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Abstract 
In this paper, biochar (BC) was used as raw material, activated by deionizing 
aqueous solution, NaCl solution, CA solution and HCl solution respectively. 
Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin 
(β-CD) was used to modify biochar (BC). The prepared modified biochar ma-
terials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, 
respectively. The infrared spectrum, X-ray diffractometer, scanning electron 
microscope and specific surface area of the four modified materials were 
tested. The results showed that the C-O stretching vibration peak at 1020 
cm−1 of the modified materials was slightly offset compared with that of bio-
char. The characteristic absorption peaks of XRD pattern decrease obviously 
at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron micro-
scope image that the surface is loaded or formed clathrates, and BET data and 
graphs also show that the specific surface area of the modified biochar is 
larger. Therefore, β-cyclodextrin successfully modified biochar and formed 
clathrates on the surface of biochar or was loaded in the pore structure of bi-
ochar, especially β-CDBC-CA achieved better modification effect. Because bi-
ochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, 
and less prone to secondary pollution, it has a good advantage in environ-
mental governance. 
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1. Introduction 

With the rapid development of science and technology, economy and agricul-
tural production activities, a large number of organic pollutants, such as poly-
cyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), DDT, 
PCDDs and carbamates, have been produced, especially in the process of indus-
trial production, animal husbandry, transportation and residential life. It poses a 
serious threat to soil security [1]. 

Polycyclic aromatic hydrocarbons (PAHs) are a class of hydrocarbon organic 
compounds with two or more benzene rings. Due to man activities such as traf-
fic discharges, sludge applications, wastewater irrigation, and incomplete com-
bustion of fossil fuels [2] [3] make polycyclic aromatic hydrocarbons (PAHs) 
ubiquitous persistent organic pollutants (POPs) in soils and sediments. In addi-
tion, PAHs have carcinogenic, mutagenic and teratogenic properties. By de-
stroying the normal function of liver and kidney, PAHs are genotoxic and car-
cinogenic to humans and animals [4], which has aroused human attention to 
environmental safety and health [5] [6]. Therefore, it is urgent to control the 
pollution of polycyclic aromatic hydrocarbons. 

The treatment and remediation of persistent organic pollutants in soil can 
adopt a variety of remediation methods [7] [8], such as physical remediation 
technology, chemical remediation technology and biological remediation tech-
nology. Physical repair technology has good repair effect, but it needs specific 
equipment, high cost and large workload. Chemical remediation technology is 
easy to operate and is conducive to soil remediation in small areas, but the orig-
inal properties of the soil may be destroyed and secondary pollution may be 
caused. Bioremediation technology is simple to operate, low cost, and not easy to 
cause secondary pollution, but its repair cycle is long, and the repair effect is eas-
ily affected by external environmental factors. Due to the characteristics of bio-
char, such as high specific surface area, strong electron exchange, multi-porosity 
and rich carbon components, it has a stronger adsorption capacity for organic 
pollutants compared with naturally generated carbon [9] [10]. At the same time, 
biochar materials are cheap, easy to prepare and environmentally friendly. 
Therefore, in order to solve problems such as secondary pollution, the modifica-
tion method of biochar is adopted. Improve the adsorption capacity of organic 
pollutants and facilitate the removal of organic pollutants. 

Biochar is a promising remediation agent due to its high porosity, large spe-
cific surface area, abundant surface functional groups and good cation exchange 
ability [11] [12] [13] [14]. It can be used as a bio-stimulant [13] and an adsor-
bent [15] in soils contaminated with PAHs. As a bio-stimulant, biochar intro-
duces external nutrients to enhance the diversity and growth of soil microorgan-
isms, thereby degrading soil pollutants [16] [17], while the pore structure and 
specific surface area of biochar can support and adsorb PAHs, thus achieving the 
purpose of repairing soil pollutants [18] [19]. However, since the original bio-
char pores or surfaces contain ash and impurities, which will affect its applica-
tion effect, more research is to apply modified biochar to environmental remed-
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iation. For low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs) 
(2 - or 3-ring), pine needles, wheat straw and bluegrass biochar all have high 
absorption of naphthalene. Fu et al. [20] found that dissolved black carbon in 
biochar could also adsorb polycyclic aromatic hydrocarbons and hydrophobic 
organic compounds of chlorinated benzene through hydrophobic action. Simi-
larly, phenanthrene adsorption effects of biochar were also found on poplar and 
sawdust biochar [21] and corn stalk, sawdust and pig manure biochar. Another 
study showed that for 4-cyclic PAHs, biochar extracted from wood, corn straw 
and soybean straw can adsorb pyrene with removal efficiency of 60% - 99.5% 
[22]. In addition, the removal rate of more complex PAHs, such as benzo (a) 
anthracene, benzo (b) fluoranthene, benzo (k) anthracene, benzo (a) pyrene, di-
benzo (a, h) anthracene, using coconut waste and orange waste bio-charcoal can 
reach 23.8% - 84.0%. Zhou et al. [23] studied the adsorption properties of wood 
waste biochar for PAHs. These studies show that biochar prepared from differ-
ent biomass has great potential and high efficiency for the remediation of organic 
pollutants, especially for polycyclic aromatic hydrocarbons. 

β-cyclodextrin has a hydrophobic inner cavity and a hydrophilic outer cavity 
structure, and this type of structure has the inclusion of many compounds such 
as polysubstituted benzene ring and naphthalene ring, which can not only im-
prove the solubility of organic matter, but also improve the adsorption capacity 
[24] [25]. Due to the poor solubility of β-CD in water, the application range of 
β-CD is limited. Therefore, fixing β-CD on a specific carrier can improve the 
dispersion and reuse of β-CD, and can effectively make up for the limitations of 
β-CD use. At present, the applied research direction of β-CD is mainly concen-
trated in the field of medicine [26] [27] [28] and environmental governance 
[29] [30] [31]. Extraction of PAHs with hydroxypropyl - cyclodextrin (HPCD) 
aqueous solutions has been demonstrated and provides a good estimate of the 
mineralized or biologically accessible fraction of the phenanthrene. Inorganic 
materials are easy to separate and have greater convenience in recycling as the 
loading material of β-CD. Mesoporous silica [32], iron oxide nanoparticles [33], 
gold surface [34], etc., have been studied for loading materials. Therefore, mate-
rials with high specific surface area and large pore volume are an ideal carrier for 
β-CD. 

In recent years, cyclodextrins (CDs) can be used as surfactants due to their 
unique cavity structure, especially in the field of soil pollution control. More re-
cently, cyclodextrin only has solubilization effect on some hydrophobic organic 
pollutants, and polycyclic aromatic hydrocarbons are also hydrophobic organic 
substances. At the same time, biochar has the characteristics of high specific 
surface area, strong electron exchange, many pores, rich carbonaceous compo-
nents and surface functional groups, and can also be used for adsorption and 
removal of pollutants. Therefore, this paper mainly studies the crosslinking of 
biochar and β-CD to prepare modified biochar materials, improve the perfor-
mance of biochar, and prepare biochar materials with better adsorption capacity. 
It is convenient for subsequent use in the treatment of organic pollutants in soil 
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polycyclic aromatic hydrocarbons. What is more valuable is that β-cyclodextrin 
and biochar materials themselves are cheap, non-toxic and biodegradable, and 
belong to environmentally friendly materials, which will not produce secondary 
pollution. 

2. Experiment 
2.1. Experimental Drugs and Experimental Instruments 

Biochar is the straw biochar (BC) obtained by pyrolysis at a limited oxygen 
temperature under the condition of 300˚C. The experimental raw materials are 
phenanthrene (PHE), analytically pure, potassium bromide (ArK), spectroscop-
ically pure, sodium hydroxide (NaOH), hydrochloric acid (HCl), citric acid 
(CA), Epichlorohydrin (EPI), (Analytical pure), purchased from China Sino-
pharm Chemical Reagent Co., LTD., the ultra-pure water used in the experiment 
is deionized water made by the pure water equipment system. 

Experimental instruments for testing and characterization include Fourier 
transform infrared spectrometer (Nicolet-6700, USA), D8ADVANCE X-ray dif-
fraction analysis (XRD) (Bruker, Germany), JEM-6510 scanning electron mi-
croscopy, and nitrogen adsorption desorption instrument (BET) (ASAP-2460, 
USA MAC Instruments). 

2.2. Experimental Synthesis Method 

Four groups of 20 g dried biochar were added to 500 mL 1 mol/L NaCl solution, 
CA solution, HCl solution and deionized water respectively, soaked for a period 
of time, washed repeatedly with deionized water until neutral, and then dried in 
an oven at 110˚C until constant weight. Add 500 mL deionized water into the 
treated bio-charcoal, adjust the pH value to 4, add 20 mL EPI, shake at 25˚C for 
12 h, remove and pour out the liquid, add 7.78 g β-CD and 500 mL 6% NaOH 
solution, continue to shake for 12 h, remove and wash until neutral. Dry in the 
oven at 65˚C to constant weight, that is, β-CDBC-Na, β-CDBC-CA, β-CDBC-H 
and β-CDBC, respectively. 

2.3. Material Characterization Methods 

The surface morphology and structure (SEM) of modified biochar materials 
were observed by the scanning electron microscope. The surface functional 
groups of the repaired materials were determined by Fourier transform infrared 
spectrometer (FTIR) and the infrared spectrometer of model Nicolet-6700 was 
used. The specific surface area and pore size distribution of the samples were 
determined by BET and ASAP-2460 instrument. The adsorption-desorption 
isotherm was determined at a temperature of 77K. 

3. Results and Discussion 
3.1. Infrared Characterization 

The FTIR spectra of biochar, β-cyclodextrin and β-cyclodextrin modified bio-
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char are shown in Figure 1. The C-O stretching vibration peak of β-cyclodextrin 
modified biochar material is slightly shifted at 1020 cm−1. The peaks near 1652 
cm−1 are mainly aromatic C=O stretching vibrations (similar to carboxyl group) 
or aromatic C=C stretching vibrations, and the peak strength of the products af-
ter crosslinking of raw biochar and β-cyclodextrin is significantly increased here. 
Aliphatic methylene (-CH2) asymmetric stretching peaks and methylene in-plane 
rocking vibration peaks appeared at 2935 cm−1 and 743 cm−1, and ester group 
(C-O) stretching vibration peaks and O-H out-of-plane vibration peaks ap-
peared at 1157 cm−1 and 937 cm−1. The intensity of these peaks was decreased, 
which may be due to the difference in the crosslinking mode between cyclodex-
trin and biochar caused by the activation mode. The structure of the product 
may be that β-cyclodextrin is loaded inside the pore diameter of biochar or 
forms clathrates on the surface of biochar. In general, the modification does not 
cause significant changes in the surface functional groups of biochar. 

3.2. XRD Characterization 

Figure 2 shows the X-ray diffraction pattern of biochar and its modified biochar 
material. It can be seen from the figure that obvious diffraction peaks appear at 
2θ = 26.7˚ and 29.5˚, corresponding to quartz SiO2 and calcite CaCO3, and the 
characteristic peaks correspond to the crystal faces of biochar. The results 
showed that all biochar materials had a certain degree of graphitization. The 
spectrogram of the modified biochar material is superimposed on the characte-
ristic peaks of cyclodextrin and biochar, and no new crystals are formed. It can 
be observed from the XRD patterns of the four modified biochar materials that 
the characteristic absorption peaks at 2θ = 20.9˚, 26.7˚, 28.1˚, 29.5˚ and 42.7˚ are 
weakened in different ways, which can be obviously observed in the XRD pat-
terns of β-CDBC-CA materials. It can be concluded that the citric acid-activated  
 

 
Figure 1. Infrared spectrum of β-cyclodextrin modified biochar material. 
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Figure 2. XRD pattern of β-cyclodextrin modified biochar material. 

 
biochar material enables the successful cross-linking of β-cyclodextrin with bio-
char and the biochar material may be encapsulated in the β-cyclodextrin cavity, 
forming a clathrate, or successfully loaded on the biochar surface. 

3.3. SEM Characterization 

It can be seen from Figure 3(a) that the surface of the biochar raw material is 
relatively flat and smooth when magnified 1000 times, and the layered porous 
structure can also be obviously observed. It can be seen from Figure 3(b) that 
the surface of β-CDBC-CA material can be observed that the surface of biochar 
becomes not smooth, and a thin layer is formed at the same time, increasing the 
porosity of raw materials. From the side, it can be seen that biochar still retains a 
porous structure, so it can be considered that the β-cyclodextrin modified bio-
char is successful. β-cyclodextrin forms clathrates on the surface of biochar or is 
supported in the pore structure of biochar, which is consistent with the results of 
XRD characterization. 

3.4. BET Characterization 

The BET analysis results of biochar and its β-cyclodextrin modified biochar are 
shown in Table 1. In general, the adsorption capacity of the material is propor-
tional to its total surface area, and the larger the specific surface area, the more 
contact points between the solid surface and the gas or liquid, thereby increasing 
the chance of adsorption. The surface and porosity analysis of the biochar 
treated in four different ways showed that the non-activated modified biochar 
(β-CDBC), NaCl-activated modified biochar (β-CDBC-Na) and HCl-activated 
modified biochar (β-CDBC-H) were better than that of the biochar raw material 
(BC). The specific surface area and pore volume increased to varying degrees, 
especially the specific surface area of HCl activated modified biochar (β-CDBC-H) 
increased more obviously, which may be because HCl played a certain role in  
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Figure 3. SEM image of β-cyclodextrin modified biochar material. (a) Electron micro-
scope image of biochar (×1000); (b) Electron microscopic image of β-CDBC-CA material 
(×1000). 
 
Table 1. Specific surface area of β-cyclodextrin modified biochar materials 

Sample Specific surface area (m2/g) Pore volume (cm3/g) Pore size (nm) 

BC 5.1761 0.008141 16.4115 

β-CDBC 6.9937 0.012770 73.0367 

β-CDBC-Na 8.2936 0.015077 72.0367 

β-CDBC-CA 18.2654 0.029689 65.0180 

β-CDBC-H 17.8629 0.030612 68.5480 

 
cleaning the pores of biochar when activating biochar. However, the specific surface 
area and pore volume values of NaCl-activated modified biochar (β-CDBC-Na) 
were smaller than those of the other two types of modified biochar, and the pore 
size was relatively largest, which may be due to the fact that NaCl-activated bio-
char mainly focuses on ion exchange and does not clean the pore channels of 
biochar. Compared with the other two kinds of biochar, citric acid activated bi-
ochar had a maximum specific surface area of 18.2654 m2/g and a pore size of 
65.0180 nm, which may be due to the fact that citric acid not only cleaned the 
pore size of biochar to a certain extent, At the same time, this may also be due to 
the esterification of citric acid with hydroxyl (-OH) groups in the outer cavity of 
β-cyclodextrin, which is easy to form macromolecules loaded on the surface of 
biochar to form inclusion compounds, so that the citric acid-activated modified 
biochar material (β-CDBC-CA) has a larger specific surface area, which is con-
sistent with the results of electron microscopy characterization. Modified bio-
char has a larger specific surface area and is more conducive to the adsorption of 
organic pollutants. 

Figure 4(a) shows the adsorption and desorption curves of biochar and its 
modified biochar. According to IUPAC classification, the adsorption curves of 
the four materials belong to class IV, mainly mesoporous adsorbent materials. It 
can also be observed from Figure 4(b) that the pore size is concentrated in the 
range of 30 - 50 nm, and there are also some macro-porous structures in the 
range of 50 - 100 nm. Therefore, single-multilayer adsorption can occur on the 
mesoporous wall of β-CDBC-CA in the mesoporous, which is conducive to the 
adsorption of polycyclic aromatic hydrocarbons of pollutants. 

(a) (b)

10 um 10 um

https://doi.org/10.4236/msce.2024.124004


Q. Guo et al. 
 

 

DOI: 10.4236/msce.2024.124004 49 Journal of Materials Science and Chemical Engineering 
 

 
Figure 4. BET characterization of β-cyclodextrin modified biochar materials. (a) Adsorp-
tion desorption curves of modified biochar materials; (b) Pore size curves of modified bi-
ochar materials. 

4. Conclusion 

In summary, biochar (BC) material was activated by deionizing aqueous solu-
tion, NaCl solution, CA solution and HCl solution in this paper. Epichlorohy-
drin (EPI) was used as a crosslinking agent, and β-cyclodextrin (β-CD) was used 
to modify biochar (BC). The prepared modified biochar materials were labeled 
with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The re-
sults showed that β-cyclodextrin successfully modified biochar and formed 
clathrates on the surface of biochar or was supported in the pore structure of bi-
ochar, which increased the specific surface area of biochar, especially β-CDBC-CA 
achieved better modification effect. The modified biochar material can be well 
applied to the adsorption and removal of organic pollutants. 
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