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Abstract 
Proximal gradient descent and its accelerated version are resultful methods 
for solving the sum of smooth and non-smooth problems. When the smooth 
function can be represented as a sum of multiple functions, the stochastic 
proximal gradient method performs well. However, research on its accelerated 
version remains unclear. This paper proposes a proximal stochastic accele-
rated gradient (PSAG) method to address problems involving a combination 
of smooth and non-smooth components, where the smooth part corresponds 
to the average of multiple block sums. Simultaneously, most of convergence 
analyses hold in expectation. To this end, under some mind conditions, we 
present an almost sure convergence of unbiased gradient estimation in the 
non-smooth setting. Moreover, we establish that the minimum of the squared 
gradient mapping norm arbitrarily converges to zero with probability one. 
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1. Introduction 

We consider the following composite optimization problem: 

 ( ) ( ) ( )
def

min  ,
dx

F x f x g x
∈

= +


 (1) 

where : dg →   is the average of the smooth functions 1, , ng g , i.e.  

( ) ( )1

1 n
iig x g x

n =
= ∑  and : df →   is a closed proper function that can be 
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non-differentiable. One of the most well-studied instances of this type of prob-
lem is 1 -regularized least squares [1]: 

( )2T
1

1

1 1min
2d

n

i i
x i

a x b x
n

λ
∈ =

− +∑
  

where ⋅  denotes the standard 1 -norm. 
We frequently encounter optimization problems of this nature in various fields 

such as machine learning, statistics, signal processing, and imaging [2] [3] [4] [5]. 
Specifically, we address the task of minimizing the aggregate of two functions: 
one represents the average of numerous smooth component functions, while the 
other characterizes a general function amenable to a straightforward proximal 
mapping. It is imperative for us to ensure that the problem is well-defined, denoted 
by arg min F ≠ ∅ , and that each ig  remains bounded from below. Compared 
with the classical gradient descent (GD) method and stochastic gradient descent 
(SGD) method [6], the proximal gradient descent (PGD) method has a relatively 
limited application scope, primarily employed for addressing objective functions 
that include non-differentiable components. To tackle the non-smooth optimiza-
tion problem (1), mentioned earlier, we introduce the PGD. It can be delineated 
by the following update rule for 1,2,k =  : 

 ( )( )1 prox ,
kk t f k k kx x t g x+ = − ∇  (2) 

where kt  is the step size at the kth iteration and the proximity operator of f 
( )prox f ⋅  is defined by: 

( ) ( )21prox arg min .
2d

tf
x

y x y tf x
∈

 = − + 
   

We note that ( )proxtf y  maps to a singleton since ( )f y  is proper and closed, 
see for example (Beck, Theorem 6.3, 2017 [7]). PGD has adopted attributes to 
proximal operators no longer rely on ( )g x , only ( )f x . That is,  
( ) ( ) ( )F x g x f x= +  could be a combination of a very complex differentiable 

function and a less complex non-differentiable function originally, but with this 
method, we don’t need to consider ( )g x  (because it is differentiable and the 
gradient is easy to calculate), we just have to focus on the non-differentiable 
function ( )f x , which greatly simplifies our problem. PGD can achieve an error 
level on the objective function of ( )1O k  after k iterations [8]. 

1.1. Related Work 
1.1.1. Accelerated Proximal Gradient (APG) Method 
Another effective method for solving problem (1) is the accelerated proximal 
gradient (APG) method, initially proposed by Nesterov [8] for minimizing 
smooth convex functions with constraints. It was later extended by Beck and 
Teboulle [9] to composite convex objective functions. The Fast Iterative Shrin-
kage-Threholding Algorithm (FISTA), an accelerated version of the proximal 
gradient method, has found applications in various fields, including image and 
signal processing. APG represents an accelerated variant of the deterministic gra-
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dient descent method, incorporating an extrapolation step in the algorithm. One 
simple version involves selecting an initial point 0 1

nx x−= ∈ , and repeating 
for 1,2,3,k =  . 

( )1 1:k k k k ky x x xβ+ −= + −  
( )( )1 1 1: prox

kk t f k k kx y t g y+ + += − ∇  
where [ )0,1kβ ∈  is an extrapolation parameter and kt  is the usual step size. 

These parameters must be chosen in specific ways to achieve the convergence 

accelerated. One simple choice takes 
3k

k
k

β =
+

 [10]. It remains to choose the  

step sizes kt . When g∇  is Lipschitz continuous with constant L, this method 
can be shown to converge in objective value with ( )21O k  when a fixed step 
size ( ]0,1kt t L= ∈  is used [8] [9]. Following Nesterov, this method is called an 
accelerated or optimal first-order method and there are several versions of such 
methods, such as Nesterov [8]; the software package TFOCS [11] is based on and 
contains several implementations of such methods. Li et al. [12] were the first to 
provide APG-type algorithms for general non-convex and non-smooth prob-
lems ensuring that every accumulation point is a critical point. 

1.1.2. Proximal Stochastic Gradient Descent (PSGD) Method 
With the emergence of big data, the efficiency of deterministic optimization al-
gorithm has gradually become a bottleneck. In the PGD (2), we need to calculate 
the full gradient of ( )g ⋅ . When the size of the datasets n is very large, where the 
calculation costs will be high, first-order stochastic gradient methods have proven 
to be very effective thanks to their low iteration complexity. Therefore, one 
way to reduce calculation is to use stochastic algorithms that take advantage  
of the finite sum structure of the problem (1) to use cheaper iterations while pre-
serving fast convergence. When ( ) 0f x = , problem (1) reduces to general mini-

mization optimization problem: ( ) ( )
def

1

1min
d

n
iix

F x g x
n =∈

= ∑


, where ( )F x  arise as  

averages of a very large number of smooth functions. This problem often arises by 
approximation of the stochastic optimization loss function: ( ) ( )F x g xξ ξ∈  =    , 
where ξ  is a random variable, : dgξ →   is smooth for all ξ . First-order 
stochastic methods for the case of a non-smooth regularizer ( )f x  are an active 
research area. Non-asymptotic convergence results were first achieved in [13]. 
For finite-sum problems, Reddi et al. [14] were the first to develop a proximal 
stochastic variance reduced gradient algorithm with improved convergence com-
plexity. Metel et al. [15] first presented the non-asymptotic convergence results 
for the non-smooth non-covex constrained sparse optimization problem and they 
presented two simple stochastic proximal gradient algorithms, for stochastic 
and finite-sum optimization problems. Kawashima et al. [16] considered ( )f x  
as a non-smooth quasi-convex function and achieved the same convergence 
complexity as in Ghadimi et al. (2016) [13]. A stochastic variant of PGD is 
proximal stochastic gradient descent (PSGD). At each iteration 1,2,k =  ,  
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it picks ki  with probability 1
n

 from [ ] { }1,2, ,n n= 
 via independent identi-

cally distribution. The PSGD takes the following update: 

 
( )( )1 prox .

k kk t f k k i kx x t g x+ = − ∇  (3) 

where 0kt >  is a sequence of step size (also known as learning rate). Sampling 
the index ki  over all indices [ ] { }1,2, ,n n= 

 with i.i.d., the gradient ( )
ki kg x∇  

satisfies the unbiased estimation: 

 
( ) ( ) ( )

1

1 .
k k

n

i k i k k
i

g x g x g x
n=

 ∇ = ∇ = ∇  ∑  (4) 

The advantage of PSGD over PGD lies in the fact that, at each iteration, PSGD 
only necessitates the computation of a single gradient ( )

ki kg x∇ . In contrast, 
each iteration of PGD evaluates n g gradients. As a result, the computational cost  

of PSGD per iteration is 1
n

 of that of PGD. Consequently, the computation of  

( )
ki kg x∇  is approximately n times less expensive than that of ( )g x∇ . Numer-

ous algorithms have been devised to tackle the composite optimization problem 
(1). Gorbunov et al. [17] provided a unified analysis covering a broad range of 
variants of PSGD. In a study by Cevher et al. [18], it was demonstrated that PSGD, 
assuming strong convexity, displays linear convergence towards a region domi-
nated by noise. 

1.1.3. Convergence Criteria 
The vast majority of the convergence rates analysis results for stochastic gradient 
methods in the literature are obtained in terms of the expectation (see, e.g. SGD, 
stochastic heavy ball (SHB) [19], stochastic Nesterov’s accelerated gradient (SNAG) 
and so forth). However, almost sure convergence (a.s. for short, also known as 
“convergence with probability 1”) [20] properties are important, because they 
represent what happens to individual trajectories of the stochastic iterations, 
which are instantiations of the stochastic algorithms actually used in practice. 
Therefore, almost sure convergence of methods based on stochastic gradient is 
of practical relevance. For SGD, in the convex and smooth setting, Sebbouh et al. 
[21] provided the almost sure asymptotic convergence rates for a weighted av-
erage of the iterates. The almost sure convergence of the last iteration of SGD on 
non-convex functions is generalized by Orabona [22]. Liu et al. [23] provide a uni-
fied almost sure convergence rates analysis for SGD, SHB and SNAG. Recently, 
Liang et al. [24] presented an almost sure convergence analysis of stochastic com-
posite objective mirror descent (SCOMID). 

Remark 1.1. It is worth noting that our proof does not rely on the convexity of 
the function f, so convexity of f is not assumed in the model. However, to ensure 
the continuity of the generalized gradient operator, we assume that f is convex. 

1.2. Proximal Stochastic Accelerated Gradient (PSAG) Method 

Based on the above, we now consider an accelerated version of proximal stochastic 
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Table 1. Comparison of problem setting, momentum, algorithm and convergence results with some relevant literature. 

Citation ( )g x
 ( )f x

 Constraint Momentum Algorithm a.s. 

Khaled et al. [25] L-smooth -- d  × SGD × 

Gower et al. [26] --  -- -- -- -- 

Mertikopoulos et al. [27] 
L-smooth, -- X × SGD √ 

G-Lipschitz  -- -- --  

Sebbouh et al. [21] L-smooth -- d  × SGD √ 

Liu et al. [23] --  -- -- -- -- 

Sebbouh et al. [21] L-smooth -- d  √ SHB √ 

Liu et al. [23] -- -- -- -- -- -- 

Liu et al. [23] L-smooth -- d  √ SNAG √ 

Ward et al. [28] L-smooth -- d  × AdaGrad × 

Alacaoglu et al. [29] -- ρ-weakly convex X × AdaGrad × 

Davis et al. [30] -- ρ-weakly convex d  × PSGD × 

Cevher et al. [18] L-smooth Convex d  × PSGD × 

Gorbunov et al. [17] -- -- -- -- -- -- 

Ghadimi et al. [13] L-smooth Convex X × SCOMID × 

Ours L-smooth Convex d  √ PSAG √ 

SCOMID = Stochastic Composite Objective Mirror Descent; PSGD = Proximal Stochastic Gradient Descent; SGD = Stochastic 
Gradient Descent; AdaGrad = Adaptive Stochastic Gradient Descent; SHB = Stochastic Heavy Ball; SNAG = Stochastic Nesterov’s 
Accelerated graDient; PSAG = Proximal Stochastic Accelerated Gradient (in this paper). 

 
gradient method and use the unbiased stochastic gradient (see the last column 
of Table 1), the iteration of the PSAG method is given by: 

( )1 1:k k k k ky x x xβ+ −= + −  
 ( )1 1: prox

kk t f k k kx y t+ += −   (5) 

where [ )0,1kβ ∈  is an extrapolation parameter and kt  is the usual step size, 

( )1kk i kg y += ∇  is an unbiased estimator of the gradient, where ki  is random-

ly picked from [ ] { }1,2, ,n n= 
 with probability 1

n
 via the independent iden-

tically distribution. Then, we have: 

 ( ) 2
1

1arg min , .
2d

k k k
x

x t x tf x x x+
∈

 ∈ + + − 
 



  (6) 

where in (5), kt t=  is the stepsize, k  is the stochastic gradient and 1k kx y +=  
is an extrapolation step. For non-smooth composite problem (1), we establish al-
most sure convergence rates of PSAG that the minimum of the squared gradient 
mapping norm is arbitrarily close to zero with probability one. It is noted that 
PSAG method reduces to PSGD method when 0kβ =  in (5). 
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The rest of this paper is organized as follows. In Section 2, we recall some de-
finitions and known results for further analysis. Then, we present our conver-
gence analysis of PSAG and its convergence rate in Section 3. Finally, we sum-
marize our findings and draw conclusions in Section 4. 

2. Preliminaries 
2.1. Notations 

The optimal solution of problem (1) is denoted by *x , and the optimal set of 
problem (1) is non-empty and denoted by *X . The optimal value of the prob-
lem (1) is denoted by ( )* *F F x= . In the rest of this work, for notational brevi-
ty, we will omit the subscript of norm 

2⋅  for ⋅ . 

2.2. Definitions 

Definition 2.1. (Convexity). A function : dg →   is said to be convex; i.e. 
for all , dx y∈ , 

 ( ) ( ) ( ) , .g x g y g y x y≥ + ∇ −  (7) 

Definition 2.2. (L-smoothness). A function : dg →   is said to be L-smooth 
if the gradient ( )g x∇  is Lipschitz continuous with constant L, i.e. there exists 
a constant 0L >  such that: 

 ( ) ( )g x g y L x y∇ −∇ ≤ − , for all , dx y∈ . (8) 

It is well-known that Definition 2.2 implies the following inequality (see, e.g. 
Nesterov [31] (Lemma 1.2.3)): 

 
( ) ( ) ( ) 2, ,   , .

2
dLg x g y g y x y x y x y≤ + ∇ − + − ∀ ∈  (9) 

Remark 2.1. Definition 2.2 essentially implies that gradient descent with suf-
ficiently small step size is well behaved, and we also have ( ) ( )1

n
iig x g x

=
= ∑  is 

L-smooth where n
iiL L= ∑  ( ( )ig x  is iL -smooth). 

Definition 2.3. (Unbiasedness). Given a random iterate { } 0k k
x

≥
. We call the 

stochastic gradient ( )
ki kg x∇  ( ki  is sampled randomly from { }1,2, ,n

) is 
unbiased if: 

 ( ) ( )
ki k kg x g x ∇ = ∇   (10) 

holds. 
Definition 2.4. (Prox-grad operator). Consider the composite optimization 

problem (1), we have: 

( ),
k

f g
k t kx T x+ =  

where ( )( ) ( ), : 0f g
tT int dom g t→ >  is the prox-grad operator defined by: 

 ( ) ( )( ), proxf g
t tfT x x t g x≡ − ∇  (11) 

Definition 2.5. (Gradient mapping). Suppose that ,f g  satisfy the problem 
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(1) settings. Then, the gradient mapping is the operator ( )( ), :f g
tG int dom g →   

defined by: 

 ( ) ( )( ), ,1f g f g
t tG x x T x

t
≡ −  (12) 

for any ( )( )x int dom g∈ . 

3. Convergence Analysis 
3.1. Lemmas on Supermartingale Convergence Rates 

The proof about almost sure convergence relies on the classical Robbins-Siegmund 
supermartingale convergence result (Theorem 1 in [32]). 

Lemma 3.1. (Theorem 1, [32]) Assume that { } { },k kX Y  and { }kZ  are three 
non-negative sequences of random variable, { }kγ  is a non-negative real sequence 
and k  is a σ-algebra. If , , k k kX Y Z  are all k -measurable and the following 
conditions holds: 

1) [ ] ( )1 | 1k k k k k kY Y X Zγ+ ≤ + − +  . 

2) 
1 1

,k k
k k

Zγ
∞ ∞

= =

< ∞ < ∞∑ ∑  almost surely. 

Then, kY  converges almost surely and 
1 kk X∞

=
< ∞∑  almost surely (a.s.) 

Lemma 3.2. (Lemma 3, [23]) Assume that { }kX  is a non-negative sequence 
of random variable and 0kt ≥  is non-increasing. If the following conditions 
hold: 

 1
1

1 11

,   . .k
kk

k s

k
ks

t
t X a s

t

∞

=

∞
+

+
= =

= ∞ < ∞∑ ∑
∑

 (13) 

then we have: 

 
1

1

1min   . .i ki k
sj

X o a s
t≤ ≤

=

 
 =
 
 ∑

 (14) 

where o denotes the higher-order infinitesimal. i.e. for two sequences { } 0ka →  
and { } 0kb → , ( )k ka o b=  if and only if lim 0k k ka b→∞ = . 

3.2. Almost Sure Convergence Rate Analysis for Stochastic  
Proximal Accelerated Gradient Method 

Reviewing the iteration of PSAG (5), using the Definition 2.4, 2.5, we rewrite the 
PSAG as follows: 

( )1 1: ,k k k ky x x xβ+ −= + −  
 ( )1 1 1: .

kk k k t kx y t G y+ + += −  (15) 

where ( ) ( )( ),
1 1 1

1 ik
k k

f g
t k k kt

k

G y y T y
t+ + += − ,  

( ) ( )( ),
1 1 1proxik

k kk

f g
k t f k k i ktT y y t g y+ + += − ∇ , kt  is the step size and  

[ )0,1kβ β= ∈  and ki  is randomly picked from [ ] { }1,2, ,n n= 
 with proba-
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bility 1
n

 via the independent identically distribution. 

Lemma 3.3. Suppose that ( ) 21arg min ,
2dx

u t z x tf x x y
∈

 ∈ + + − 
 

 for  

some , dz y∈ . If ( )g x  is L-smooth, the for any dx∈ , we have: 

 ( ) ( ) ( ) 2 2 21 1, .
2 2 2

LF u F x g y z u x x y u y u y
t t

≤ + ∇ − − + − − − + −  (16) 

Proof By the optimality of u, we can show that for any dx∈ , 

 ( ) ( )2 21 1, ,
2 2

t z u tf u u y t z x tf x x y+ + − ≤ + + −  (17) 

Upon rearranging the above equation, we have: 

 ( ) ( ) 2 21 1, .
2 2

f u f x z x u x y u y
t t

≤ + − + − − −  (18) 

Since ( )g x  is L-smooth, we can apply Definition 2.2 to have: 

 ( ) ( ) ( ) 2, .
2
Lg u g y g y u y u y≤ + ∇ − + −  (19) 

 ( ) ( ) ( ) ( ) ( ) 21, .
2

g x g y g y x y g x g y
L

≥ + ∇ − + ∇ −∇  (20) 

Next, upon combining (19) and (20), we arrive at: 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( )

2

2

2

2

,
2
1,

2

,
2

, .
2

Lg u g y g y u y u y

g x g y y x g x g y
L

Lg y u y u y

Lg x g y u x u y

≤ + ∇ − + −

≤ + ∇ − − ∇ −∇

+ ∇ − + −

≤ + ∇ − + −

 (21) 

By the fact that ( ) ( ) ( )F u g u f u= + , we finally obtain: 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

2 2

2

2 2

2 2 2

1 1,
2 2

,
2

1 1  ,
2 2

1 1, .
2 2 2

F u g u f u

g u f x z x u x y u y
t t

Lg x g y u x u y

f x z x u x y u y
t t

LF x g y z u x x y u y u y
t t

= +

≤ + + − + − − −

≤ + ∇ − + −

+ + − + − − −

= + ∇ − − + − − − + −

 (22) 

Theorem 3.1. Suppose that ( )F x  is lower bounded and there exists 0σ > , 
0kA ≥  such that: 

 ( ) ( )( )2 * 2
1 | ,k k k k kg y A F x F σ+

 ∇ − ≤ − +  
    (23) 
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where ( )1kk i kg y += ∇ , ki  is randomly picked from [ ] { }1,2, ,n n= 
 with 

probability 1
n

 via the independent identically distribution, the iteration of 

PSAG (15) is employed with a non-increasing stepsize kt  such that: 

2 1

1 1 1 1

,  ,  k
k k k k

k k k ss

t
t A t

t

∞ ∞ ∞
+

= = =
=

< ∞ < ∞ = ∞∑ ∑ ∑
∑

 and 1
4kt L

≤ , 

where 0kA ≥  is defined in (23), then we have: 

( ){ }*    . .kF x F a s−  

If : df →   is convex, we obtain: 

 ( )
2

11
1

1min   . .
kt k ki k

ss

G y o a s
t

+≤ ≤
=

 
 =
 
 ∑

 (24) 

Proof We begin with the conclusion in (16) of Lemma 3.3. Firstly, by the defi-

nition of kx+  in Definition 2.4, let ku x+= , then set 
2
ktt = , ( )kz g x= ∇  and 

ky x=  to meet the condition ( ) 21arg min ,
2dx

u t z x tf x x y
∈

 ∈ + + − 
 

, i.e. 

 ( ) ( ) 21arg min ,
2 2 2d
k k

k k kx

t t
x g x x f x x x+

∈

 ∈ ∇ + + − 
 

 (25) 

From the update in (2), we can show that the iterate d
kx ∈  for any 1k ≥ . 

Upon applying Lemma 3.3 with ku x+= , 
2
ktt = , ( )kz g x= ∇  and ky x=  for 

d
kx x= ∈ , we have: 

 

( ) ( ) ( ) ( )

( )

2

2 2

2

1,

1
2

1 .
2

k k k k k k k k
k

k k k k
k

k k k
k

F x F x g x g x x x x x
t

Lx x x x
t

LF x x x
t

+ +

+ +

+

≤ + ∇ −∇ − + −

− − + −

 
= + − − 

 

 (26) 

Next, by the update rule in (6) of PSAG algorithm, we choose 1ku x += , then 
set kt t= , ( )1k i kz g y += = ∇  and 1ky y +=  to meet the condition  

( ) 21arg min ,
2nx

u t z x tf x x y
∈

 ∈ + + − 
 

, i.e. 

 ( ) 2
1 1

1arg min ,
2dk k k k kx

x t x t f x x y+ +∈

 ∈ + + − 
 

  (27) 

Similarly, from the definition of kx+  in (25), we can show that for any 1k ≥ , 
the sequence d

kx+ ∈ . Now, upon applying Lemma 3.3 with 1ku x += , kt t= , 

kz =  , and 1ky y += , for d
kx x+= ∈ , we then obtain: 
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( ) ( ) ( )

( )

( )

2

1 1 1 1

2 2
1 1 1 1

22
1 1 1

1 1

1,
2

1
2 2

1 1
2 2 2

, .

k k k k k k k k
k

k k k k
k

k k k k k
k k

k k k k

F x F x g y x x x y
t

Lx y x y
t

LF x x y y x
t t

g y x x

+ + +
+ + + +

+ + + +

+ +
+ + +

+
+ +

≤ + ∇ − − + −

− − + −

 
= + − − + − 

 

+ ∇ − −





 (28) 

Now, we consider ( )1 1,k k k kg y x x+
+ +∇ − − , 

 

( )
( )

( )

( )

( )

1 1

1 1

22
1 1

22
1 1 1 1

22 2
1 1 1 1

,

12
8
12

8
1 12 ,

4 4

k k k k

k k k k

k k k k k
k

k k k k k k k
k

k k k k k k k
k k

g y x x

g y x x

t g y x x
t

t g y x y y x
t

t g y x y y x
t t

+
+ +

+
+ +

+
+ +

+
+ + + +

+
+ + + +

∇ − −

≤ ∇ − ⋅ −

≤ ∇ − + −

= ∇ − + − + −

≤ ∇ − + − + −











 (29) 

where we use the Cauchy-Schwarz ,a b a b≤  in the first inequality, and the 

second inequality follows from ( )( )2 21 2ab a b≤ +  with  

( )12 k k ka t g y += ∇ −  and 1
1

2 k k
k

b x x
t

+
+= − . The last inequality holds by 

2 2 22 2a b a b+ ≤ +  with 1 1k ka x y+ += −  and 1k kb y x+
+= − . 

Upon substituting (29) back into (28), we further have: 

( ) ( )

( )

( )

( )

22
1 1 1 1

1 1

22
1 1 1

22 2
1 1 1 1

1 1
2 2 2

,

1 1
2 2 2

1 12
4 4

k k k k k k
k k

k k k k

k k k k k
k k

k k k k k k k
k k

LF x F x x y y x
t t

g y x x

LF x x y y x
t t

t g y x y y x
t t

+ +
+ + + +

+
+ +

+ +
+ + +

+
+ + + +

 
≤ + − − + − 

 

+ ∇ − −

 
≤ + − − + − 

 

+ ∇ − + − + −





 

 

( )

( )

( ) ( )

( ) ( )

22
1 1 1

2
1

2 2
1

22
1 1 1

22 2
1 1 1 1

1 3
2 4 4

2

1 2
2

1 3
2 4 4

1 32 .
8 4

k k k k k
k k

k k k

k k k k k k
k

k k k k
k k

k k k k k k k k
k k

LF x x y y x
t t

t g y

LF x x x t g y
t

L x y y x
t t

F x t g y x y y x
t t

+ +
+ + +

+

+
+

+
+ + +

+
+ + + +

 
= + − − + − 

 

+ ∇ −

 
≤ + − − + ∇ − 

 
 

+ − − + − 
 

≤ + ∇ − − − + −







 (30) 

where the last inequality holds by the stepsize condition 1 4kt L≤ , i.e.  
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2 1 4 1 8k kL t t− ≤ − . 

Next, we consider 
2

1
3

4 k k
k

y x
t

+
+ −  and combine Definition 2.4 with (5) and 

(15), we have: 

( ) ( )( ),
1 1 1prox ,ik

k kk

f g
k k t f k k i ktx T y y t g y+

+ + += = − ∇
 

and 

( ) ( )( )
( )

,
1 1 1

1

1

1 ,

ik
k k

f g
t k k kt

k

k k
k

G y y T y
t

y x
t

+ + +

+
+

= −

= −
 

Due to the convexity of f, we know that there exists 0M >  such that: 

( )1 .
kt kG y M+ <  

Therefore, 

 ( )
222

1 1
33 3 .

4 4 4k
k

k k t k k
k

t My x G y t
t

+
+ +− = ≤  (31) 

Then, by (15), we also have: 

 ( )
22

1 1 1
1 .

8 8 k
k

k k t k
k

t
x y G y

t + + +− − = −  (32) 

Upon combining (31) and (32) with (30), we have: 

 ( ) ( ) ( ) ( )
22 2

1 1 1
32 .

8 4k
k

k k t k k k k k
t MF x F x G y t g y t+ + +≤ − + ∇ − +  (33) 

Now, the conditional expectation on (33) with respect to k  gives: 

 

( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )( )( )

( ) ( ) ( )( )

1

2

1

2
2

1

22 2
1 1

22 * 2
1

22 * 2
1

|

| |
8

32 |
4

32 |
8 4

32
8 4

32 2
8 4

k

k

k

k

k k

k
k k t k k

k k k k k

k
k t k k k k k k

k
k t k k k k k

k
k t k k k k

F x

t
F x G y

Mt g y t

t MF x G y t g y t

t MF x G y t A F x F t

t MF x G y A t F x F

σ

σ

+

+

+

+ +

+

+

  

  ≤ −    

 + ∇ − +  

 = − + ∇ − +  

≤ − + − + +

= − + − + +



 







 

 

 

.kt
 
 
 

 (34) 

where the first equality holds by the fact that kx  is k -measurable, i.e.  

( ) ( )|k k kF x F x  =    and ( ) ( )
2 2

1 1|
k kt k k t kG y G y+ +

  =  
  . The last in-

equality follows from ( ) ( )( )2 * 2
1 |k k k k kg y A F x F σ+

 ∇ − ≤ − +  
   . 

Upon subtracting *F  from both sides of (34), we have: 
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( )

( ) ( ) ( )( )

( ) ( )( ) ( )

*
1

22* * 2
1

22* 2
1

|

32 2
8 4

31 2 2 .
8 4

k

k

k k

k
k t k k k k k

k
k k k t k k

F x F

t MF x F G y A t F x F t

t MA t F x F G y t

σ

σ

+

+

+

 − 
 

≤ − − + − + + 
 

 
= + − − + + 

 

 

 (35) 

Upon multiplying (35) by 1kt + , we can obtain: 

 

( )( )

( ) ( )( ) ( )

( ) ( )( ) ( )

*
1 1

22* 21
1 1 1

22* 2 21
1

|

31 2 2
8 4

31 2 2 .
8 4

k

k

k k k

k k
k k k k t k k k

k k
k k k k t k k

t F x F

t t MA t t F x F G y t t

t t MA t t F x F G y t

σ

σ

+ +

+
+ + +

+
+

 − 
 

≤ + − − + + 
 

 
≤ + − − + + 

 

 

 (36) 

where the last inequality follows from the non-increasing behaviour of the step-
size kt , i.e. 1k kt t+ < . 

Finally, let ( )( )*
k k kY t F x F= − , 2k k kA tγ = , ( )

2

18 k
k

k t k
t

X G y +=  and  

2
2 232

4k k
MZ tσ

 
= + 
 

, then (36) becomes: 

[ ] ( )1 1| 1 .k k k k k k kY Y t X Zγ+ +≤ + − +  
Recalling the stepsize conditions 2

1 kk t∞

=
< ∞∑  and 

1 k kk A t∞

=
< ∞∑ , we know 

that 
1 kk Z∞

=
< ∞∑ , 

1 kk γ∞

=
< ∞∑ . Thus, by Lemma 3.1, we have: 

( ){ }*
1

1
  . . and   . .k k k

k
t X a s F x F a s

∞

+
=

< ∞ −∑
 

Finally, with the condition 1
1

1

k
kk

ss

t
t

∞ +
=

=

= ∞∑
∑

 of Lemma 3.2, we have: 

 ( )
2

11
1

1min   . .
rr t k kr k

ss

t G y o a s
t

+≤ ≤
=

 
 =
 
 ∑

 (37) 

This completes the proof. 
Remark 3.1. (23) is a new variance assumption on the stochastic gradient, 

where k  is weaker than the bounded variance assumption (i.e. 0kA =  in 
[33]). 

Remark 3.2. It is noting that we get the boundedness of the gradient mapping 
( )1kt kG y +  due to the continuity of the prox-grad operator ( ),

1
ik

k

f g
ktT y +  which 

is deduced by the convexity of f. 
Corollary 3.1. Following the setting of Theorem 3.1 and choosing the stepsize 

1
21

kt
k

ε

β

γβ
+

=
+

 for any , 0γ β ≥  where 10,
2

ε  ∈ 
 

 gives: 

 ( ) ( )
2

11
min 1   . .

rt kr k
G y o a s+≤ ≤

=  (38) 
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Proof Stepsize satisfying 1
21

kt
k

ε

β

γβ
+

=
+

 has been studied in [23]. It follows 

that: 

 ( )
1 1 1 1
2 2 2 21 1 ,k k k k

ε ε ε ε
γβ γβ γβ

+ + + +
+ ≤ + = +  (39) 

which implies that 
( )

1
21

kt
k

ε

β

γβ
+

≥
+

. Upon by the integral test inequality, we 

have: 

 

( ) ( )

( )

( )

1 11
1 1 2 2

1
2 1

2

d
1 1

1
1

,
1 11
2

k k k
s

s s
t x

s x

k
k k

ε ε

ε
ε

β β

γβ γβ

β
β

γβγβ ε

+ += =

−
− −

≥ ≥
+ +

 
−   − = ≥

+ + − 
 

∑ ∑ ∫

 (40) 

where the last inequality follows from the concavity of ( )
1
2h x x

ε−
= , so that: 

( ) ( ) ( )( ).h y h x h x y x′≤ + −  
In other words, by taking 1y =  and x k= , we can get  

( )
1 1
2 211 1

2
k k k

ε ε
ε

− − − − ≥ − − 
 

. 

Next, combining (39) and (40), we can obtain: 

 
( )

( )

( )
( )

1
2 1 22

1 2
1 2

1 1
.

1 11

k

s k
s

k k k k
t t

k

ε ε

ε

β ββ
γβ γβγβ

− − − −

+=

− −  ≥ =  +  ++
∑  (41) 

Upon setting ( )
2

1rr t kG G y += , and applying the inequality  

1 1min minr k r r k r k rt G t G≤ ≤ ≤ ≤≥ , we have: 

 
( )

( )

2 1 2

21 1 11 1

1
min min min 0.

1

k k

s r r s k r rr k r k r ks s

k k
t t G t t G G

εβ

γβ

− −

≤ ≤ ≤ ≤ ≤ ≤= =

−   ≥ ≥ ≥   
    +
∑ ∑  (42) 

For the left hand side of (42), we apply Theorem 3.1 to get: 

11
lim min 0  . .

k

s k rk r ks
t t G a s

→∞ ≤ ≤=

  = 
 
∑

 
The application of Squeeze theorem in conjunction with (42) gives: 

( )1 2

1
lim 1 min 0  . .rk r k

k k G a sε− −

→∞ ≤ ≤
− =

 

When 0ε → , we have 1 2

1 1k
k ε+

−
→ , which implies that: 

1
lim min 0  . .rk r k

G a s
→∞ ≤ ≤

=
 

Therefore, we finally obtain: 
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( ) ( )
2

11 1
min min 1   . .

rr t kr k r k
G G y o a s+≤ ≤ ≤ ≤

= =
 

This completes the proof. 
Remark 3.3. Corollary 3.1 indicates that ( )

2

1 1min
rr k t kG y≤ ≤ +  is arbitrarily 

close to 0 with probability one. 

4. Conclusion 

This paper presents PSAG with unbiased gradient estimation and analyzes its 
almost sure convergence for solving composite optimization problems, wherein 
the objective function comprises a smooth component and a non-smooth com-
ponent. By leveraging certain key assumptions, we have established the almost 
sure convergence of PSAG with unbiased gradient estimation. Furthermore, we 
have demonstrated that the minimum of the squared gradient mapping norm ap-
proaches zero arbitrarily closely with probability one. 
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