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Abstract 
The SubBytes (S-box) transformation is the most crucial operation in the AES 
algorithm, significantly impacting the implementation performance of AES 
chips. To design a high-performance S-box, a segmented optimization im-
plementation of the S-box is proposed based on the composite field inverse 
operation in this paper. This proposed S-box implementation is modeled us-
ing Verilog language and synthesized using Design Complier software under 
the premise of ensuring the correctness of the simulation result. The synthesis 
results show that, compared to several current S-box implementation schemes, 
the proposed implementation of the S-box significantly reduces the area 
overhead and critical path delay, then gets higher hardware efficiency. This 
provides strong support for realizing efficient and compact S-box ASIC de-
signs. 
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1. Introduction 

Advanced Encryption Standard (AES) is one of the most important block en-
cryption algorithms at present and has been widely applied in various fields, 
such as communication, network security, e-commerce, and so on. In this algo-
rithm, the plaintext is fixed at 128 bits, while its key length can vary between 
128,192 and 256 bits. This algorithm arranges the 128-bit plaintext into a 4 × 4 
state matrix by byte, and then encrypts the plaintext through multiple iterations 
of the round function which includes SubBytes (S-box), ShiftRow, and MixCo-
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lumnand AddRoundKey operations. The number of iterations of encryption is 
determined by the length of the key 10 iterations for the 128-bit key, 12 itera-
tions for a 192-bit key, and 14 iterations for a 256-bit key. Among these opera-
tions in the AES algorithm, S-box transformation is the only nonlinear trans-
formation that plays a crucial role in the security of the encryption algorithm [1]. 
It makes cryptanalysis more difficult by adding confusion and diffusion and en-
suring the security of the AES algorithm. However, its complexity largely im-
pacts AES implementation performance. 

Researchers have focused on improving the performance of S-box implemen-
tation through two methods: the look-up table method (LUT) [2] [3] and the al-
gebraic method [4] [5]. The LUT method can transform complex nonlinear op-
erations into simple look-up table operations, reducing the complexity and dif-
ficulty of implementation, but it has drawbacks like high area overhead and vul-
nerability to attack. In the algebraic method, the S-box is implemented based on 
the logical expression between inputs and outputs. Compared with the LUT 
method, the algebraic method does not need to calculate and store 256 prede-
fined values of S-Box in ROM, resulting in a smaller area overhead. However, 
this kind of method involves the complex computation of the multiplicative in-
version in finite field GF(28), which leads to low processing speed. 

To achieve a better tradeoff between area overhead and speed for S-box im-
plementation, the research has explored various strategies. Wang et al. [6] mod-
ified the affine transformation part of the S-box by using a pipeline, and pro-
posed an area optimized combinational logic S-box implementation of AES. 
QIN et al. [7] obtained the logic expressions of the S-box and inverse S-box in 
the AES algorithm through the improved Q-M simplifying method, which re-
duced the delay, area, and power of the circuit. However, due to the bottleneck 
of multiplication inversion operation, this kind of improvement is limited. To 
address the bottleneck, a method based on composite fields was proposed [8] [9]. 
Using this method, one can convert the multiplicative inversion in GF(28) to 
low-order fields such as GF(24), GF(22), and GF(2) through isomorphic mapping, 
thereby reducing the complexity of multiplicative inversion and improving the 
efficiency of S-box processes. However, the implementation performance of 
S-box based on composite fields is related to the selection of low-order fields and 
their representation basis. To address this issue, several scholars have conducted 
extensive research on the selection of isomorphic matrix or polynomial basis and 
have proposed various optimization schemes of S-box [10] [11] [12] [13]. R. 
Ueno et al. [14] used different polynomial basis and Galois field arithmetic to 
optimize the inversion circuit, and proposed an efficient and compact S-box ar-
chitecture. Some structural optimization schemes have also been proposed to 
improve the performance of the S-box. A. Reyhani-Masoleh et al. [15] mapped 
the finite field GF(28) to tower fields and proposed the structure of S-box and 
inverse S-box combination. Y.-T. TENG et al. [16] adopted a pipeline architec-
ture based on composite fields and combined S-box and inverse S-box to achieve 
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optimization effects. In [17] [18], an optimization scheme of the S-box is pro-
posed by changing the order and structure of affine transformation and multip-
lication inversion. In addition, the method of combining combinational logic 
simplification technique with composite fields is often used to optimize the 
S-box implementation. A. Nakashima et al. [19] optimized the isomorphic map-
ping logic by combining multiplicative and exponential offsets. S. -H LIN et al. 
[20] proposed a S-box structure of a seven-stage hardware pipeline system with 
high throughput based on composite fields, logic optimization technology and 
pipeline-flow technology. 

In this paper, we propose a low-area, high-performance S-box ASIC (Applica-
tion Specific Integration Circuit) implementation by combining composite fields, 
the Karnaugh map simplification technique, the Input Variable Bypass Tech-
nique (IVB) [21] and other combinational logic simplification techniques. The 
main contributions of this paper are as follows: 

1) We merged the inverse isomorphism and affine transformation into one 
matrix transform, which simplifies the implementation of the S-box and reduces 
the area overhead. 

2) Based on composite fields, we map the multiplicative inversion in GF(28), 
GF(24) and GF(22) to GF((24)2), GF((22)2) and GF(2) respectively. This approach 
reduces the complexity of multiplicative inversion. 

3) We proposed a high efficiency of S-box architecture based on segmented 
optimization by combing different logic simplification techniques and exploring 
different segment combinations. 

The organization of the remaining sections of this paper is as follows: Section 
2 introduces basic theoretical background of this research topic in this paper. 
Section 3 describes the segmented optimization S-box structure proposed in this 
paper. Section 4 presents the logic derivation and optimization of each module 
in the proposed structure. Section 5 provides the experiment result and perfor-
mance evaluation. Finally, in Section 6, this paper is concluded. 

2. Preliminaries 

2.1. GF(28) and Its Operations 

GF(28) is a finite field with 256 elements. These elements can be represented in 
8-bit binary or as polynomials of degrees less than 8 with coefficients in GF(2). 
Suppose an element ( )8GF 2a∈  and its binary form is 7 6 5 4 3 2 1 0a a a a a a a a , then 
its corresponding polynomial representation is shown in Equation (1). 

( ) ( )( )7 6
7 6 1 0 GF 2ia x a x a x a x a a= + + + + ∈              (1) 

The operations in GF(28) include addition/subtraction, multiplication, inver-
sion, and other operations. The addition/subtraction operation here (⊕ ) is a 
bitwise XOR operation which, in polynomial representation, corresponds to the 
XOR of coefficients of the same terms. 

The multiplication operation is modular multiplication (⊗ ). It involves two 
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steps: polynomial multiplication and reduction modulo an irreducible poly-
nomial ( )m x . Let ( )a x  and ( )b x  be elements in GF(28) and ( )c x  be their 
product. Then ( ) ( ) ( ) ( )modc x a x b x m x= × .  

The multiplicative inverse ( )1a x−  of ( )a x  in GF(28) is defined as the ele-
ment that satisfies ( ) ( ) ( )mod 1a x b x m x× = . 

Note that, in the AES algorithm, irreducible polynomial in GF(28) is specified 
as ( ) 8 4 3 1m x x x x x= + + + + . 

2.2. The Fundamental Construction Principle of the S-Box Based 
on Composite Fields 

The original S-box transformation in the AES algorithm consists of two parts: 
multiplicative inversion and affine transformation in GF(28). Its algebraic ex-
pression is shown as Equation (2):  

[ ] 1 63HbS x Ax−= ⊕                        (2) 

where x , [ ] ( )8GF 2bS x ∈  are the 8-bit input and output of the S-box respec-
tively. 1x−  is the inversion of x, and A is affine transformation matrix. 

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

A

 
 
 
 
 
 =  
 
 
 
 
  

. 

As mentioned above, in the S-box transformation, the operation to find the 
inversion element of x is the most complex and time-consuming. Traditionally, 
the extended Euclidean algorithm is employed for inversion in GF(28), but its 
hardware implementation efficiency is not high. Therefore, the method of solv-
ing inversion based on composite fields was proposed. The key idea of this me-
thod is to transform the inversion operation in high-order fields into low-order 
fields, thus reducing the complexity of the inverse algorithm. Specifically, the 
implementation of the S-box based on composite fields can be divided into four 
steps: 

1) Mapping an element q in GF(28) to q′  in the composite field GF(24)2 by 
using an isomorphic matrix so that q′  can be represented as bx c+  in GF(24)2 
where ( )4, GF 2b c∈ . 

2) Using Equation (3) to find the multiplicative inverse of q′  in GF((24)2) 
[22]. 

( )

( ) ( )( )

11

1 12 2 2 2

q bx c

b b bc c x c b b bc cλ β β λ β

−−

− −

′ = +

= ⊕ ⊕ + ⊕ ⊕ ⊕
       (3) 

3) Converting 1q −′  in GF(24)2 into 1q−  in GF(28) by using the inverse of 
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isomorphic matrix. 
4) Performing the operation 1 63HAq− ⊕  to get final the output of S-box 
[ ]bS q . 
Note that β and λ in Equation (3) are the coefficients of the irreducible poly-

nomial 2x xβ λ+ +  chosen for multiplication when mapping GF(28) to 
GF((24)2). 

3. Proposed S-Box Architecture Based on Segmented  
Optimization 

This section presents a segmented optimized S-box architecture. As shown in 
Figure 1, this architecture consists of an isomorphic mapping module, an inver-
sion module in composite fields and a merged module of inverse isomorphism 
and affine transformation. The functions of each module are described as fol-
lows: 

The isomorphic mapping module: To convert an 8-bit element q (be regarded 
as a column vector) in GF(28) into q′  in GF((24)2) by multiplying q by the iso-
morphic matrix δ. That is q qδ′ = . 
 

 
Figure 1. Proposed S-box architecture based on seg-
mented optimization. 
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The inversion module in composite fields: To calculate the inversion of q′  in 
GF((24)2). The inversion operation is completed by three steps F1, F2, F3. All op-
erations in submodules F1, F2, F3 are 4-bit operations in the low-order field GF(24) 
which largely reduces the computational complexity. 

The merged module of inverse isomorphism and affine transformation: To 
complete the operation 1 1 63Ha A qδ − −′= ⊕  equivalently by replacing 1Aδ −  
with a merged matrix B and optimizing XOR constant operation where 1δ −  
represent the inverse isomorphism matrix. 

4. Logic Derivation and Optimizations 

In this section, we present the logic derivation for three modules and corres-
ponding sub-segments in each module shown in Figure 1 in Section 3.  

4.1. The Isomorphic Mapping Module 

When calculating multiplicative inverses in GF(28) based on composite fields, 
the first step is to map the elements in GF(28) to the composite field GF((24)2) 
using by multiplying an isomorphic matrix, but these isomorphic matrix is not 
fixed because the elements in GF((24)2) can be generated by different irreducible 
polynomials. It implies that there exists diversity in the isomorphic mapping 
matrix from elements in GF(28) to GF((24)2). To optimize the implementation 
performance of the isomorphic mapping module in S-box, it is necessary to 
carefully to select appropriate irreducible polynomials to get the best isomorphic 
matrix, thereby reducing critical path delay and area overhead. Refer to [22], we 
choose the isomorphic matrix δ as shown in Equation (4). 

1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0
1 0 1 0 1 1 1 0
1 1 0 0 0 1 1 0
1 0 0 1 1 1 1 0
0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 1

δ

 
 
 
 
 
 =  
 
 
 
 
  

                   (4) 

Assuming that the input of the S-box is [ ]T7 6 5 4 3 2 1 0, , , , , , ,q q q q q q q q q= , the 
expression for the output of the isomorphic mapping module is shown as Equa-
tion (5). 

3 7 5

2 7 6 4 3 2 1

1 7 5 3 2

0 7 5 3 2 1

7 6 2 13

7 4 3 2 12

6 4 11

6 1 00

b q q
b q q q q q q
b q q q q
b q q q q q

q q
q q q qc

q q q q qc
q q qc
q q qc

δ

  ⊕ 
   ⊕ ⊕ ⊕ ⊕ ⊕   
   ⊕ ⊕ ⊕
   

⊕ ⊕ ⊕ ⊕   ′× = = =   ⊕ ⊕ ⊕
   

⊕ ⊕ ⊕ ⊕   
   ⊕ ⊕   
  ⊕ ⊕   

            (5) 
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where b3b2b1b0 represents the high 4 bits of output q′ , and c3c2c1c0 represents 
the low 4 bits of output q′ . 

4.2. The Inversion Module in Composite Fields 

To obtain the multiplicative inverse of q′  in GF((24)2) expressed as Equation 
(3), we decompose Equation (3) into F1, F2 and F3 as shown in Equation (6), (7) 
and (8), and use the recursive deduction method to get the logical expressions of 
F1, F2 and F3. 

2 2
1F b bc cλ β= ⊕ ⊕                        (6) 

( ) 1
2 1F F −=                            (7) 

( )3 2 2F F || Fb c bβ= ⊕                       (8) 

where the symbol “||” in Equation (8) represents concatenation. 
In order to optimize the implementation, we select β = 1, λ = 1100 b to be the 

coefficients of the generating polynomial ( ) 2
1m x x xβ λ= + +  of the composite 

field GF((24)2), then Equations (6), (7) and (8) are simplified to (9), (10), (11). 
2 2

1F b bc cλ= ⊕ ⊕                       (9) 

( ) 1
2 1F F −=                         (10) 

( )3 2 2F F || Fb c b= ⊕                      (11) 

Note that, when calculating inversion in composite fields, three types of irre-
ducible polynomials are required to complete the operation conversion from the 
high-order field to the low-order field. To simplify the following expression, we 
list the three types of polynomials as shown in Table 1. 

4.2.1. F1 Module 
Figure 2 shows the calculation process of F1. Next, we will deduce and optimize 
the logic expression for each step in Figure 2.  

 
Table 1. Three types of irreducible polynomials. 

Composite Field Irreducible Polynomial 

GF(28) → GF((24)2) ( ) 2
1m x x x λ= + + , where 1100bλ =  

GF(24) → GF((22)2) ( ) 2
2m x x x ϕ= + + , where 10bϕ =  

GF(22) → GF((2)2) ( ) 2
3 1m x x x= + +  

 

 
Figure 2. F1 module logic operation diagram. 
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1) b2 operation in GF(24) 
As can be seen from Figure 2, we let ( )22

3 2 1 0 3 2 1 0k b k k k k b b b b= = = , then this 
operation can be expressed as the form in GF((22)2) shown in Equation (12). 

( ) ( )
( )

22
2

2 2 2

modH L

H H L

H L

k b b x b m x

b x b b

k x k

ϕ

= = +

= + ⊕

= +
                   (12) 

where 3 2Hk k k= , 1 0Lk k k= , 3 2Hb b b= , 1 0Lb b b= , ( )2m x  (see Table 1) is an 
irreducible generating polynomial for GF((22)2). Obviously, 

2 2 2;  H H L H Lk b k b bϕ= = ⊕ .                     (13) 

Then one can further decompose the operation 2
Hb  and 2

Lb  in GF(22) to GF(2) 
to get Equation (14): 

( ) ( ) ( )
( ) ( ) ( )

22
3 2 3 3 3 2

22
1 0 3 1 1 0

mod

mod
H

L

b b x b m x b x b b

b b x b m x b x b b

 = + = + ⊕


= + = + ⊕
           (14) 

where ( )3m x  (see Table 1) is an irreducible generating polynomial in GF(2). 
By combining Equation (13), (14), we can obtain Equation (15). 

( )
( ) ( )

3 3 2 3 2

1 2 0 1 3 1 0

H

L

k b x b b k x k

k b b x b b b k x k

 = + ⊕ = +


= ⊕ + ⊕ ⊕ = +
            (15) 

According to Equation (15), we can get the expression of k as shown in equa-
tion (16). 

3 3

2 2 3

1 1 2

0 0 1 3

k b
k b b
k b b
k b b b

=
 = ⊕
 = ⊕
 = ⊕ ⊕

                      (16) 

2) 2t b λ=  operation 
As mentioned above, in order to optimize the expression, we choose  
{ }21100λ =  and let 

( )2
3 2 1 0 3 2 1 0t b k t t t t k k k kλ λ λ= = = = ⊗ . 

Then, the polynomial representation of t can be written as Equation (17). 

( )( ) ( )
( ) ( )
( )

2

2
2

mod

mod
H L H L

H H H L L H L L

L H H H H H

H L

t k x k x m x

k x k x k x k m x

k k x k
t x t

λ λ

λ λ λ λ

λ λ λ ϕ

= + +

= + + +

= ⊕ +

= +

          (17) 

where 3 2Ht t t= , 1 0Lt t t= , 11Hλ = , 00Lλ = . 
Using similar derivation method used for k, Ht  and Lt  can be expressed as 

Equation (18). 
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( )( ) ( )( )( ) ( )
( ) ( )

( )( ) ( )

1 0 3 2 3

0 2 0 1 2 3

3 2

3 2 3

3 2

1 0

   1 1 mod

   
   

  1 mod

  
  

H L H H H

L H H

t k k

k x k x k x k x m x

k k x k k k k
t x t

t k

k x k x x m x

k x k
t x t

λ λ

λ ϕ

= ⊕


= + + + + +
 = ⊕ + ⊕ ⊕ ⊕
 = +


=
  = + + 
 = +


= +

        (18) 

Then we can get the expression of t as Equation (19). 

3 0 2

2 0 1 2 3

1 3

0 2

t k k
t k k k k
t k
t k

= ⊕
 = ⊕ ⊕ ⊕
 =
 =

                    (19) 

3) ( )s c b c= ⊕  operation 
For s, we let i i im b c= ⊕ , then the expression of s can be written as Equation 

(20). 

3 3 2 2 3 3 0 0 3 2 1 1 2 3 3 3 1 1 3

2 2 2 2 0 0 2 3 3 3 1 1 3

1 1 0 0 1 2 2 1 1 3 2 2 3

0 0 0 1 1 3 2 2 3 3 3

s c m c m c m c m c m c m c m c m c m
s c m c m c m c m c m c m
s c m c m c m c m c m c m
s c m c m c m c m c m

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
 = ⊕ ⊕ ⊕ ⊕ ⊕
 = ⊕ ⊕ ⊕ ⊕ ⊕
 = ⊕ ⊕ ⊕ ⊕

  (20) 

By combining Equations (16), (19), (20) and simplifying them, we can obtain 
the logic expression of e as Equation (21). 

3 0 3 1 2 2 1 3 2 2 3 0 3 3 3 3 1 1 3

2 2 0 1 3 2 2 0 2 3 3 3 1

1 1 0 0 1 2 2 1 1 3 2 2 3

0 0 0 1 1 3 2 2 3 3 3

e b c b c b c c b c b c b c b c b c b

e c b c b c b c b c b c b

e c b c b c b c b c b c b

e c b c b c b c b c b

 = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕


= ⊕ ⊕ ⊕ ⊕ ⊕


= ⊕ ⊕ ⊕ ⊕ ⊕


= ⊕ ⊕ ⊕ ⊕

    (21) 

4.2.2. F2 Module 
The F2 module is used to calculate the inversion in GF(24). To derive and simpl-
ify the output expression of F2, we first utilize the idea of tower fields to partition 
the operation in F2 into three parts: G1, G2 and G3, as depicted in Figure 3. Sub-
sequently, after obtaining the logic expression of G1, G2 and G3, we merge them 
into an expression. Finally, we employ Karnaugh map simplification technique, 
input variable bypass technique [21] and other logic simplification technique to 
further simplify and obtain the output of F2. 

Specifically, according to the idea of tower fields, the G1, G2 and G3 can be ex-
pressed as Equation (22). 

( )
( )

( )

2
1

1
2 1

3 2 2

G

G G

G G || G

H L H L

H H L

e e e e

e e e

ϕ
−

 = ⊕ ⊕
 =
 = ⊕

                  (22) 

where 3 2He e e= , 1 0Le e e= . 

https://doi.org/10.4236/jcc.2024.124016


Y. W. Wang et al. 
 

 

DOI: 10.4236/jcc.2024.124016 237 Journal of Computer and Communications 
 

 
Figure 3. F2 module structure diagram. 

 
For G1, we first get Equation (23), then obtain the expression of G1 as shown 

in equation (24) by combining Equations (22) and (23) and simplifying them. 

( )
( )

( ) ( )

2
3 2 3

2
2 3

1 3 0 3 1 2 1 3 0 2

,

,

,

H

H

L H L

e e e e

e e e

e e e e e e e e e e e e e

ϕ

 = ⊕




⊕ =

=

⊕ ⊕ ⊕

          (23) 

( )
( )

1 1 0

1 3 0 3 2 1 3 1 3 0 2

G ,

,

h h

e e e e e e e e e e e

=

= ⊕ ⊕ ⊕ ⊕
            (24) 

For G2, we directly use the simplification method of Karnaugh map to obtain 
its output expression as shown in Equation (25). 

1 1

0 1 0

'
'

h h
h h h

=
 = ⊕

                       (25) 

Finally, by combining with Equation (24) and (25) and G3 in Equation (22) 
and simplifying the expression combined, we obtain the expression of F2 as 
shown in Equation (26). 

3 0 3 1 2 3 1 2

2 0 2 3 1 2 3 1 2

1 1 0 1 2 3 1 2 3 0 1 2 0 1 3

0 1 2 1 2 3 0 1 2 0 1 3 0 2 3

y e e e e e e e

y e e e e e e e e

y e e e e e e e e e e e e e e

y e e e e e e e e e e e e e e

 = ⊕ ⊕


= ⊕ ⊕


= ⊕ ⊕ ⊕ ⊕ ⊕


= ⊕ ⊕ ⊕ ⊕

          (26) 
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4.2.3. F3 Module 
As shown in Figure 1, b, c and y are the inputs of F3, then we can derive to get the 
output expression of F3 1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0q q q q q q q q− − − − − − − −′ ′ ′ ′ ′ ′ ′ ′  as shown in Equation (27).  

( ) ( ) ( )
( ) ( )

( ) ( )
( )
( )

( ) ( )

1
7 3 0 1 2 3 2 1 3 1 2 3 0 3

1
6 3 1 3 2 0 2 1 3 0 2

1
5 3 2 2 2 3 1 0 1 0 1

1
4 3 2 3 2 3 1 1 0 0

1
3 3 0 0 1 1 2 2 3 3

2 1 1 3 3 1 2 2 3 3          

q y b b b b y b b y b b y b

q y b b y b b y b y b

q y b y b b y b b y b

q y b b y b y b y b

q y b c b c b c b c

y b c b c y b c b c

−

−

−

−

−

′ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

0 3 3

1
2 3 1 1 3 3 2 0 0 2 2

1 3 3 0 2 2

1
1 3 2 2 2 2 2 3 3 1 0 0 1 1

0 1 1

1
0 3 2 2 3 3 2 3 3 1 1 1 0 0 0

          

         

y b c

q y b c b c y b c b c

y b c y b c

q y b c y b c b c y b c b c

y b c

q y b c b c y b c y b c y b c

−

−

−










 ⊕
 ′ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
 ⊕ ⊕ ⊕ ⊕
 ′ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

 ⊕ ⊕

′ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

 (27) 

To optimize the implementation of Equation (27) in the hardware circuit, we 
extract the common part of 8 sub-expressions of Equation (27) and define in-
termediate variable id  as shown in Equation (28). Then the expression can be 
optimized into Equation (29). 

0 0 1

1 0 2

2 1 3

3 2 3

4 3 3

5 2 2

6 1 1

7 0 0

8 0 3

9 4 5 6 7

10 4 6

11 4 5

12 5 7

13 6 7

d b b
d b b
d b b
d b b
d b c
d b c
d b c
d b c
d d d
d d d d d
d d d
d d d
d d d
d d d

= ⊕
 = ⊕
 = ⊕


= ⊕
 = ⊕

= ⊕
 = ⊕
 = ⊕
 = ⊕


= ⊕ ⊕ ⊕
 = ⊕
 = ⊕


= ⊕
 = ⊕

                     (28) 

1
7 3 8 2 2 1 3 0 3

1
6 3 2 2 1 1 3 0 2

1
5 3 2 2 3 1 0 0 1

1
4 3 3 2 3 1 1 0 0

1
3 3 9 2 10 1 11 0 4

1
2 3 10 2 12 1 4 0 5

1
1 3 5 2 11 1 13 0 6

1
0 3 11 2 4

 

q y d y d y d y b

q y d y d y b y b

q y b y d y d y b

q y d y b y b y b

q y d y d y d y d

q y d y d y d y d

q y d y d y d y d

q y d y d y

−

−

−

−

−

−

−

−

′ = ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕

′ = ⊕ ⊕ ⊕

′ = ⊕ ⊕ 1 6 0 7d y d













 ⊕

                (29) 

https://doi.org/10.4236/jcc.2024.124016


Y. W. Wang et al. 
 

 

DOI: 10.4236/jcc.2024.124016 239 Journal of Computer and Communications 
 

4.3. The Merged Module of Inverse Isomorphism and Affine 
Transformation 

This module completes the operation ( )1 1 63Ha A qδ − −′= ⊕ . For this module, 
we use two methods to optimize the logic to reduce the number of logic gates 
and shorten the critical path delay: 1) To merge the inverse isomorphic mapping 
and affine transformation into a matrix transformation. 2) To simplify the logic 
expression for XOR operation with 63H by using NOT gate to replace XOR. 

Specifically, we let 1B A δ −= × , 1q −′  and q to be the input and output of the 
merged module of inverse isomorphism and affine transformation respectively. 
Then the expression of the original expression ( )1 1 63Ha A qδ − −′= ⊕  can be 
reduced to Equation (30). 

1 63Ha Bq −′= ⊕                         (30) 

where the inverse transformation matrix 1δ − , affine transformation matrix A 
and merged matrix B corresponds to Equations (31), (32) and (33) respectively. 

1

1 1 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 1 1 0
0 0 1 1 1 1 1 0
1 0 0 1 1 1 1 0
0 0 1 1 0 0 0 0
0 1 1 1 0 1 0 1

δ −

 
 
 
 
 
 =  
 
 
 
 
  

                (31) 

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

A

 
 
 
 
 
 =  
 
 
 
 
  

                 (32) 

1

1 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 0 0 0 0 1 0 0
1 0 0 1 0 0 1 1
0 0 0 0 0 1 1 1
0 1 1 1 1 1 0 1
1 0 0 0 0 0 0 1
1 1 0 0 0 1 1 1

B Aδ −

 
 
 
 
 
 = =  
 
 
 
 
  

              (33) 

Then by combining the Equations (30) and (33), we can get the expression of 
output of S-box a as shown in Equation (34). 

https://doi.org/10.4236/jcc.2024.124016


Y. W. Wang et al. 
 

 

DOI: 10.4236/jcc.2024.124016 240 Journal of Computer and Communications 
 

1 1 1
7 7 3 2

1 1 1 1
6 7 6 5 4

1 1
5 7 2

1 1 1 1
4 7 4 1 0

1 1 1
3 2 1 0

1 1 1 1 1 1
2 6 5 4 3 2 0

1 1
1 7 0

1 1 1 1
0 7 6 2 1

0

1

1

0

0

0

1

a q q q

a q q q q

a q q

a q q q q

a q q q

a q q q q q q

a q q

a q q q q

− − −

− − − −

− −

− − − −

− − −

− − − − − −

− −

− − − −

′ ′ ′= ⊕ ⊕ ⊕

′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕

′ ′= ⊕ ⊕

′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕

′ ′ ′= ⊕ ⊕ ⊕

′ ′ ′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

′ ′= ⊕ ⊕

′ ′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕ 1
0 1q −













 ⊕

            (34) 

Observing the expression in Equation (34), we find that expressions of 6a , 

5a , 1a , 0a  includes constant term 1 and they are common term 1
7q −′ . Thus 

we can use 1
7q −′  to substitute the 1

7 1q −′ ⊕  and convert Equation (34) into Eq-
uation (35), which simplify the expression and reduce the number of XOR gate. 

1 1 1
7 7 3 2

1 1 1 1
6 7 6 5 4

1 1
5 7 2

1 1 1 1
4 7 4 1 0

1 1 1
3 2 1 0

1 1 1 1 1 1
2 6 5 4 3 2 0

1 1
1 7 0

1 1 1 1 1
0 7 6 2 1 0

a q q q

a q q q q

a q q

a q q q q

a q q q

a q q q q q q

a q q

a q q q q q

− − −

− − − −

− −

− − − −

− − −

− − − − − −

− −

− − − − −

 ′ ′ ′= ⊕ ⊕


′ ′ ′ ′ = ⊕ ⊕ ⊕


′ ′ = ⊕


′ ′ ′ ′= ⊕ ⊕ ⊕


′ ′ ′= ⊕ ⊕
′ ′ ′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕ ⊕

′ ′= ⊕

′ ′ ′ ′ ′= ⊕ ⊕ ⊕ ⊕







            (35) 

4.4. Example 

To test the correctness of the output of each segment, taking the input 11110000 
as an example and referring to equations (5), (21), (26), (28), (29) and (35), we 
calculate and obtain the operation results of each segment in Figure 1 and the 
final S-box output as shown in Table 2. It is observed that the output of S-box of 
proposed S-box is consistent with the output of AES standard, which proves that 
the expression of each segment is correct. 

5. Experiment Result and Performance Evaluation 

In order to evaluate the hardware implementation performance of the proposed 
architecture, we modelled and simulated the proposed design using Verilog 
language and Modelsim respectively. Design Complier (DC) was employed to 
complete ASIC synthesis under TSMC 90nm CMOS Technology library. 
 

Table 2. The segmented calculation results of S-box in this paper and the comparison with AES standard output. 

Step q q′  e y 1q −′  
a 

(the output of S-box) 

This work 11110000 01000001 1100 0101 00100111 10001100 

Standard S-box 11110000 - - - - 10001100 

https://doi.org/10.4236/jcc.2024.124016


Y. W. Wang et al. 
 

 

DOI: 10.4236/jcc.2024.124016 241 Journal of Computer and Communications 
 

Figure 4 shows the simulation results of two kinds of S-box. In Figure 4, 
s_box_1_out represents the output result of the standard AES S-box, and s_box 
is that of the S-box proposed in this paper. As shown in Figure 4, the output of 
the S-box in this paper is consistent with that of the standard S-box for different 
inputs, which proves that the scheme in this paper is correct. 

Table 3 shows the DC synthesis results and the theoretical estimation results 
of Critical Path Delay (CPD). Note that the delay equivalent relationship be-
tween logic gates used to estimate CPD and equivalent CPD in Table 3 refers to 
the standard in [13]. The specific equivalent relationship is listed in Table 4. 
Note that, in Table 4, XOR stands for two-input XOR gate, AND two-input 
AND gate, AND3X1 three-input AND gate, OR two-input OR gate, MUX two- 
input multiplexer. 

According to the DC synthesis results in Table 3, we first compared the syn-
thesis results of our proposed S-box with [16] synthesized using the same TSMC 
90 nm CMOS standard cell library. 

 

 
Figure 4. Modelsim simulation results of the proposed S-box. 

 
Table 3. DC synthesis results of different S-boxes and theoretical estimation results of critical path delay. 

S-box 
structure 

Area 
(μm2) 

Tech. 
Frequency 

(Mhz) 
Through-put 

(Gbps) 

Hardware 
efficiency 

(Mbps/μm2) 

The  
equivalent 
number of 

NAND (GE) 

Critical  
path delay 

Equivalent 
critical path 

delay 

Time 
(ns) 

GE*Time 

our  
design 

1593.24 
TSMC  
90 nm 

1041.67 8.333 5.230 565 

15 XOR  
+ 2 AND 

+ 1 AND3X1 
+ 2 INV 

51 NAND 
+ 4 INV 

0.96 542.40 

[16] 2769.48 
TSMC  
90 nm 

1204.82 9.639 3.480 981 

19 XOR 
+ 3 AND 
+ 1 OR 

+ 2 MUX 

65 NAND 
+ 8 INV 

0.83 814.23 

[14] 
(compact) 

- 
TSMC  
65 nm 

328.95 2.632 - 249 - - 3.04 756.96 

[20] 832.13 
TSMC  
40 nm 

1250.00 10.000 12.017 1223 - - 0.8 978.40 
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Table 4. The delay equivalent relationship. 

Logic gate type Equivalent to the number of AND + INV 

XOR 3 NAND 

AND 1 NAND + 1 INV 

AND3X1 4 NAND 

OR 1 NAND 

MUX 2 NAND + 2.5 INV 

 
The results indicate that the S-box implementation proposed in this paper 

only needs 1593.24 μm2 area overhead. In comparison with the implementation 
of the pipeline architecture proposed in [16], although the implementation in 
this paper reduces the frequency and throughput by approximately 13.54% and 
13.55% respectively, the area overhead is reduced by about 42.47%, leading to an 
increase in hardware efficiency (throughput/area) by about 50.29%. Obviously, 
the scheme proposed in this paper offers significant advantages in terms of area 
overhead and hardware efficiency. 

In addition, in terms of CPD, the S-box implementation proposed in this pa-
per has a CPD of 15 XOR + 2 AND + 1 AND3X1 + 2 INV. The CPD is calcu-
lated based on Equations (5), (21), (26), (28), (29), (35) which is corresponding 
to five segments in Figure 1 in Section 3. Specifically, the CPD is 3 XOR for Eq-
uation (5), 4 XOR + 1 AND + 1 INV for Equation (21), and 3 XOR + 1 AND3X1 
+ 1 INV for Equation (26) and (28) (calculated in parallel). Then the CPD of 
Equation (29) and (35) are 2 XOR + 1 AND and 3 XOR, respectively. Compara-
tively, the CPD in [16] is 19 XOR + 3 AND + 1 OR + 2 MUX. After being con-
verted equivalently according to the relationship shown in Table 4, the CPD of 
this paper is 51 NAND + 4 INV, whereas that of [16] is 65 NAND + 8 INV. It is 
evident that the CPD of the S-box proposed in this paper saves the delay of 14 
NAND and 4 INV logic gates compared with [16]. Even ignoring the difference 
in the number of INV logic gates, the CPD of the S-box in this paper is about 
21.54% higher than that in [16], which is a relatively valuable improvement. 
However, it should be noted that the DC synthesis results in [16] show that its 
working clock frequency is higher than that in this paper. This is mainly because 
the synthesis results given in [16] are for the S-box of 5-level pipeline architec-
ture in which its clock frequency is determined by the CPD of some sub-stage, 
but not entire S-box. 

Secondly, we compared our proposed implementation with [14] and [20] 
which were synthesized using TSMC 65 nm and 40 nm CMOS standard cell li-
brary respectively. For the convenience of comparison with related data in [14], 
we calculated that the frequency (frequency = 1/Time) and throughput 
(throughput = 8 bit/Time) in [14] are approximately 328.95 Mhz and 2.632 Gbps 
respectively based on the Time given in [14] and made a comparison with cor-
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responding data in this paper. The comparison results show that the Time of the 
proposed implementation in this paper is reduced by approximately 68.42% 
compared to [14], which indicates that the speed of S-box implementation pro-
posed in this paper significantly surpasses that reported in [14]. Furthermore, 
despite the larger area of the S-box proposed in this paper compared to [14], the 
S-box in this paper exhibits a lower area-time product (GE*Time) reduced by 
approximately 28.34%. It implied that our design achieves a superior balance 
between area and speed. 

Reference [20] is the latest known paper focusing on S-box implementation. 
To facilitate comparison, we first calculated that the equivalent GE in [20] is 
1223 two-input NAND Gates (the equivalent GE under TSMC40 nm technology 
library = area under TSMC40 nm/0.68 where 0.68 is the area of the two-input 
NAND in the TSMC 40 nm technology library). The comparison results show 
that the S-box implementation proposed in this paper can save GE and the 
product of GE and Time by approximately 53.80% and 44.56% respectively and 
improve 80.59% hardware efficiency compared to that in [20]. 

Overall, the S-box implementation proposed in this paper has obvious advan-
tages over the existing schemes in terms of area overhead, critical path delay and 
hardware efficiency. It can provide favorable support for implementing efficient 
and compact AES S-box ASIC design. 

6. Conclusions and Future Work 

Aiming at the shortcomings of low processing speed and computational com-
plexity in multiplicative inversion over the finite field, this paper explores the 
optimization of AES S-box and proposes a segmented optimized S-box architec-
ture by using the idea of calculating inverse elements in tower fields and com-
bining with Karnaugh map simplification and IVB technique. This architecture 
was divided into three modules: an isomorphic mapping module, an inversion 
module in composite fields and a merged module of inverse isomorphism and 
affine transformation. In this way, we simplify the logic of the S-box implemen-
tation. 

In the isomorphic mapping module, based on the concept of composite fields, 
we map elements in the finite field to the composite field, thus reducing the 
complexity of calculations. In the inversion module in composite fields, we use 
the recursive method to optimize the inversion part. The experimental results 
indicate that compared with the traditional algebraic method, our design effec-
tively reduces the computational complexity and area overhead. In the merged 
module of inverse isomorphism and affine transformation, we combine the ma-
trix of inverse isomorphic mapping and affine transformation into one to further 
simplify the logic expression of the S-box. 

In conclusion, the segmented optimized S-box architecture proposed in this 
paper has the characteristics of small area, low critical path delay and high 
hardware efficiency which is very valuable for area-limited applications. 
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While we have made some progress in the implementation of S-boxes, we on-
ly consider the forward AES S-box in this paper because many operations in the 
block encryption algorithm only involve encryption. The inverse S-box and the 
forward S-box have many similar parts, so how to design the low-area inverse 
S-box and how to combine the S-box and the inverse S-box is the work we need 
to study in the future. At the same time, although the AES encryption algorithm 
has higher security performance, the security of AES hardware implementation 
is seriously threatened by the development of hardware attack technology. 
Therefore, to improve the security of the AES encryption algorithm, adding fault 
detection on the basis of the proposed S-box architecture is also our future work. 
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