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Abstract 
The wave/particle duality of particles in Physics is well known. Particles have 
properties that uniquely characterize them from one another, such as mass, 
charge and spin. Charged particles have associated Electric and Magnetic fields. 
Also, every moving particle has a De Broglie wavelength determined by its 
mass and velocity. This paper shows that all of these properties of a particle can 
be derived from a single wave function equation for that particle. Wave func-
tions for the Electron and the Positron are presented and principles are pro-
vided that can be used to calculate the wave functions of all the fundamental 
particles in Physics. Fundamental particles such as electrons and positrons are 
considered to be point particles in the Standard Model of Physics and are not 
considered to have a structure. This paper demonstrates that they do indeed 
have structure and that this structure extends into the space around the parti-
cle’s center (in fact, they have infinite extent), but with rapidly diminishing en-
ergy density with the distance from that center. The particles are formed from 
Electromagnetic standing waves, which are stable solutions to the Schrödinger 
and Classical wave equations. This stable structure therefore accounts for both 
the wave and particle nature of these particles. In fact, all of their properties 
such as mass, spin and electric charge, can be accounted for from this structure. 
These particle properties appear to originate from a single point at the center 
of the wave function structure, in the same sort of way that the Shell theorem 
of gravity causes the gravity of a body to appear to all originate from a central 
point. This paper represents the first two fully characterized fundamental parti-
cles, with a complete description of their structure and properties, built up from 
the underlying Electromagnetic waves that comprise these and all fundamental 
particles. 
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1. Introduction 

In order to provide the foundations of a link between Classical Physics field con-
cepts and the wave/particle duality in Quantum Mechanics, it is necessary to dem-
onstrate how particles can be modeled both from a Classical Wave perspective 
while also satisfying the requirements of Quantum Mechanics, in particular the 
Schrödinger wave equation and the De Broglie equations. See Ref. [1] for the ear-
lier work preceding this paper. 

There is already evidence of this connection in the energy sum of the Electric 
and Magnetic fields in the Hamiltonian function that expresses the total energy 
of an atomic system: 

Ref. [2]: “In 1926, Schrödinger used energy conservation to obtain a quantum 
mechanical equation in a variable called the wave function that accurately de-
scribed single-electron states such as the hydrogen atom. The wave function de-
pended on a Hamiltonian function and the total energy of an atomic system, and 
was compatible with Hertz’s potential formulation. The wave function depends 
on the sum of the squares of E- and H-fields as is seen by examining the energy 
density function of the electromagnetic field”. 

In order to satisfy both the wave and particle natures of particles in a model of a 
particle, the particle’s wave function must satisfy both the Classical wave equation 
(which ensures that the wave function can represent a vibration of the space-time 
continuum) and the Schrödinger wave equation (which ensures that the wave func-
tion can represent a quantum of energy—thus a particle) [3]. 

A wave function solution to the Classical wave equation describes the motion 
of all points on the wave at any location in space and time. The position of a test 
point in space as it is affected by the wave motion can be represented as a dis-
placement vector drawn from the starting location of the point to its current lo-
cation. The wave function defines the magnitude and direction of the displace-
ment vector at any location in space and at any time—therefore, it completely 
and precisely defines the pattern of vectors that form the structure of the particle 
that it describes. 

In the case of Electromagnetism, there is a single vector field that describes the 
motion of an Electromagnetic wave in this way, it is known as the Hertzian vec-
tor field [4] [5]. The Electric and Magnetic fields can both be derived from the 
Hertzian vector field by differentiation with respect to space and time. 

Ref. [4]: “In a vacuum, a single Hertz vector written as the product of a scalar 
potential and a constant vector naturally arises as consequence of the transversal-
ity of the electromagnetic fields”. 
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Therefore, a wave function that describes a field of vectors representing Hertzian 
vectors can also represent a wave function describing Electric and Magnetic field 
vectors. If the wave function satisfies both the Classical wave equation and the 
Schrödinger wave equation, then it can also represent a vibration of space-time 
and a potential solution for a Quantum particle. 

In the case of a Classical wave function describing an Electromagnetic wave, 
the displacement vectors described by the wave function are of a physical charge 
displacement from the otherwise neutral vacuum state. Thus, the vacuum is seen 
to be polarised by the displacement by an amount with units of Volt-Meters. The 
presence of the displacement from the neutral vacuum state requires a certain en-
ergy, and the total (rest) energy of the particle’s wave function is the sum of the 
resulting Electric and Magnetic fields [6]. 

This paper presents two such solutions, one representing an electron and one 
representing a positron. In addition, it is shown that the correct Classical fields are 
produced by them, matching those of the real particles, and that the Quantum 
Mechanical requirements of the De Broglie equations are also met by them. 

The form of these wave function solutions can be applied to ALL fundamental 
Physics particles, at all energy levels, and I have done the modelling and pre-
sented the wave function equations for a number of these particles already [7] 
[8] [9]. 

1.1. History of the Development of the Wave Function Solutions 

The wave functions I have determined are themselves initially complicated to look 
at—but they can be broken down into something quite simple. The wave func-
tion is of the form Aexp(a), where “A” is an Amplitude term and “a” is an angle 
term (exp is Euler’s exponential function). The wave function describes a field of 
vectors that rotate. The rate of rotation and the phase of each vector’s rotation 
are determined by the “a” angle term. This angle depends on both the distance 
“r” from the particle’s center, and on the time “t”. Don’t worry about the com-
plex “i” term as it just means that the vectors are rotating in the complex 
plane—this is just to match the Schrödinger wave equations’ complex nature. In 
fact, both the wave equation and the wave function can be rewritten without any 
complex “i” but it takes a pair of equations rather than a single equation—and 
people are used to seeing the Schrödinger equation in its usual complex form. 
So, having a wave function that describes and field of rotating (Hertzian) vectors 
IS the omnipresent field of magnetic loops that Maxwell was referring to in his 
work [10]. As these Hertzian vectors are always spinning around, the d/dt of 
these vectors (Vector Potential A) always describes closed loops (Hence, 0∇ =A  
and Curl(A) describes the magnetic field B). Having determined the correct 
form of the wave function equation and proving that it was in fact a solution to 
both the Classical and Schrödinger wave equations, I had to determine what 
the correct values for “a” and “A” are. This was done by making the resulting 
wave function give the correct results for the De Broglie relations (for the “a” 
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term) and the correct Electric Potential (V) (from the “A” term) and rest-mass 
energy (both the “a” and “A” terms). 

As for what a wave function actually is, I had to teach myself this too, and also 
had some useful discussions on the old Wave Structure of Matter (WSM) News-
group whose aim was to describe the structure of matter in terms of waves (as 
the name suggests). One of the main proponents of the WSM newsgroup was 
Milo Wolff [11] who had proposed a spherically symmetrical model for the elec-
tron as a standing wave. This idea was a good first start, but had some problems, 
such as no apparent spin axis and the energy of the waves would blink into and 
out of existence many times per second—but one of the key principles of Physics 
that must be adhered to is that energy cannot be created nor destroyed—so there 
was an obvious problem with this model. My model solves both of these prob-
lems by introducing the spinning spiral structure that retains all the benefits of 
Milo’s model, yet provides a definite spin axis and a consistent energy content 
and also provides a mechanism by which electrostatic attraction/repulsion can 
occur [12]. 

First of all, understand what a wave equation and wave function are. The Clas-
sical wave equation states a mathematical fact involving space and time parameters 
which is ALWAYS true for any traveling Classical wave. A wave function is an 
equation that is a solution to the wave equation—i.e. the wave function is the 
equation of the actual wave—which (if it is a solution to the wave equation) 
must be a valid Classical wave. What a wave function does is it connects space and 
time parameters in a way that can tell you the exact displacement position in 
space, of a hypothetical test point (such as a water molecule in a wave tank) at 
ANY moment in time. Thus, the wave function tells you everything there is to 
know about the wave—the exact positions of ALL points at EVERY possible 
time. 

The Schrödinger equation is a specialized wave equation that imposes a slightly 
different mathematical relationship between the space and time parameters than 
the Classical wave equation. Essentially, it describes the conditions required for 
standing waves, or localized, discrete wave structures that persist over time with-
out dissipating. Electron orbitals are one example of this, but in the case of elec-
tron orbitals, there is an additional term in the Schrödinger wave equation (in 
the Hamiltonian part) that states that the energy that is oscillating is in a (elec-
tric) potential field. This term is what causes the electron orbitals to have the 
shapes they do (rings, dumbbells, etc.) around the nucleus of an atom. I am using 
the Schrödinger equation to describe the electron cloud shape in the absence 
of an electric potential field—thus the cloud forms essentially a perfect sphere. 

In the case of modelling the structure of fundamental particles purely from 
Electromagnetic waves (or Hertzian vectors to be precise—as all the other Elec-
tromagnetic properties can be derived from the Hertzian (Z) field) one needs to 
have a wave function that satisfies BOTH the Classical and the Schrödinger wave 
equations. The reason for this is that, as the particles are to be built from Electro-
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magnetic waves, the Electromagnetic waves need to be Classical waves that form 
part of a continuum in space; and the wave function needs to also describe a lo-
calized, quantized structure—such that it describes a particle that doesn’t just 
dissipate into space instantly. 

1.2. Lorentz Transformation of the Wave Function Solutions 

The Schrödinger wave equation is not Lorentz Invariant, whereas the Klein-Gordon 
or Dirac equations (which are Lorentz Invariant) are usually used to model elec-
trons/positrons. In my model, however, as the mass of the electron/positron 
does not appear as a point particle but is present as the mass equivalent of the 
total energy of in the Electromagnetic field (Electric and Magnetic fields com-
bined) in the fields derived from the wave function equation [6], the mass 
term in the Klein-Gordon and Dirac equations would be zero as the energy of 
the field is already accounted for in the other terms in these equations. The 
Klein-Gordon equation reduces to the Classical wave equation when the mass 
term is zero, and my wave function solutions are solutions to the Classical wave 
equation. 

The Klein-Gordon equation [13]: 
2

0mc ψ
  − =  

   


 

where: 2
2 2

1
c t

∂
= ∇ −

∂
 . 

So, if m = 0: 

2
2 2

1 0
c t

ψ∂
∇ − =

∂  
2

2 2
1
c t

ψ ψ∂
∇ =

∂  
Which is the Classical wave equation. 
The Classical wave equation is Lorentz Invariant, so my wave function solu-

tions are also Lorentz Invariant. Therefore, my wave-function solutions are 
compatible with Relativity even though the Schrödinger wave equation (to which 
they are also solutions) is not a Relativistic wave equation. Another point to make 
here is that the wave functions are solutions to the Schrödinger wave equation 
(which applies in a frame that is at rest) and from Relativity we know that all in-
ertial reference frames are equivalent—which means that Physics is the same for 
any moving observer. Therefore, we can conclude that the wave function in the 
moving reference frame is still a solution to the Schrödinger wave equation in 
that reference frame, even though that frame is moving with respect to us, and 
the Schrödinger wave equation itself is not Lorentz invariant. 

2. The Solutions 

These are the suggested wave function equations for the Electron and the Posi-
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tron. Other work has suggested that the structure of the electron is that of a 
spherical standing wave [11]. That model has some problems, however, such as 
the resulting structure has no ability to explain the electron charge and would re-
sult in the waves all having zero amplitude at the same time during their oscilla-
tion cycle, which would cause problems with the conservation of energy. This 
model has been taken further and it has been found that in order to explain 
charge, the required structure is that of a spinning spiral wave, with inward or 
outward-flowing phase. These equations are formulated based on my initial analy-
sis of the form of the structure that must be required—that of a spinning spiral 
with a spherical wave distribution. The equations were further refined with the 
use of the 3D modelling software developed by the author to simulate the wave 
functions. Also, the properties of these modelled wave functions were analysed 
to refine the amplitude term of the wave functions such that the electric poten-
tial of the modelled particles matches that of the real particles. Having done this 
gives good confidence that the resulting equations are a true description of the 
real fundamental particles. 

The supplementary images at the end of this paper show graphical representa-
tions of the fields derived from these wave functions using a 3D vector model-
ling program developed by the author to aid in the visualization and testing of 
proposed wave function solutions. 

For the Electron: 

 
2

0

exp
4

e e
e

e

Q iM c rt
rM c cε

 −  Ψ = −  π   





 (1) 

For the Positron: 

 
2

0

exp
4

p p
p

p

Q iM c rt
rM c cε

 −  Ψ = +  π    





 (2) 

where: 

eψ  = Electron wave function;  pψ  = Positron wave function; 
eQ  = Electron charge (−);   pQ  = Positron charge (+); 

eM  = Mass of an electron;  pM  = Mass of a positron; 
0ε  = Permittivity of free space; 

t = Time; 
r = Distance from particle’s centre (to any location in space); 
c = The speed of light; 
  = The reduced Planck’s constant. 

3. The Solutions Satisfy the Wave Equations 

The wave nature of the particles is being modelled here as a vibration of the 
space-time continuum (a physical charge displacement) and the particle nature 
is modelled as localized quanta of this wave energy (a temporally stable 3D 
wave structure). In order to satisfy both the wave and particle natures of parti-
cles in the model, the wave function must satisfy both the Classical wave equa-
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tion (which ensures that the wave function can represent a real, physical vibra-
tion of the space-time continuum) and the Schrödinger wave equation (which 
ensures that the wave function can represent a quantum of energy—thus a stable 
particle) [3]. 

 Classical wave equation: 
2

2
2 2

1
c t

ψψ ∂
∇ =

∂
 (3) 

Schrödinger wave equation: ˆi H
t
ψ ψ∂

=
∂

  

where: ˆ Total EnergyHψ = , 

( ) ( )ˆ Kinetic Energy KE Potential Energy PEHψ = +  
The wave function describes a field of rotating displacement vectors which 

can each be thought of as comprising two orthogonal Quantum Harmonic Oscil-
lators [14]; one along each axis of the complex plane. The vectors trace out a cir-
cle, such that at any given time half of the total energy is present as Kinetic en-
ergy (KE) and half as Potential energy (PE). The amount of energy in each these 
forms depends on the phase of each of the component Quantum Harmonic Oscil-
lators. In their simple harmonic motion oscillation, each oscillates between full KE 
and full PE, but when one has full KE the other has full PE and vice-versa. 

See Appendix A for the proof that a Quantum Mechanical wave function can 
be modelled as a field of real 3D vectors and still satisfy both the Schrödinger 
and Classical wave equations. 

Due to Equipartition of energy in a Classical wave [15]: 
2

2KE PE
2m

ψ−= ∇=


 

 So: 
2

2i
t m
ψ ψ∂

= − ∇
∂



  (4) 

Testing the electron solution with the Schrödinger wave equation 
Referring to Equations (1) and (4): 
In Spherical coordinates [16], the Laplacian of eΨ  is: 

 2 2
2 2 2 2 2 2

1 1 1sin
sin sin

e e e
e r

r rr r r
θ

θθ θ θ φ
∂Ψ ∂Ψ ∂Ψ∂ ∂   ∇ Ψ = + +   ∂ ∂ ∂∂ ∂   

  (5a) 

As the wave function eΨ  is symmetrical around its spin axis, all the vectors 
at the same distance r from the origin are identical, so the terms involving θ  
and φ  are zero. 

So 2
e∇ Ψ  reduces to: 

 2 2
2

1 e
e r

r rr
∂Ψ∂  ∇ Ψ =  ∂ ∂ 

 (6a) 

Thus, the Schrödinger wave Equation (4) becomes: 

 
2

2
2

1e ei r
t m r rr

∂Ψ ∂Ψ∂  = −  ∂ ∂ ∂ 



  (7a) 
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Thus: 

 2
2

1e ei r
t m r rr

∂Ψ ∂Ψ∂  =  ∂ ∂ ∂ 

  (8a) 

As from eΨ  by differentiation of Equation (1), we can also say that: 

 
2

0

exp
4

e e eiQ c iM c rt
t r cε

 ∂Ψ − −  = −  ∂ π   

 (9a) 

Also: 

 
2

2
2

0

1 exp
4

e e e eQ M c iM c rr t
r r r cr ε

 ∂Ψ − −∂    = −   ∂ ∂ π      

 (10a) 

Thus: 

 
2

2
2

0

1 exp
4

e e eiQ c iM ci rr t
m r r r cr ε

 ∂Ψ − −∂    = −   ∂ ∂ π     





 (11a) 

So, from Equations ((8a), (9a) and (11a)), we can see that LHS = RHS of the 
Schrödinger wave equation (Equation (4)), so the wave function (Equation (1) is 
a solution to it: 

2e
e

i
t m

∂Ψ
= ∇ Ψ

∂


 
Equation (9a) equals Equation (11a): 

 
2 2

0 0

exp exp
4 4

e e e eiQ c iM c iQ c iM cr rt t
r c r cε ε

   − − − −   − = −      π π       

 (12a) 

Testing the electron solution with the Classical wave equation 
Referring to Equations (1) and (3): 

 
2

0

exp
4

e e eiQ c iM c rt
t r cε

 ∂Ψ − −  = −  ∂ π   

 (13a) 

So: 

 
2 3 2

2
0

exp
4

e e e eQ M c iM c rt
r ct ε

 ∂ Ψ − −  = −  π∂    

 (14a) 

Thus: 

 
2 2

2 2
0

1 exp
4

e e e eQ M c iM c rt
r cc t ε

 ∂ Ψ − −  = −  π∂    

 (15a) 

And, substituting Equations ((6a), (10a) and (15a)) into Equation (3): 
2

2
2

0

1 exp
4

e e e eQ M c iM c rr t
r r r cr ε

 ∂Ψ − −∂    = −   ∂ ∂ π        

 
2 2

0 0

exp exp
4 4

e e e e e eQ M c iM c Q M c iM cr rt t
r c r cε ε

   − − − −   − = −      π π         

 (16a) 

So, LHS = RHS of the Classical Wave equation (Equation (3)) too, so the elec-
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tron wave function (Equation (1)) is a solution to it also. 
Testing the positron solution with the Schrödinger wave equation 
Referring to Equations (1) and (4): 
In Spherical coordinates, the Laplacian of eΨ  is: 

 2 2
2 2 2 2 2 2

1 1 1sin
sin sin

p p p
p r

r rr r r
θ

θθ θ θ φ
∂Ψ ∂Ψ ∂Ψ   ∂ ∂

∇ Ψ = + +   ∂ ∂ ∂∂ ∂   
 (5b) 

As the wave function pΨ  is symmetrical around its spin axis, all the vectors 
at the same distance r from the origin are identical, so the terms involving θ  
and φ  are zero. 

So 2
p∇ Ψ  reduces to: 

 2 2
2

1 p
p r

r rr
∂Ψ ∂

∇ Ψ =  ∂ ∂ 
 (6b) 

Thus, the Schrödinger wave Equation (4) becomes: 

 
2

2
2

1p pi r
t m r rr

∂Ψ ∂Ψ ∂
= −  ∂ ∂ ∂ 



  (7b) 

Thus: 

 2
2

1p pi r
t m r rr

∂Ψ ∂Ψ ∂
=  ∂ ∂ ∂ 

  (8b) 

As from pΨ  by differentiation of Equation (2), we can also say that: 

 
2

0

exp
4

p p piQ c iM c rt
t r cε

 ∂Ψ −  = +  ∂ π    

 (9b) 

Also: 

 
2

2
2

0

1 exp
4

p p p pQ M c iM c rr t
r r r cr ε

 ∂Ψ − − ∂  = +    ∂ ∂ π       

 (10b) 

Thus: 

 
2

2
2

0

1 exp
4

p p piQ c iM ci rr t
m r r r cr ε

 ∂Ψ − − ∂  = +    ∂ ∂ π      





 (11b) 

So, from Equations ((8b), (9b) and (11b)), we can see that LHS = RHS of the 
Schrödinger wave equation (Equation (4)), so the wave function (Equation (2)) 
is a solution to it: 

2p
p

i
t m

∂Ψ
= ∇ Ψ

∂


 
Equation (9b) equals Equation (11b): 

 
2 2

0 0

exp exp
4 4

p p p piQ c iM c iQ c iM cr rt t
r c r cε ε

   − − − −   + = +      π π          

 (12b) 

Testing the positron solution with the Classical wave equation 
Referring to Equations (2) and (3): 
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2

0

exp
4

p p piQ c iM c rt
t r cε

 ∂Ψ − −  = +  ∂ π    

 (13b) 

So: 

 
2 3 2

2
0

exp
4

p p p pQ M c iM c rt
r ct ε

 ∂ Ψ − −  = +  π∂     

 (14b) 

Thus: 

 
2 2

2 2
0

1 exp
4

p p p pQ M c iM c rt
r cc t ε

 ∂ Ψ − −  = +  π∂     

 (15b) 

And, substituting Equations ((6b), (10b) and (15b)) into Equation (3): 

 
2

2
2

0

1 exp
4

p p p pQ M c iM c rr t
r r r cr ε

 ∂Ψ − − ∂  = +    ∂ ∂ π       

 (16b) 

So, LHS = RHS of Classical Wave equation (Equation (3)) too, so the positron 
wave function (Equation (2)) is a solution to it also. 

4. The Wave Function and Electromagnetism 

Each of the measurable fields in Electromagnetic Theory [5] [17] [18], and their 
connection back to the wave function, can be expressed quite simply by the fol-
lowing set of equations and illustrated in Figure 1. 

 
2

1A
tc
ψ∂

= −
∂

 (17) 

 V ψ= ∇⋅  (18) 

 
AE V
t

∂
= ∇ −

∂
 (19) 

( ) ( )
0 0 0 0

2
E t V t A AH

µ µ µ µ

− ∇× ∂ ∇×∇ ∂ ∇× ∇×
= = − = −∫ ∫  (from Equation (3)) (20) 

 0 Eρ ε= − ∇ ⋅  (21) 

 

 
Figure 1. The mathematical connections between the fields. 
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Note: Equation (20) is derived from Equation (3) as the Classical wave equa-

tion states that 
AV
t

∂
∇ =

∂
, so H is equivalently:  

0 0 0

2A A A
µ µ µ

∇× ∇× ∇×
− − = −  

where: 
ψ  = Wave function; 
V = Voltage (electric potential); 
E = Electric field vector; 
A = Vector potential; 
H = Magnetic field vector; 
ρ  = Charge density. 

5. Analysis of the Wave Functions 

Both wave functions represent a field of rotating charge displacement vectors. 
The pattern described by the phases of the field of rotating vectors is that of a 
spinning spiral wave. As the waves move at the speed of light, they appear to be 
smooth fields without structure (such as the Electric Potential for the Electron/ 
Positron (Figure 2)) unless probed at very short periods of time. The phase wave 
phase flows either away from or towards the centre of the particle (supplementary 
Figures S1-S4). The Electron spins with the phase wave flowing outward and the 
Positron with the phase wave flowing inwards [17]. 

The angular frequency in the wave function is derived from the following three 
known equation: 

 E hν=  (22) 

 2E mc=  (23) 

 2h = π  (24) 

Substituting Equation (23) and Equation (24) into Equation (22) and solving 
for ν , we have: 

 
2

2
mcν =
π

 (25) 

Then to convert to angular frequency: 

 2ω ν= π  (26) 

Substituting Equation (25) into Equation (26) and using the electron mass Me 
gives: 

 
2

eM c
ω =



 Radians per Second (27) 

This describes the rate of rotation of each of the vectors in the vector field that 
describes the Electron/Positron wave function. 

The centre of the Electron comprises a vector that rotates around a fixed posi-
tion at the particle’s centre over time. As time progresses this vector propagates 
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radially outwards, at the speed of light, away from the centre thus forming the 
phase wave spiral. Therefore, the phase of each vector depends not only on time, 
but also on distance 𝑟𝑟 from the centre of the wave function. 

So, the phase of each rotating vector in space will depend on two things: 
1) The vector rotation rate, determined by:  

 
2mc


 (28) 

2) The propagation delay for a wave travelling radially outwards at the speed 
of light, given the vector rotation rate above:  

 
2mc r

c
×



 (29) 

Thus, the total phase change (for an electron) at a distance r from the centre is 
the sum of these two factors: 

 
2

eM c rt
c

 − 
 

 (30) 

Every point on the wave function spiral comprises a vector that rotates around 
a fixed location in space as the phase waves pass through each point. 

In a classical wave, each point in the medium supporting that wave (such as 
the water molecules in a water wave) moves in a circular motion as the wave 
passes. The frequency of this circular motion is the same as that of the wave. How-
ever, when two waves of equal frequency (but travelling in opposite directions) 
combine to form a standing wave, each point in the medium rotates at twice the 
angular frequency of each of the two component waves. 

The spinning spiral of rotating vectors that the wave function describes can be 
modelled as a standing wave comprised from two interfering waves: a spherical 
IN wave and a spherical OUT wave. Thus, each point in the medium supporting 
this standing wave is rotating at twice the frequency of either the IN or OUT 
wave alone. 

The spherical IN and OUT waves work together, by means of constructive and 
destructive interference due to a slight frequency difference between the IN and 
OUT waves, forming the spinning spiral structure of the particle. Each point in 
this spatial structure is being influenced by both IN and OUT waves (one wave 
from each side), a vector at that point spins around at a rate based on the fre-
quency of the IN and OUT waves, with an amplitude of double each of the IN and 
OUT wave components. The frequency of the IN and OUT waves is the same 
except for a slight difference that modulates this fundamental frequency and 
thereby forms the spinning spiral pattern. 

The frequency of the vector rotation for any point in the wave function is given 
by Equation (27). Thus, the angular wave frequency of each IN/OUT wave is given 
by: 

 ω Radians per Second (31) 

From Equation (26) and Equation (31), the travelling wave fundamental fre-
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quency of an IN or OUT wave is: 

 Her
2

tzων =
π

 (32) 

So, from Equation (27) and Equation (32), the Electron’s IN/OUT wave fre-
quency is: 

 201.235590204456 10 Hertzν = ×  (33a) 

And (for a propagation speed of c) the spatial frequency (wavenumber) is: 

 114.12148528585 10electronf = ×  (33b) 

6. Verification Using the De Broglie Equations 

 The De Broglie wavenumber for a moving particle is 
m
h
ν

 (34) 

 This is 13,747.79 for an Electron travelling at 10 m∙sec−1 (35) 

The Classical interpretation of the De Broglie wave is that of a beat frequency 
of the upstream and downstream components (with respect to the particle’s di-
rection of motion) of the Electron’s IN/OUT wave, so: 

  up electron
cf f

c v
= ×

−
 (36) 

  down electron
cf f

c v
= ×

+
 (37) 

Again, the speed of the Electron v = 10 m∙sec−1. 
Thus, from Equation (36) and Equation (37), the beat frequency wavenumber is: 

 
2

13747.79up downf f−
=  (38) 

So, we can see that the De Broglie wavenumber matches the beat frequency 
wavenumber of the calculated Electron IN/OUT waves for an Electron travelling 
at 10 m∙sec−1 (Equation (35) equals Equation (38)). 

The Energy of the Electron can be checked too, using the De Broglie relation: 

 E ω=   (39) 

Using Equation (27): 

 
2

2e
e

M c
E M c= =



 (40) 

Which is the Energy/Mass relationship as it should be. 
This can also be proved using the displacement amount of the Quantum Har-

monic Oscillators [14] in the wave function vector field. The units of the vectors 
in the wave function are Volt-Meters, so they need to be converted to just Me-
ters, then the energy of the Oscillators calculated (see Appendix B). 

The electron rest mass has also been calculated from my 3D model by integrat-
ing the Electric and Magnetic field vector energies over a small volume (cube) of 
space with the electron wave function at the center of the volume. The resulting 
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rest-mass value is 100.46% of the actual electron rest-mass [6]. 

7. Derivation of the Classical Electric Potential for the  
Electron and Positron 

For the Electron wave function, the Electric Potential (V) is ( )div eψ , which in 
spherical coordinates is [16]: 

 ( ) ( ) ( )2
2

1 1 1div sin
sin sin

e
e e er

r r rr
θ

θ θ θ φ
∂Ψ∂ ∂

Ψ Ψ + Ψ +=
∂ ∂ ∂

 (41a) 

For the Positron wave function, the Electric Potential (V) is ( )div pψ , which 
in spherical coordinates is [16]: 

 ( ) ( ) ( )2
2

1 1 1div sin
sin sin

p
p p pr

r r rr
θ

θ θ θ φ
∂Ψ∂ ∂

Ψ = Ψ + Ψ +
∂ ∂ ∂

 (41b) 

When viewed close-up, the spinning spiral and charge layers that comprise 
the Electron/Positron are clearly visible. Due to the fast spinning of the spiral 
(and outward or inward phase flow), or at large distance scales where the undu-
lations of the spinning charge layers are small by comparison, the fields appear 
to become smooth and be of a continuous nature (Figures S5-S10). So, for ex-
ample, the Electric Potential for the Electron/Positron (Figure 2) in this case 
appears to be the RMS (Root-Mean-Squared) [19] of Equation (41a) or Equation 
(41b), which is equal to the classical equation: 

 
04

eQ
rεπ

 or 
04

pQ
rεπ

 (42) 

For the Proof that this is the case, see Appendix C. 
 

 
Figure 2. The electric potential of the electron wave function after it has been smoothed 
out by taking the RMS of the wave function over the 3D space it resides in. 
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8. Comparison with Quantum Mechanics 
8.1. The Quantum Mechanical Wave Function 

In Classical Physics, the wave function Ψ describes a field of displacement vec-
tors; that is the complex number of the wave function describes X-axis and Y-axis 
displacements from the origin on an Argand diagram. In Quantum Mechanics, 
however, the wave function ΨQM is a complex scalar value rather than a vector, 
although the complex number of its wave function is in the same mathematical 
form. However, the complex “i” term in the wave equation simply represents a 
90-degree rotation (orthogonal vector quantities), and so the equation can be re-
formulated purely Classically, with no complex numbers by introducing a rota-
tion matrix in place of the “i” term [20]. 

In Quantum Mechanics, the square of the wave function gives the probability 
density of finding a particle at a point in space: 

 2
QMρ = Ψ  (43) 

In order to get vector quantities in Quantum Mechanics, one must apply a 
vector operator to the probability, such as applying the position or momentum 
operators to the wave function. 

The Classical wave function, on the other hand, remains a vector and its mag-
nitude is equivalent to the Quantum Mechanical scalar wave function: 

 QMΨ = Ψ  (44) 

As my Classical wave function solutions, Equations ((1) & (2)), are comprised 
of an array of Quantum Harmonic Oscillators, the Ehrenfest [21] [22] theorems 
state that the QM Expectation values follow their Classical trajectories and have 
an equipartition of energy (between Kinetic and Potential forms), so my Classi-
cal wave function solutions will also apply in a Quantum Mechanical interpreta-
tion. 

See Appendix A for the proof that a Quantum Mechanical wave function 
can be modelled as a field of Real 3D vectors (with a rotation matrix in place of 
the complex “i” term) and still satisfy both the Schrödinger and Classical wave 
equations. 

So, given that my Classical wave function model is compatible with the Quan-
tum Mechanical wave function, this work sheds new light on the wave/particle 
duality issue in Quantum Mechanics. The Classical wave functions presented 
here for the particles is fundamentally a wave structure, yet the energy of this 
wave structure remains localized (quantized) and its properties appear to be as-
sociated with a single point—at the center of the wave function structure. As this 
wave structure is not a point particle but is spread through space with varying 
degrees of energy density in different locations, we can see how the probability 
amplitude referred to in Quantum Mechanics may be associated with the energy 
density and other properties of the dynamic waves of the Classical wave func-
tion. 

https://doi.org/10.4236/jamp.2024.124071


D. Traill 
 

 

DOI: 10.4236/jamp.2024.124071 1149 Journal of Applied Mathematics and Physics 
 

8.2. Normalization of the Wave Function 

In Quantum Mechanics, it is important that a wave function be normalizable; 
that is the area under the curve of the wave function is finite, such that the 
square of the wave function can represent a probability density of finding the 
particle. The probability integrated over the whole wave function must be 1, so 
that the particle exists somewhere in space. An infinite probability doesn’t make 
physical sense, so in order that the wave function represents a real particle, it 
must be Normalizable. 

As my wave function solutions (Equations (1) & (2)) contain a 1/r term, they 
would not, on face value, appear to be normalizable due to an infinity at r = 0. 
However, if in reality, a function is known to be finite, as is the case for an elec-
tron or positron, then it may be considered Normalizable [23] [24]. As my wave 
functions are comprised of Quantum Harmonic Oscillators with real displace-
ments in space, at size scales less than that displacement distance, the nature of the 
function will no longer be 1/r, thus restricting its amplitude and preventing 
an infinite quantity [25]. For these wave functions, the order of magnitude of this 
displacement is ~3.86 × 10−13 meters (see Ref. [14]) on the physical displacement 
for a Quantum Harmonic Oscillator; in this case, assuming all of the energy of 
an electron was a single Quantum Harmonic Oscillator at the particle’s center). 
Thus, there is a natural limit on the 1/r factor in the wave-function amplitude. 
Thus, these wave functions are compatible with Quantum Mechanics, and their 
probability density may be calculated via Equation (43), with the use of Equa-
tion (44). 

9. Conclusions 

The wave functions presented here describe particles with all the correct proper-
ties for an Electron and a Positron and satisfy the requirements of both the Clas-
sical and Quantum Mechanical interpretations. 

The wave function represents a field of rotating charge displacement vectors 
with units of Volt-Meters. The spinning vectors form a phase wave that describes 
a spinning spiral. The resulting phase wave flows either away from or towards the 
centre of the particle. Interactions between the phase waves of two or more particles 
can be shown to be the cause of the Electrical and Magnetic attraction/repulsion 
between charged particles due to momentum exchanges between the wave struc-
tures [12]. 

In general, the concepts used to build these two wave equations could be ap-
plied to all particles in Physics. The key principles are: 

1) The frequency of the waves that comprise the three-dimensional wave struc-
ture of the particle is based on the particle’s mass (via the calculation shown 
above). 

2) A particle charge is defined by either an outward or inward flowing phase 
wave. A neutral particle would have no net phase flow inward or outward, but 
may contain regions of either inward or outward flow, which cancel out in the 
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region surrounding the particle. 
3) The completed wave function must satisfy both the Classical and Schrödinger 

wave equations. 
4) Particles such as Protons (or other particles containing Quarks) might con-

tain several components to the overall wave function [6] [7] [8] [9] [26], which 
work together to form a stable particle (i.e. together they satisfy the other three 
principles stated here). 

Further work can now, in principle, be done to determine the wave functions 
and thus structures of all of the known fundamental particles. The author has 
provided access to the programming code of the model used in this analysis 
(Appendix D) to allow other researchers to investigate this modelling further. 
The author has made some inroads into this endeavour in other work that sug-
gests the wave function equations of the Proton [7], the Neutron [8] and the 
Electron Neutrino [9]. 
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Supplementary Material 
Images from the Model 

 
Figure S1. The electron wave function from the side (the spin axis is vertical). 

 
 

 
Figure S2. The electron wave function viewed from the top (looking down the spin axis). 
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Figure S3. The electron wave function (vector arrows only) viewed from the top (looking 
down the spin axis). 

 
 

 
Figure S4. The electric potential of the electron showing the double spiral of charge lay-
ers. 
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Figure S5. The electric potential of the electron with the small-scale wave function undu-
lations smoothed out (the individual charge layers are not visible). 

 
 

 
Figure S6. The electric field of the electron with the small-scale wave function undula-
tions smoothed out. 
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Figure S7. The magnetic field of the electron viewed from the side (spin axis is vertical) 
with the small-scale wave function undulations smoothed out. The vectors into/out of the 
page are not shown in order to reveal the nice magnetic field lines. 

 
 

 
Figure S8. The magnetic field of the electron viewed from the top (looking down the spin 
axis) with the small-scale wave function undulations smoothed out. 
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Figure S9. The vector potential field of the electron viewed from the side (the spin axis is 
vertical) with the small-scale wave function undulations smoothed out. 

 
 

 
Figure S10. The vector potential field of the electron viewed from the top (looking down 
the spin axis) with the small-scale wave function undulations smoothed out. Note how 
the energy of the particle flows around the spin axis in closed loops. 
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Appendix A 

Proof that a Quantum Mechanical wave-function can be modelled as a field of Real 3D vectors and still satisfy 
both the Schrödinger and Classical wave equations: 
The Electron 
See Ref. [20] for an example of the Schrödinger equation formulated without the use of complex numbers. 
(The Positron calculation work out the same but use the different Ѱ function) 
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Appendix B 

The wave function units are Volt-Meters, so by converting them to just Meters (by dividing by the Electric Potential 
(voltage) formula) and using the Energy of a Quantum Harmonic Oscillator field [8], the energy of the Electron wave 
function can be shown to be the correct amount: 
 
See Ref. [1], Appendix C, page 63 for the full calculation. 
 

Appendix C 

Proof that the average (RMS) of the divergence of the wave function gives the Electric Potential field for the 
electron/positron, and that it is the same as the known Classical equation: 
Here, the Wave Function is converted from Cartesian to Spherical coordinates and then the RMS is taken over both 
the θ  angle coordinate when φ  is equal to π/2 (the equator of the wave function) to smooth the 3D spiral struc-
ture of the Wave Function into a continuous, smooth scalar field such as that of the Classical Electric Potential field. 
When this is done, the resulting field is compared to the Classical formula. There is a near perfect match between the 
two, with the only difference being factor based on   which has a value of 1.054571800E−34. This difference would 
be so small as to go un-noticed. There is, however, a larger proportion of the potential in the wave function along the 
equatorial plane, and a decrease (to nearly zero) along the polar axes in the spiral potential field of the original wave 
function (before the RMS is taken) which may be detectable in a well-constructed experiment. 
 
The Electron 
(The Positron calculation are the same but use the different Ѱ function) 
See Ref. [1], Appendix B, page 42 for the full calculations. 
 

Appendix D 

Field Calculation Code from the Model 
See Ref. [1], Appendix D, page 66 for the code listing. For the full modelling project’s code, see the GitHub project, 
Ref. [27]. 
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