote dual inner products between workspaces.
— denote weak convergence.

diSt(X, y) denote Euclidean distance between xand y.

0S denote boundary of S.

a.e. almost everywhere.

R" denote N-dimensional Euclidean space.

X =Y denote define Xas Y.

C,C.C,, denote various positive constants.

B, (x):={yeR:|ly-x|<r}, VUEHl(RN), r>0.
u (x)=u(x/t), VUEHl(RN)\{O}, t>0.

D(RS) denote the complete space of C; (R?’).
Dr(R3)::{UED(R3):u(x):u(|x|)}.

D' (R®):={uel®(R):[Vu[e L* (R®)} .
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D} (R®) = {u = Dl'Z(R3):u(x):u(|x|)}.
H'(R®)={ue?(R):|vule *(R?)}.
Hi(R3)::{u = Hl(R3):u(x):u(|x|)}.

1
Jul, :( IR3|VU|2dx) ([ lvul dx)“.

1
ol = ([ 5
y
ul, ([ o 0], 1< <0
We define:
E:= HY(R®): [(Ivulf® +Vv 2\q .
{ue r( ) Rj;(| u*+V (x)u ) X<oo}
Then, Eis a Hilbert space with the inner product:
(uv), = [[Vuvv+V (x)uv]dx
IR3

and the norm ||u|| = ||u||E = (u,u)lE/z. By (V1), (V2) and Poincaré inequality, we
see that E © Hr1 (R3) is continuous. Then, for pe [2,6], there exists r,>0
such that:

P
o = [ <ol wee e
R

Apparently, we know that a solution (u,¢) e ExD} (R3) for the system

(1.1) is a critical point of the energy functional J:(u,¢)e Ex D? (]R3) ->R

defined as:

J (u,qﬁ):% j [|Vu|2 +V (x)u? —(2w+¢)¢uz}dx— _[ F (u)dx
Df 2 5 ) ® (2.2)
_Qﬂyv’é' dx—ﬁﬂywﬂ dx.

We need the following lemma to reduce the functional /in the only variable u.
Lemma 2.1. [12] Forany Ue Hl(R3) , we have.

1) There exists a unique ¢=¢, €D (R3) , which solves equation:
Ag+ BAp=4n(w+)u?;

2) —w<¢,<0 on theset {XZU(X);#O};

3) If u is radially symmetric, then ¢, is also radially symmetric

4) u, —u In HI(RS),tben ¢, —¢, in D,(R3>.

From the second equation in system (1.1), we get:
iJ’|V¢|2dx+£J'|V¢|4dx=—J(w¢u +¢u2)u2dx. (2.3)
4r 5 4r 5 e

From Lemma 2.1, we rewrite J(U,¢) as the functional I(u):E >R as
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follows:

N~

I(u)=

| [|Vu|2 +V (x)u? —(2a)+¢u)¢uu2de— [ F(u)dx
“f g 4 ® (2.4)
—gﬂyvm dx—ﬁﬂvm dx.

By (2.3) and (2.4), we obtain:
I (u) :%DLDVUF +V (x)u? +¢u2u2}dx— I (a)¢u +¢u2)u2dx

]R3
1 2q B “ gy
8nﬂ£3|v¢u| dx 1671:]R£|V¢“| dx HJgF(u)dx

_l 2 2 2.2 i 2
_2H§|'3[|Vu| +V (x)u? +gfu de+8nﬂgg|v¢u| dx (2.5)

3 4
+éng;|v¢u| dx — j F (u)dx

Rr3

1 2 2 2 4
:EDiL[|Vu| +V (x)u? - wg,u de+%RL|V¢U| dx—RLF(u)dx,

For any u,V e E, we have:

<I’(u),\7>= j[VUVV+V(x)uV—(2w+¢u)¢UU\7]dx— L f(u)vdx.  (2.6)

Rﬁ
For 1 €[1/2,1], we define the family of functionals 1, :E >R by:
Il(u):l j [|Vu|2 +V (x)u? —(2a)+¢u)¢uu1dx—/1.[ F (u)dx
2R3 R®
1 2 g 4 2.7)
-—— | [Vg,| dx——— |V4,| dx.
87T]3£3| ¢”| X 161‘['” ¢u| X

R3
For any u,V e E, we also have:

(1 (u),v)= j[VUV\7+V(X)U\7—(2a)+¢u)¢UU\7]dX—/1J; f(u)vdx. (2.8)

IR3
Let S:= {u € H}(R3)\{O}: I'(u)= 0} be the critical points set. It is easy to

see that any critical point u of /satisfies the following PohoZaev equality:

P(u):= _|'3|Vu|2 dx + _[3[3\/(x)+(VV(x),x)—5w¢u —2¢u2]u2dx

+%J|V¢u|4dx—6f F(u)dx (2.9)

For convenience, we also defined:

P, (u):= [ [Vuf dx+ j.3[3v(x)+(VV(x),x)—5a)¢u 247 |u?dx

Rr3

3p 4
+§RUV¢“| dx—6/1D£3F(u)dx (2.10)

=0.
Let:
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JOREOMELD
:%Hwa dx_%ﬂi[\/(X)JF(VV(X),X)—WU]ude (2.11)
_%RUW“F dx+ﬂ£3[3F(u)— £ (u)u]dx
Then, G(u)=0 forany UecS.Wealso define:
G, ()= (11 (v) 0) ~5 P (1)

:% I |Vu|2 dx—% j |:V (X)+(VV (x)'x)_w%]uzdx 2.12)

]R3
34 4
-—— ||V dx+A||3F(u)—f(u)u (dx.
S {Ival o] [3F o) 0]
Lemma 2.2. Assume that (F1) - (F3) hold. Then, there exist some constants
¢,» a,>0, t,>0 and v, =t,u, /le[%,l} (see[12]) such that:

1) infy 1,(u)20 and infy, . 1,(u)2a;;
2) ||V/1||E>§z and 1,(v,)<0.

Proof. 1) From (F1) and (F2), for C, = Giz, there exists C, >0 such that:
r2

F()<Ct +C, [t , forallteR. (2.13)

By (2.1), (2.3), (2.7), (2.13), —w < ¢, <0 and Hoélder inequality, we have:

()= [ [IVef +V (u* ~ (20 ) A Joe— o [ Vi o

1 1 1
:EHJJVUFdx+ED£LV(x)u2dx—EH£3w¢uu2dx
B ‘i —
+16nD£3|V¢U| dx iﬂ!sF(u)dx
2%H£|Vu|2dx+%ﬂéfzv(x)u2dx—ﬂﬂé[3F(u)dx
21.[|Vu|2dx+l.[v(x)u2dx—ﬁj'(C1|u|z+C2|u|6)dx
2R3 2R3 R3
2 22 - C. Al - Catf @14
1 1
> Lol - .l
1
> Julle = 4C. Jul; -

From (2.14), there exist ¢,, «, >0 such that ianqug I (u) >0 and
ianqug l, (u) 2a,.
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I, (t,u

2) From (F2) and (F3), there exists C,,C, >0 such that:
F()2C, i ~C,Jt/", forallteR. (2.15)

From (2.15), for ue E\{0}, we get:

ti 2 2 2 1 ?
)= [[I76F + (00" - (20 g )0 Jo-g [ 7o

B 4
—ER-UV%U dx—/l]lé[3 F(t,u)dx

2
S%H%[SDVUF +V(x)u2}dx+a)2tjug;u2dx—/lué[3 F (t,u)dx (2.16)

S% [ [|Vu|2 +V (x)uszXerztj [uPdx—Cyts A [ u dx+C,t5 2 [ u?dx
R® R R R®

—>—o0, as t; —> oo

Hence, from (2.16), we can let v, =t,u with t, >0 large enough such that
V.| > ¢, and 1,(v,)<0.0

Lemma 2.3. Assume that (V1) and (F1) - (F3) hold. Let {u,} cE be a
bounded (PS),-sequence for I with ¢ e(0,), then {u,} has a strongly con-
vergent subsequence in E.

Proof. Consider a sequence {U,} in E which satisfies:

I(u,)—>c, 1'(u,)—>0. (2.17)

We may assume that, for any neN, thereexistsa UeE such that:
e U —U ink
e U —U in Lp(Ra),for 2<p<b6;
e U, —>U aein R®

By (2.6), we easily get:

Ju, =ull = (1" (u,)=1"(u).u, —u>+2wj(¢u u, —¢,u)(u, —u)dx

(2.18)
+ [ (¢ vy — ) (u, —u)dx+ [ (f ()= (u))(u, —u)dx.
RS RS
It is clear that:
(1"(uy)=1"(u),u,—u) -0, asn —co. (2.19)
From (F1) and (F2), there exist C,,C, >0 such that:
(1) <Clt|+C ], vieR (2.20)
By (2.20), one has:
.[ I:f (un)_ f (U)](un —U)dX
< ;[ (u|+ 1)+ o [ +[aT) |Ju, o (221)
< Cq (Ju 2 + 1812 )n =1,z +Co ([l +1TF2 ), -
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By Lemma 2.1, Sobolev inequality and Holder inequality, it easily gains that:

2.[ (¢unun _¢uu)(un —U)dX

< 2J' ¢, (u, —u)(u, —u)dx|+

ZL(‘/jun ~4,)u, (u, —u)dx (2.22)

<[ e -l =t -flus —ule +

< -flun =uls - —ule +C

o s =t ]

o U = Ul [

u, P

b, — %,

From Lemma 2.1 and the boundeness of {Uu, }, there exists a positive constant
C; such that:

L‘n Un L6 "u ||L3 <C (2‘23)
3

Hence, from (2.23), the sequence {¢uzn un} is bounded in L2 (RS) , so that:

—-u

j(¢u—¢u)u—u) <l|l¢? u, -4 g

<( ]uu oo

Since u, —u in L° (Rs) ,forany 2< p<6, from (2.21), (2.22) and (2.24),

(2.24)

4 Un 3

one has:
j[f (uy)=f(u)](u, —u)dx >0 asn—o. (2.25)
2wj<¢unun—¢UU)(un—u)dX—>0, asn — oo, (2.26)
j(¢fﬂun —¢u2u)(un—u)dx—>0, asn— oo, (2.27)

From (2.18), (2.19), (2.25), (2.26) and (2.27), we have |u, —u|_ — 0, that is,
u, >u inE0

Lemma 2.4. [12] Let (X,"") be a Banach space and let J cR" be an in-
terval. Consider the family of C'-functionals on X with A€ J :

@, (u)=A(u)-1B(u),

with B(u) nonnegative and either A(u)—>+00 or B(u)—> +x,as
|u|| > +o, and such that @, (0)=0.Forany AeJ,we set:

r,={rec([01].X):7(0)=0,@,(r(1))<0}.

If for every AeJ,theset I', isnonempty and
¢, = inf max®, (y(t))>0

el le[O 1]

then for almost every A € J, there is a sequence {(U N )n} < X such that:
1) {(ui )n} is bounded,
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2) d)i((ui)n)—wﬂ;

3) @, ((u;),) >0 inthedual X ofX.

Lemma 2.5. ', isnonempty, where I', isgiven by Lemma 2.4.

Proof From (2.16) and ueE \{0} , we can choose T >0 such that
|, (Tu)<0.Let 7, (t)=Ttu, te[0,1],such that, y(t)eC([0,1],E),
7,(0)=0, 1,(7(1))<0,and max, g, 1,(7(t)) <o, forany AeJ. This
means that I", is nonempty. [

Lemma 2.6. ¢, >0, where c, Iisgiven by Lemma 2.4.
Proof Forany yel, andany AeJ,wehave y(0)=0 and

,(7(1))<0. From Lemma 2.2, we get that ";/ (1)" > ¢, . By continuity, we de-
duce that there exists t e (0,1) such that ”;/(ty )” =¢,. From Lemma 2.2, we

have I, (;/(ty )) > a, . Therefore, we have:

%> ¢, >inf | ( (t, ))2a1>0.

O

Lemma 2.7. Assume that (V1), (V2) and (F1) - (F3) hold. Then, there exists a
sequence (U} satisfying

I(u,)—>c, 1'(u,)—>0. (2.28)

is a bounded (PS), -sequence with ¢, €(0,).
Proof. From (2.3) and (2.7), we get that:

I, (u :—I|Vu| dx+= J'V u dx——ngﬁu dx
(2.29)

T j|v¢| dx - ﬂf

From Lemma 2.2, we see that |, has mountain pass geometry. We can de-

fine the Mountain Pass level c, by:

c, = inf max1, (y(t)) (2.30)

yel, tE[O l]

where

T, ={reC([01].E):7(0)=0,7(1)=v,}.

2
@, =1,
A(u =—'[|Vu| dx+= _[V u dx—zgw¢u dx+—I|V¢| dx,
B(u):jF(u)dx.

RS
It is easy to know that B(u)>0 for every ueE and A(u)—>c when

||u|| — oo . Thus, from Lemma 2.4 and Lemma 2.5, for almost every A€ J, there
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is a sequence {(ul) } c E such that:

{ } is bounded in E

2) 1,((u,),)—c
3) Il(( ))—)0 in the dual E™ of E

n
Since ¢, €(0,0), there exists u, € E satisfying:
I;(u,)=0, 1,(u,)=c,
for almost every A€ J.We can choose a suitable 4, —1 and u, such that:
15 (u,,)=0, 1, (u,)=c, —c. (2.31)
We still denote u, by u,.From (2.8) and I’ (u ): 0, we have:

<I;ﬂ(un),un>:L[|Vun|2+V( Ju? —(2a)+¢u )¢u rl]dx ﬂjf Ju,dx =0, (2.32)

and from (2.12), one has that:
' 1
Gin (un):<lln (u“)'u”>_apln (Un)
1 2 1
:ERL|VUH| dX_EIgS[V(X)JF(VV(X)’X)_w%n]usdx

- f(u,)u, Jdx

(2.33)

=0.

Next, we will prove that {u,} isbounded in E.
Case (1): 4<u<6. By (V1), (F3), (2.1), (2.3), (2.28), (2.29), (2.31), (2.32),
-0 < ¢, <0 and Holder inequality, we have:

,uc1+o(1)2;zlln(un)—<ljﬂ(un),un>
:(g_)j[|Vun|2+V de+( +1jj ufdx+2ﬂ£3w¢unufdx

dx+ )u, — uF (u,)]dx

I v, |

2(5—jj[|Vun|2+v(x)u§]dx+2ﬂ£3(¢jnun2+a)¢unu dx+ j

u —,uF ]dx

:[E_lj-mVuJ +V(X)Uﬂdx+(i_2_1njﬂit|v¢un ? 4

(W ﬂj”wu

(2.34)

dx+,1j[f )u, — uF (u,) Jdx

167

Y7,
(4.

When 4< <6, from (2.34), we know that {un} is bounded in E.
Case (2): 2<u<4. By (V1), (V2), (F3), (2.28), (2.29), (2.31), (2.32), (2.33)
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and —w<¢, <0, we have:
—4

¢ +o(1)> Uﬂ(un) A )un>+625:—’uGﬂn(un)

U

j [( 2)V () +2(3— ) og, +(4- 1) ]|u| dx

)u, —uF (u )]dx+L2)JR3(VV (%), %)|u,|* dx

2(6—/1

(2.35)

R3

?—ﬂ
1675(6# )I

2
We will prove the boundedness of jR3v ( x)|un| dx, to do this, we have two
cases to consider.

Subcase (i): 3< u < 4. In this case, we have:

(4-—p)s* +2(3-p)ws =0, V-w<s<O0. (2.36)

From (2.35), (2.36), (V2) and (F3), we have that JR3V (x)|un|2 dx is bounded.

Subcase (ii): #<€(2,3) and we (0,. [(1=2)(4- )V, /(3—,u)). For
Se [—a), 0] , by a direct computation, we have that:
(4—pu)s* +2(3— p)ws+(u—-2)V,

_(3;1—_;22602%#_2)\/0 (u-2)(4- ;;) : @)t 23

Thus, from (2.35), (2.37), (V1), (V2) and (F3), we get:
=2V (x)+2(3- ) g, +(4— )¢ u, | dx

+,u——2 X),X){u 2 X+i
z(e_ﬂ)IR3(VV( )' )| n| d 167:(6—/1)IR3

J']R3 [ f(u,)u, —uF (u,)]dx
1 (2.38)

c,+o(1)=

2G_ﬂj.n@[('u_z)v(X)+2(3_ﬂ)a)¢un+(4—,u)¢uﬂ|un|2dx
> Lo l-2e - 28 a)o, +(4- ) o o
2(4—#)(,U—2)V0—(3—u) WZJ'3| |2dx

(6-1)(4-u)
It follows from (2.38) that IR3|un|2 dx is bounded when € (2,3). From

Case (1) and Subcase (i), we have that J.R3|Un|2 dx is also bounded. Hence, by

Lemma 2.1, there exists a positive constant C, such that:

@, |u, I dx‘ <’ _[Rg |u,|dx <C, (2.39)

and

[l u. dx‘ <o [ Ju,| dx<C,. (2.40)
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From (2.35), (2.39) and (2.40), we know that IRSV x)|un|2 dx is bounded

when ,ue(23 and a)e( AJ(1=2)(4-n)V, /3 ,u) From Hardy inequa-

lity, we have:
[ s[vuf dxz%J‘w%dx, VueH!(R). (2.41)
By (2.31), (2.32), (2.33), (2.39), (2.40), (2.41) and (V2), we have:
2, +0(1)2 1, (u,)-3 (11 (u,).un) +36, (u,)
sl (@ 40 )l

(13] (VV (x),x)|u, | dx

(2.42)

L0 Jouf -2

From (2.42) and (96[0,1), we know that {Vun} is bounded in L2 (RS).
Hence, {u,} isbounded in Ewhen u e (2,4). Therefore, {u,} isbounded in
E

In order to obtain infinitely many solutions of system (1.1), we shall use the
following critical point theorem introduced by Bartsch in [29]. The space Xis
reflexive and separable, then there exist € € X and f e X~ such that
X :(ei,i EN> , X7 :<fi,i 6N> R (fl,el> 3> where 3 denotes the Kro-

necker symbol. Put

c=span{e}, Y, =@ X, Z, =®X,. (2.43)

Now, we state the following critical points theorem given by Bartsch.
Lemma 2.8. Assume ¥ eC'(X,R) satisfies the (PS) condition,
W(-u)=Y(u). Forevery keN, there exists p, >T, >0, such that.

1) & =maxX, o, ¥(u)<0;

2) b, =inf Y(u)—>+0 as k—>oo.

ueZy [ul=r
Then, Y has a sequence of critical values tending to +o .
Lemma 2.9. Assume that (V1) and (F1) - (F4) hold. For every k e N, there

exists p, >d, >0, such that.
1) 3 =max, ., ., 1(u)<0;

2) bo=inf, e, I(u) >+ as k>,

where Y, and Z, are defined by (2.43). Then, I has a sequence of critical val-
ues tending to +0 .
Proof. From (2.1), (2.4), (2.15) and —w < ¢, <0, one obtains:

I( =—J'[|Vu| +V (x)u? - (20 + ¢, ) g,u* J

2 s
—gnifs|v¢u| dX—EHVm dx—j F (u)dx

R® R®
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< [[Vuf 4V (x)u? + 2072 [dx= [ (Cyful ~Cou® ) dx
i ® (2.44)

1
=5 Il + o Jul o ull + ot

Since > 2, from (2.44), there exists p, >0 such that:
a, = max 1(u)<o0.

k
ueYy Jul=px

Subsequently, forany keN and pe[2,6),we set:
Be(p)=_ sup ul.

ueZy ulg =1

Similar to Lemma 2.8 in [27], we have ﬁk(p)—>0 as k —»> o . Letting

1 4
d =| ————| ,forany ueZ, .From (2.1), (2.5), (2.13), we get that:

I(u)=%ﬂ£[|Vu|z+V(x)u2+¢fu1dx+$ﬂ£3|v¢u|zdx
3 4
+£RUV¢”| dx—]RLF(u)dx
1 2 2
ZEJ[|VU| +V (x)u de— j F(u)dx

RS RS
1
> Z{ulle ~Cut (2)lull - Cop58 (8) ul:
1
=

Thus, we obtain b, =inf

1.
uezy fuld |(U)2§dk — 40 as —>o. O

3. Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1. It follows from Lemma 2.3 and Lemma 2.7 that /satisfies
the (PS) condition. By (F1), (F2) and (F4), it is easy to see that 1(0)=0 and
I(-u)=1(u). By Lemma 2.9, the functional /satisfies the geometric conditions
of Lemma 2.8. Hence, problem (1.1) has infinitely many nontrivial solutions
(u,.¢,)eEx D;? (Ra) . This completes the proof. O

Proof of Theorem 1.2. First, we show that the set S 0. Similar to Lemma

2.7, we can prove that, there exists a sequence {W,} bounded in H! (RS) and

I(w,)=c,, I'(w,)=0.We claim that:

limsup sup _[ |wn|2 dx > 0. (3.1)
nowo  yeRrd Bi(Y)
If not, from Lion’s concentration compactness principle [30], we have that
w, >0 in L (RS) for 2<s<6.From (F1), (F2), there exists C4,Cy,Cj, >0
such that:

I B f(w,)w, —F (Wn)} dx<C, ||Wn||i2 +Cy W,

Rr3

1+ Cuo [l <2-+0(1).
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Thus,
¢ +o(1)<! (wn)—%<l'(wn),wn>

I 2 dx— B
= RL Ve, | dx T st Ve,

4dx+ﬂ£3[% f(w,)w, - F(Wn)}dx
S%Jro(l).

This contradiction shows that (3.1) holds, and so there exist 6 >0 and
{y,} =R® such that:

| |w,[*dx > 5> 0.

B2(¥n)
Let W, =w,(X+Y,), thus ||V_\ln|:||wn||, I(W,)=c,, I'(W,)=0 and
J' |v_vn|2dx>6>0

B2(0)

which implies
W, —W#0 in H(R®).

By a standard argument, we can show that 1'(W)=0,andso WeS.

Next, we will prove 0<k:=inf_s1(u) is achieved. Let {w,} =S be such
that I(w,)—>k and I'(w,)=G(w,)=0 as n—>co. Arguing as before, we
can prove that there exists We S such that 1(W)>k and 1'(W)=G(W)=0.
If 4e[4,6), from (V2), (F3), Lemma 2.1, (2.5), (2.6) and Fatou’s Lemma, we

have:

4
dx

. 11 2 2
-t 327 v o Jor 2 s,
1, (1 2 2 1
+ R{; 2 _(E_;]w¢wn}|wn| dx+.[R{;f(Wn)Wn —F(Wn)}dx}
1 1 12 12 4
2 Rt v Ol Jo v o

+ Bqﬁj —(%—%}a)qﬁw}MF dx+ [, B f (W)W-F (W)}dx

(3.2)

If pe (2,4) , from Lemma 2.1, (2.5), (2.6), (2.36), (2.37) and Fatou’s Lemma,

we obtain:

k= Iim{l (wn)+g‘"4<l’(wn),wn>+2_”G(Wn)}

n—oo

_liml#=2 x)|w [ dx+—“=2_ X), x)|w, " dx
y {6_ﬂjR3v( o s =2 (Y (0.

n—w
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+$IR3[2(3—ﬂ)a)¢wn + (4= )2, Jjw, [ dx

‘ 4dx}
6—p

,u_—2 ~ |2 /u_z 12
z G—ﬂIR3V(X)|W| dx + Z(G_ﬂ)IRs(VV(X)'X)|W| dx
+ﬁIR3[2(3—y)a)¢w+(4_ﬂ)¢vgv]|w|z dx

2pu
16n

+

2
_[R3 [f (w, )w, — uF (w, )]dx+1’g;:jR3 V4,

(3.3)

+$J‘R3|:f (W)W_ﬂF(W)]dX+ .[]R3|V¢W|4 dx

- -4, .\ 2- N
:I(w)+'g_ﬂ<l (W),W>+6_ZG(W).

It follows from (3.2), (3.3) and |(W)>k that We S and
| (W) =k =inf, ;| (u) Hence, it follows from (2.2) and (2.5) that

I(udy) =1 (u)2 1 (W)= 3 (W4, ) =k, YuesS.

This proves that (W,4,) isa ground-state solution for system (1.1). O

4. Conclusion

In this paper, we used Pohozaev identity of (1.1) to certify the boundedness of
Palais-Smale sequence of energy functional of problem (1.1) at level ¢, and
then certified the boundedness of Palais-Smale sequence. By using critical point
theory and the method of Nehari manifold, we obtained two existing results of
infinitely many high-energy radial solutions and a ground-state solution for the

system (1.1).
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